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Types of in and out data
Prediction as Inductive Learning
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Thomas Hellström

“Industrial” background:

Ionospheric research at EISCAT

Product development in my own company Seapacer AB
-   Optimisation and Control computers for ferries

-   Real time data analysis

Teaching Artificial Intelligence at Umeå University

Involved in the financial research project at
Mälardalens högskola.

The work I will present is done in collaboration with
Kenneth Holmström
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What’s so special about predictions of
Stock time series?

-
• A hard problem! Is it even possible?
• Looks very much like random walk!
• The process is “regime shifting”. The markets move

in and out of periods of ''turbulence'', ''hause'' and
''baise'’. Hard for traditional algorithms!

• The evaluation of predictability is extremely hard!
When have we learned and when have we
memorised?

+
• A successful prediction algorithm does not have to
    give predictions for all points in the time series.

Can we predict predictability?

© Thomas Hellström 1997
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Common  viewpoints

   The efficient market hypothesis
The prices reflect ALL available information and new
information is assimilated immediately.
Implies a random walk.   “ Impossible to predict! ”

   Traders viewpoints
“ Just a question of hard work and good intuition! ”
The market clearly goes through periods of positive
and negative trends. It’s just to identify the peaks and
the troughs

© Thomas Hellström 1997
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What does the data look like?

© Thomas Hellström 1997
6

0 100 200 300 400 500 600 700
250

300

350

400

450

500

550

600

650

700

750
Cle a r Tre nd ing  be ha viour in two tim e  s e rie s

da y num be r

S
to

ck
 p

ric
e

Technical analysis: Triangles

a

Upper Break out   BUY!

Lower Break out   SELL!
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Ooops!

a

Upper Break out   BUY!

Lower Break out   SELL!

Real stock index

Random walk
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Does the Dow Jones index follow a random walk?

• Normal distribution is a consequence
  of pure random walk.

• Statistics for daily changes
  Dow Jones 1984-1996:
  Mean=0.05%   Std. dev.=1.1

• Question:
  How often can we expect a crash like
  november 1987 (-28% in one day) ?

r P(R<r) Years between events No. of  real obs.
0 5.00E-01 0 1063

-1 2.00E-01 0 201
-2 4.00E-02 0 56
-3 4.00E-02 1 19
-4 2.00E-04 23 9
-5 4.00E-06 982 3
-6 5.00E-08 88244 3
-7 3.00E-10 20,000,000 1
-8 6.00E-13 7000,000,000 1
-9 7.00E-16 6000,000,000,000 1
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Data in Technical analysis

• Close price
• Highest payed during day
• Lowest payed during day
• Volume (no. of traded stocks)

“tick” data sometimes available

© Thomas Hellström 1997
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Stock price (High Low Close) and Volume
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Data in Fundamental analysis

1) The general economy
• inflation
• interest rates
• trade balance etc.

2) The condition of the industry
• Other stock's prices, normally presented as

indexes.
• The prices of related commodities such as oil,

metal prices and currencies
• The value on competitors stocks
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Data in Fundamental analysis

3) The condition of the company

• p/e: Stock price divided by last 12 months earning
per share

• Book value per share: Net assets (assets minus
liabilities) divided by total number of shares

• Net profit margin: Net income divided by total sales
• Debt ratio: Liabilities divided by total assets
• Prognoses of future profits
• Prognoses of future sales

© Thomas Hellström 1997
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Derived entities

• k-day Returns:

• Moving average of order  k:
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Derived entities
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•  Volatility (standard dev. of the log returns)
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Inductive Learning

Given: A set of N examples                            and an

unknown function   f  such that

The task of pure inductive inference or induction is:

Learn a function  g  that minimises the norm of the error

vector E:

where

I.e: g should “approximate” f

Note:

The error function  e  and the norm |E| are still not defined.
© Thomas Hellström 1997
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Inductive Learning

The case of Prediction:

Examples:   { (X(t), z(t+h)), t=1,N }

where h is the prediction horizon

Learn a function  g  that minimises                            where

Specifying a Prediction problem
• “Inputs”, i.e. The X vector
• “Output”, i.e the z vector
• Error function
• Vector norm for computing
• Bias for g (prior knowledge of g)

© Thomas Hellström 1997
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1) Standard Time series approach

Inputs:  X(t) = ( y(t),…,y(t-k+1) )

Output: z(t+h) = y(t+h) where h is the prediction horizon
             I.e Predict future prices with past prices

 (RMSE)

Typical choices of function  g:

•  AR-model

• g is a general non linear function Neural network
© Thomas Hellström 1997
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• Input layer with 4 inputs
• Two Hidden layers with 3 and 5 nodes

• Output layer with 1 output node

y(t)

           y(t-1)

y(t-2)

y(t-3)

The weights  w  are selected to minimise

Feed-forward neural network
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1) Standard Time series approach

Drawbacks:
• A stationary model is not realistic

• Fixed horizon not realistic. A profit 2 days ahead is
as good as 1 day ahead.

• The MSE measure treats all predictions g, small as
large as equal.
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2) Pattern classification approach

Inputs:

Output:

is a trading
threshold

g can be used in a trading rule T:

© Thomas Hellström 1997
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• Input layer with 4 inputs
• Two Hidden layers with 3 and 5 nodes

• Output layer with 1 output node

The weights  w  are selected to minimise:

Feed forward neural network
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• Feedback to input layer
• The hidden layer stores previous values and can

reconstruct the dynamics

The weights  w  are selected to minimise:

Recurrent neural network
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Technical Indicators

• The tools for Technical trading

• Include principles such as:

– The trending nature of prices
– Volume mirroring changes in price
– Support/Resistance

• Examples:

– Moving averages
– Formations such as triangles
– RSI - the relation between the average upward price

change and the average downward price change
within a time window normally 14 days backwards

© Thomas Hellström 1997 24

Technical Indicators

• Can often be described as a trading rule:

    where  X(t) = ( y(t),…,y(t-k+1) )

• Example:

© Thomas Hellström 1997
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Relative  stock performance

• Portfolio management
– Minimise the variance in a portfolio by quadratic

programming
– Also possible with single stock methods by:

• Computing relative stocks:

• Ranking stock returns:

        The stock with highest R gets rank 1:
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Benchmarks

• Naive prediction of stock prices:

y’(t)=y(t-1)

• Naive prediction of returns:

The naive predictors are local minimum in many models
e.g AR-models (but also Neural Networks):

• Buy and hold:
Buy at day 1 and sell at day N
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Performance measures

• Theil coefficient:
Compares the RMSE (root mean square error) for our
predictions with the naive price predictions

Predicting {y(t), t=1,N} with {y´(t), t=1,N}

T<1 for real predictive power
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Performance measures

• Directional prediction “Hit rate”

Predicting {R(t), t=1,N} with {R’(t), t=1,N}

For the naive return predictor:

• Normalised hit rate:

  <1 for real predictive power
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Performance measures

Mean profit per trade:

• Trading rule approach:
– “Run” the trading and compute the mean profit

• Time series approach:

Mean profit =

I.e:
A trade is assumed at every time step, in the
direction of the predicted change.
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Evaluating performance

What is a reasonable goal?

• Efficient market hypothesis implies random walk
which is impossible to predict!

• The ACF has very low values

• Nearest neighbour analysis shows very low correlation

• There are so few $100 notes laying around!

• Published research (with proper evaluation) often
shows about 54% hit rate.

• Even 54% real hit rate is enough to make a fortune!

• Compare with a casino: They don’t know what number
comes up next, they just improve the odds by adding the 0
and 00

© Thomas Hellström 1997
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Evaluating performance

• We are predicting a stock with equal numbers of moves up
and down during one year of 250 trading days.

• Apply a totally random prediction algorithm on each day

• What is the probability that the hit rate>54% ?

The distribution for number of hits is given by:

     x=0.54*250=135 gives P(H>135)=0.092

I.e.There is a 9% risk that a random algorithm gives 54%
  hit rate.
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x250x 5.05.0
x

250
)xH(P −







==

)5.0,250,x(bincdf1)xH(P1)xH(P −=≤−=>

33

Evaluating performance

• We want to compare 100 indicators that each produce
Sell  and Buy signals on average once a week.
The test period is 10 years! We demand 55% hit rate!

• Apply 100 totally random prediction algorithm on each week.

• The probability that any one of them gets exactly  x  hits is:

P(H>0.55*500)=0.0112

The probability that ANY of the 100 indicators produce 55%
hit rate is 1-minus the probability that all are less then 55%:

How do know when we have learned?
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Evaluating performance

Algorithm evaluation is a part of the learning process!

• It must be done “in sample” and not on the test set.
Best: A final test on data that didn't exist at the time of the
development of the algorithm

• It is sensitive to “over training”.

• Be aware of the data-snooping problem!

© Thomas Hellström 1997
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Results so far

Used methods
• Artificial Neural Networks
• Fuzzy rule bases
• State space reconstruction and local models
• k nearest neighbour techniques
• Adaptive AR
• Hundreds of technical indicators

Results:
• No statistically significant predictions
• Significant seasonal patterns in data
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Future work

• Finding regions with predictability

• How do we know that we have learned?

• Fundamental analysis much easier?
– Problem: lack of huge amounts of data

• Other methods

© Thomas Hellström 1997


