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Trading Rules

are used for decision support:

Buy cifg(t) =1
T(t) =< Sell cifg(t) =-1
Do nothing : if g(t) =0

lg is a function of the previous stock prices Close:

g {Close(t),Close(t — 1), ...,Close(t — k)} ~ {—1,0,1}.

g can often be parameterized as g[X], and optimized w.r.t X

Example of a Trading Rule

Example 1. Function g is defined as

1: if mavs(t) > mave(t) A mavs(t — 1) < mave(t — 1)

g(t) = —1: if mavs(t) < mavp(t) A mavg(t— 1) > mavp(t — 1)
0: otherwise

where mavy(t) is a moving average of length k defined as
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Close(t — m).
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mavi(t) = ¢
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Example of a Trading Rule

50 and 100 day moving averages

Stock price y(t)
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Level of Resistance

if the price brakes through the resistance: g(t)=1 = Buy

Stock price y(t)
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Stock price y(t)

Trading Channel Breakout

if y(t) penetrates mav,;+o-x, : g(t)=1 =Buy

mav,; +0-X,

moving
average
mav,,
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Gaussian Volume

The Gaussian volume Va(¢) is & transformation of the traded volume (number of
stocks) V(¢) defined as

Va(t) = (V (&) = my (8))/ov (¢), (5)

where my(¢) and y(¢) are computed in a running window of length n as

oy (t) = %Zv(t ~q ©

i=1

and

(7)

V,, expresses the number of standard deviations, by which the volume differs from
its running mean. The normalization makes it possible to compare values of V, for
different stocks and also for different times. In this paper the Gaussian volume Vio is
used and is denoted by guol10, since this is the name of the ASTA (9] implementation
of the function.

Combining Moving Averages with Volume

The crossing moving averages is combined with the Gaussian volume into
one compound trading rule mav:

where

and mav,, and mav,, are given by (4).

mav(z:, @3, %3) = Mava(zy, z3) A guolll > a3,

Mavz (21, 2) = mavs,(t) > mave,(t) A mave, (t — 1) < mavy,(t— 1)

Trading Channel Breakout

The main part of this trading rule is what is popularly known as Bollinger Bands
(see e.g. page 91 in [15]). The complete trading rule is defined as

break(z1, T2, z3) = breakout(zy, x2) A guoll0 > zs, (10)
where the breakout function is defined as

breakout(z,,xs) = Close(t) > (mavy, (t) + @2 - 04, () A (11
Close(t — 1) < (mava,(£) + 75 - 7os ()

and mav,, (¢) is given by (4). Function o, (¢) computes the standard deviation of
the Close as

z1-1

1 .
7)) = \| 57 2 (Closet =) = mava . 12)

The idea is to define an upper boundary for a trading channel and generate a Buy
signal when the Close penetrates this boundary from below. This upper boundary
is defined as the sum of a moving average mav,, and z; times an estimate of the
standard deviation o, .

Level of Resistance

The trading rule Level of Resistance, in this paper demoted resist, is based on a
technique commonly executed by manual inspection of the stodk charts. The general
idea is to identify peaks in a window backwards, where the Close price is roughly
the same. When such peaks are found, a Buy signal is generated if the Close price
crosses from below the level for the found peaks. We define the trading rule resist
as

Tesist(wy, @a, @s, 3s) = Tresist(wy, w2,3s) A guoll0 > z4 (13)
where

aresist(z1, 72, 7s) = Close(t) > plevel A Close(t — 1) < plevel (14)
and

be identified at level / in an z; -day-long window backwards.

.. if at least @y peaks in Close that differs by less than % can
plevel =
0: otherwise

Performance Evaluation

Performance measures are needed twice:

1) In the learning phase when optimal parameters
are determined
2) When the trading rules are tested out of sample

Two common ways to compute performance:
Profit in Simulated Trading

Hit rate at a fixed prediction horizon

In this paper the Hit rate is used.




Hit Rate

The positive hit rate for a Buy rule is the fraction of
buy signals, which are followed by an increase in stock price:

For a time period [1,...,7] and a set of stocks S, the h-day positive hit rate for
a Buy rule g is defined as

o card{(t,s)|R3(t+h) >0,0:(t) = 1,1 <t <T —h,s € S}

= 15
¢ card {(t,s)|Ry(t +h) #0,0,(t) =1,1 <t <T —h,s€ S} (15)
where g, is the function specifying the trading rule as described in (1). The return
R3 is the relative change in price and is defined as

Close,(t) — Close,(t — h)

Rat) =100 Closey(t — h) (16)

The negative hit rate for a Sell rule is the fraction of
sell signals, which are followed by a decrease in stock price

Benchmarks

A benchmark should provide an alternative and
standardized way to produce predictions.

The Naive Prediction of Return asserts today’s return R, (¢)
as the best estimate of R, (¢ + /). For a time period [/, ..., 7]
and a set of stocks S, the #-day positive hit rate for the
naive return predictor is computed as

card {(¢,3)|Ri(t +h) >0, RE(t) > 0,1 <t <T —h,s€ 5}

t— -
Hy = card {(t, s)| Ryt +h) £ 0, Ry(t) > 0,1 <t <T —h,s€ S} n

N

In this paper we use 1-day and 5-day returns (h = 1 and h =5 in equation (17)) to
form two benchmarks denoted Naive-1 and Naive-5 respectively.

Benchmarks

The Naive € prediction asserts today’s price Close (?)

as the best estimate of Close(++/). For a time period [/,...,7]
and a set of stocks S, the 4-day positive hit rate for the

Naive-g predictor is computed as

_card {(t,s)|Ri(t+h) > 0,1 <t <T—h,s€ S}
S card {(t,8)|R3(t+h) #£0,1 <t <T—h,s€ S}

Optimizing the Trading Rules

The function g is normally parameterized with a few
parameters X that can be determined to optimize performance on
the training data.

The notation g[X] denotes this parameterization.

The trading rule normally issues Buy and Sell signals only for a
minor part of the time steps. This is bad for two reasons:

1) Bad statistical significance for the performance

2) Risk for over optimization. l.e: bad generalization

A Constrained Optimization Problem

We therefore formulate a constrained optimization problem for a
Buyruleg:

arg mga:H;[w]

s.t.

card{(s,t)|gs[z](t) = 1,t <T —h, s€ §} > Ny
zp <z <zy

)

X. and Xy are lower and upper bounds for the unknown
parameters X and the other constraint is the total number
of generated Buy signals. Using a hard constraint leads to a
non-smooth problem. Furthermore, it is hard to decide on a
crisp value for ;.

Reformulation to a Smooth Problem

arg maz H;[Z] supportn, (card{(s,t)|g[z](t) =1,t < T - h,s € S})
P
s.t. (20)

z S@ < Ty
where support y, is given by the sigmoid function

1

supportyo(n) = T—ms T

@)

The parameters a and 3 are computed to fulfill the equations support x, (Ny) = 0.99
and support, (Np - 0.5) = 0.01

The constraint acts as a regularizer since the search space for
the function g is reduced by requiring a minimum number of
trading signals.




Optimization

3&? The optimization problem is a box-bounded non-
convex global optimization problem, where no
derivates are available.

3?,? In this paper we are using the DIRECT algorithm by
Jones (1993). The algorithm estimates the Lipschitz
constant and uses it to control the trade-off between
global versus local search.

Sliding Windows

Since we can’t use cross validation
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optimization evaluation
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The performance is computed as the average
performance for the 6 runs

Results

The 32 largest Swedish stocks have been used in the tests:

Table 2: Hit rate and number of selected points for optimized trading rules. Totals
from 6 1-year test periods (1992-1997) with the preceding 2 years for training. 5-day
prediction horizon.

Method Hy| Nu| He| DNe|90%- low H,
Regularized(| resistion 63.61 | 753 |58.72| 516 55.03
trading breakioo 68.36 | 708 | 64.22 | 450 (60.33
rules mavie 65.62 | 701 |61.21 | 307 57.01

resist 86.27 51 | 64.20 28 47.00
Non break, 73.56 | 295 | 56.32 | 190 50.00
regularized | =y 85.11 94 | 61.70 a7 48.67

Naive —e | 50.83 | 80456 | 52.35 | 42372 51.95
Non <| Naive — 1, | 51.97 | 33437 | 52.77 | 18257 52.16
regularized | "Nave — 5, | 52.01 | 37510 | 52.17 | 20539 51.50

The non-regularized optimization over-fits data and is no better
than the bench marks out-of-sample. The regularized rules are all
significantly better than the bench marks.

Example of Optimized Trading Rules for 1992

Table 4: Optimized trading rules for 1992. 5-day prediction horizon.

Method | Optimized expression

resistiy | aresist(74,3,5.72) A gvoll0 > 0.67
breakioo | breakout(38,1.39) > 0 A gvoll0 > 1.87
mavigg Mawz(3,37) A gvoll0 > 0.33

resist; zresist(21,6,1.83) A gvoll0 > 0.67
break, breakout(124,2.5) > 0 A gvoll0 > 2.5
mavy Mavz(11,112) A gvoll0 > 1.44

Each year gets different optimal rules

Stability of the Found Optima

The stability and the relevance of the found optima is also tested.
The trading rules for 1992 are applied not only for 1992 but also
for the following years up to 1997:

Table 6: Hit rate for trading rules optimized with data from 1990-1991. 5-day
prediction horizon.

Method | 92 93 94 95 96 97 | Average | H;e

resistion | 54.7 | 58.7 | 51.0 | 56.6 | 52.5 | 53.5 | 54.6 58.72
breakiqy | 59.3 | 62.9 | 59.4 | 52.2 | 57.0 | 53.9 | 57.1 64.22
Mavig 56.7 ] 70.3 | 53.9 | 51.2 | 61.5 | 59.7 | 58.7 61.21

The average performance is lower than for the year-by-year
optimized rules (H,,).
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