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What's so special about predictions of
Stock time series?
o

* A hard problem! Is it even possible?

* Looks very much like random walk!

* The process is “regime shifting”. The markets move
in and out of periods of "turbulence", "hause" and
"baise”. Hard for traditional algorithms!

* The evaluation of predictability is extremely hard!
When have we learned and when have we
memorised?

®

A successful prediction algorithm does not have to
give predictions for all points in the time series.

Can we predict predictability?

© Thomas Hellstrom 1687

What does the data look like?

Clear Trending behaviour in two time series
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Thomas Hellstrom

“Industrial” background:

lonospheric research at EISCAT

Product development in my own company Seapacer AB
- Optimisation and Control computers for ferries

- Real time data analysis

Teaching Artificial Intelligence at Umea University
Involved in the financial research project at
Malardalens hoégskola.

£ EE SR

The work | will present is done in collaboration with
Kenneth Holmstrom

© Thomas Hellstrom 1997 2

Common viewpoints

rox

3¢ The efficient market hypothesis -3

The prices reflect ALL available information and new
information is assimilated immediately.

Implies a random walk. “Impossible to predict! ”

%Traders viewpoints @

“ Just a question of hard work and good intuition! ”
The market clearly goes through periods of positive
and negative trends. It's just to identify the peaks and
the troughs
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Technical analysis: Triangles

Clear Trending behaviour in two time series
750

700

650

600

550

500

Stock price

450

400 Lower Break out SELL!|

350

300 <+— Upper Break out BUY! 1

250
0 100 200 300 400 500 600 700

day number

© Thomas Hellstrom 1997



Ooops!

% Trending behaviour in two time series
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Data in Technical analysis

 Close price

Highest payed during day

« Lowest payed during day

* Volume (no. of traded stocks)

“tick” data sometimes available

© Thomas Hellstrom 1097

Data in Fundamental analysis

700

1) The general economy
* inflation
* interest rates
« trade balance etc.

2) The condition of the industry

« Other stock's prices, normally presented as
indexes.

 The prices of related commodities such as oil,
metal prices and currencies
* The value on competitors stocks
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Does the Dow Jones index follow a random walk?

Normal density function m=0.051 s=1.132

o « Normal distribution is a consequence
o of pure random walk.

0.

) \ « Statistics for daily changes

Zo / Dow Jones 1984-1996:
& Mean=0.05% Std. dev.=1.1

* Question:
How often can we expect a crash like

6 4 2 0 2 4 6 november 1987 (-28% in one day) ?
Daily change r (%)
r P(R<r) Years between events No. of real obs.
0 5.00E-01 (o] 1063
-1 2.00E-01 o 201
-2 4.00E-02 (o] 56
-3 4.00E-02 1 19
-4 2.00E-04 23 9
-5 4.00E-06 982 3
-6 5.00E-08 88244 3
-7 3.00E-10 20,000,000 1
-8 6.00E-13 7000,000,000 1
-9 7.00E-16 6000,000,000,000 1 8
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Stock price (High Low Close) and Volume
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Data in Fundamental analysis

3) The condition of the company

« p/e: Stock price divided by last 12 months earning
per share

» Book value per share: Net assets (assets minus
liabilities) divided by total number of shares

« Net profit margin: Net income divided by total sales
« Debt ratio: Liabilities divided by total assets

« Prognoses of future profits

« Prognoses of future sales
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Derived entities

» k-day Returns:

_y(®) -yt -k
®O =0

~tog f 0

* Moving average of order k:
mav . (y) =(z(1),z(2)....., z(N))

2=y y(t-)
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Inductive Learning

Given: A set of N examples { (x;,z;),i=1LN} and an
unknown function f suchthat f(x;) =z, Oi

The task of pure inductive inference or induction is:
Learn a function g that minimises the norm of the error
vector E: |E|=|(e,....ey)|

where e, =e(9(x,),z;)

l.e: g should “approximate” f

Note:

The error function e and the norm |E| are still not defined.
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1) Standard Time series approach

Inputs: X(t) = (y(t),....y(t-k+1) )

Output: z(t+h) = y(t+h) where h is the prediction horizon
|.e Predict future prices with past prices

e, =g(X()-z(t+h)

El= e S
E| whm; (RMSE)

Typical choices of function g:
k
* g =) ayt-i

* gis ageneral non linear function

AR-model

Neural network
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Derived entities

« Volatility (standard dev. of the log returns)

-

where

R
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Inductive Learning

The case of Prediction:

Examples: { (X(t), z(t+h)), t=1,N }

where his the prediction horizon

Learn a function g that minimises |E|=|(e,....ey)| where

e, = e(g(X(1), z(t +h))

Specifying a Prediction problem

* “Inputs”, i.e. The X vector

* “Output”, i.e the z vector

« Error function e(g(x),z)

* Vector norm for computing |E| = (e,,...e,)
* Bias for g (prior knowledge of g)
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Feed-forward neural network

* Input layer with 4 inputs
« Two Hidden layers with 3 and 5 nodes
« Output layer with 1 output node

The weights w are selected to minimise

\E\=Jﬁ§(gw(t)—y(t+1»2
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1) Standard Time series approach

Drawbacks:
« A stationary model is not realistic

« Fixed horizon not realistic. A profit 2 days ahead is
as good as 1 day ahead.

* The MSE measure treats all predictions g, small as
large as equal.
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Feed forward neural network

2) Pattern classification approach

Inputs: X(t) = (R,(t),Rs(t),R (1), Ry (1))
Output: z(t +5) =R4(t +5)
O g(X@®)>a AND z()<0 O ais a trading
e = g(X(t) <-a AND z(t)>0Q threshold > 0
BJ otherwise H

N
El= i3l

g can be used in a trading rule T:

Cbuy ifg( X@®))>a O
T(t) = Csell ifg( X(t)) < —GE
Bio nothing otherwise H
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Recurrent neural network

< Input layer with 4 inputs
« Two Hidden layers with 3 and 5 nodes
« Output layer with 1 output node

=i

Ry (t) []
! \‘ <7772
Ry(t) IS XA~ N\

9. (t)

N\

The weights w are selected to minimise:

L
‘E‘_ N-24 Zbel
&
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Technical Indicators

« Feedback to input layer

» The hidden layer stores previous values and can
reconstruct the dynamics

9., (1)
y(t)

The weights w are selected to minimise:

\E\=Jﬁ§(gw(t)—y(t+n)z
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Technical Indicators

* The tools for Technical trading

* Include principles such as:
— The trending nature of prices
— Volume mirroring changes in price
— Support/Resistance
* Examples:
— Moving averages
— Formations such as triangles

— RSI - the relation between the average upward price
change and the average downward price change
within a time window normally 14 days backwards
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« Can often be described as a trading rule:
Chuy ifg(X(®))>a O

T(t) = csell ifg( X(t))<-ap]
Bﬂo nothing otherwise H

where X() = (y(1),....y(t-k+1))

* Example:
mav, (y) ={z(1),z(2),...., z(N)}
k-1
z(t)z% > y(t-)

g = A(sign(may 5(y) ~mavg0(y)) )
Av(t) = v(t)-v(t-1)
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9= A(sign(mav 5 (y) ~mav 6 () )

50 and 100 day moving averages
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Benchmarks

» Naive prediction of stock prices:
y'(®)=y(t-1)

* Naive prediction of returns:
R'(t) =R(t -1)

The naive predictors are local minimum in many models
e.g AR-models (but also Neural Networks):
K

y' () =Z a; y(t-i)

* Buy and hold:
Buy at day 1 and sell at day N
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Performance measures

« Directional prediction “Hit rate”
Predicting {R(t), t=1,N} with {R'(t), t=1,N}

_H{tIROR @® >0, t=1,N }|

C[{tIROR ® %0, t=1,N}|

For the naive return predictor:
_[{tIR®R(@ -1) >0, t=1,N }|
"TI{tIR®OR@E -1) £0, t=1,N }|

¢ Normalised hit rate:

H, <1 for real predictive power

29
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Relative stock performance

« Portfolio management
— Minimise the variance in a portfolio by quadratic
programming
— Also possible with single stock methods by:
« Computing relative stocks:

ACESAU) /Z yi) 7K

« Ranking stock returns:
The stock with highest R gets rank 1:

‘Rank (O =1+ {R,O IR, () >R, (), :1..N}H
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Performance measures

* Theil coefficient:

Compares the RMSE (root mean square error) for our
predictions with the naive price predictions

Predicting {y(t), t=1,N} with {y’(t), t=1,N}

Z Y-y (®))°

\/Z(Y(t)-)’(t-l) )?

T<1 for real predictive power

T=
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Performance measures

Mean profit per trade:

« Trading rule approach:
— “Run” the trading and compute the mean profit

« Time series approach:
N

Mean profit = Zl sign( y' (1) -y(t-1) ) (y(@®) -y(t-1)) /N

=
l.e:

A trade is assumed at every time step, in the
direction of the predicted change.
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Evaluating performance

What is a reasonable goal?

« Efficient market hypothesis implies random walk
which is impossible to predict!

* The ACF has very low values

Nearest neighbour analysis shows very low correlation

» There are so few $100 notes laying around!

Published research (with proper evaluation) often

shows about 54% hit rate.

* Even 54% real hit rate is enough to make a fortune!

* Compare with a casino: They don’t know what number
comes up next, they just improve the odds by adding the 0
and 00

31
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Evaluating performance

* We are predicting a stock with equal numbers of moves up
and down during one year of 250 trading days.

« Apply a totally random prediction algorithm on each day
« What is the probability that the hit rate>54% ?

The distribution for number of hits is given by:

50
P(H=x)= EZ E).s* 0.5%07x
X

P(H > x) =1-P(H < x) =1-bincdf(x,250,0.5)
x=0.54*250=135 gives P(H>135)=0.092

l.e.There is a 9% risk that a random algorithm gives 54%
hit rate.
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Evaluating performance

Evaluating performance

We want to compare 100 indicators that each produce
Sell and Buy signals on average once a week.
The test period is 10 years! We demand 55% hit rate!

Apply 100 totally random prediction algorithm on each week.

The probability that any one of them gets exactly x hits is:
P(H > X) =1-P(H < x) = 1-bincdf(x,500,0.5)
P(H>0.55*500)=0.0112

The probability that ANY of the 100 indicators produce 55%
hit rate is 1-minus the probability that all are less then 55%:
1-(1-0.0112 )" =0.68

How do know when we have learned?
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Algorithm evaluation is a part of the learning process!

It must be done “in sample” and not on the test set.
Best: A final test on data that didn't exist at the time of the
development of the algorithm

¢ Itis sensitive to “over training”.
* Be aware of the data-snooping problem!
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Results so far

Future work

Used methods

« Artificial Neural Networks

* Fuzzy rule bases

 State space reconstruction and local models
* Kk nearest neighbour techniques

* Adaptive AR

* Hundreds of technical indicators

Results:
* No statistically significant predictions
 Significant seasonal patterns in data
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« Finding regions with predictability
* How do we know that we have learned?

* Fundamental analysis much easier?
— Problem: lack of huge amounts of data

¢ Other methods %§ %i? I
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