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Abstract: A big problem when working with models for financial prediction
is the estimation of out-of-sample performance for the obtained models or trading
rules. In particular, it is very easy to jump into conclusions regarding trading rules
that exhibit extremely profitable behavior, when tested on historical data. These
misjudgments are often caused by the rules covering too few examples in the ex-
amined data. This paper deals with the problem in conjunction with nonconvex
global optimization of trading rules by adding a constraint in the problem formula-
tion. The effect is a regularization, where solutions covering too few examples are
rejected. The modeling is performed with a sliding-window technique and generates
different parameters for the optimized trading rules in each time window. Test re-
sults from the Swedish stock market show superior generalization ability in terms
of risk-adjusted hit rates for the rules generated with the proposed method. Fur-
thermore, the results show that the high hit rates achieved, to a large extent are a
result of the adaptive modeling with sliding windows.

Keywords: financial series, forecasting, trading rules, optimization stock pre-
diction.

1 Introduction

In recent years a variety of models for forecasting changes in stock market prices
have been introduced. In this paper we consider the special kind of models, which
produce predictions only for a very limited fraction of all observations, and a ‘do
not know’ for the rest. In the trading community these models are often referred to
as technical indicators, but can also include more complex models as well as models
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with many kinds of input, such as interest rates, stock indexes, and exchange rates.
The general notion is that it might be easier to find a model allowed to output a ‘do
not know’ result, than try to model non-existing dependencies in large parts of the
input space.

The trading rules often are optimized with respect to parameters that control
when the rules generate trading signals. This optimization is performed using his-
torical data. Examples of this can be seen in [10] where a technical indicator is tuned
to give maximum profit in a simulated trading environment. A related problem is
found in [12], where genetic algorithms are utilized to optimize a trading system
designed to trade the Standard & Poors (S&P) 500 Index.

One of the most serious problems when optimizing trading rules is the lack of
generalization for the obtained rules. It is usually a simple task to generate a trading
rule that performs excellently on the training data, but has a very modest perfor-
mance when tested on previously unseen data. One certain way to achieve this
undesirable situation is to allow low support for the generated rules, i.e. accept
rules that produce a very small number of trading signals for the training data.
This increases the risk for undesirable data snooping, and normally gives very poor
generalization performance. Moreover, the statistical uncertainties in the computed
performance measures increase drastically as the size of the data set decreases. In
this paper a solution for the problem is implemented as part of a numerical opti-
mization routine that tunes parameters in trading rules for stock trading. Section 2
introduces the concept of Trading Rules, and defines the specific rules used in the
study. In Section 3 the relevant performance measures are discussed and defined.
The learning algorithm is implemented as a nonconvex global optimization problem,
and is described in Section 4. The results of applying the trading rules and learning
strategies on data from the Swedish stock market are presented in Section 5. Section
6 closes with conclusions and suggestions for future research.

2 Trading Rules

A general way to formulate strategies for stock trading is to define a trading rule as
a time series T'(t) such as

Buy cifg(t) =1
T(t) =4 Sell :ifg(t) = —1 (1)
Do nothing : if g(t) =0

where g is a function of the previous stock prices Close:
g : {Close(t),Close(t — 1), ...,Close(t — k)} ~ {—1,0,1}. (2)

Trading rule (1) is designed to serve as decision support in actual stock trading,
as indicated by the labels Buy, Sell, and Do Nothing. Function g determines the
type of the trading rule. By extending expression (2) with the input variables High
(highest-paid price), Low (lowest-paid price), Open (first price) and Volume (num-
ber of traded stocks), most standard technical indicators, such as the Stochastic Os-
cillator, the Relative Strength Index (RSI), Moving Average Convergence/Divergence
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(MACD) etc. [15], can be described in this fashion. It is also clear that more so-
phisticated prediction algorithms based on traditional time-series analysis, neural
networks, etc., can be formulated in the same general structure. In addition to the
price and volume variables, such fundamental variables as interest rates and ex-
change rates may also be included as input to function g in (2). Quite often the buy
and sell decisions are controlled by separate expressions and the trading rules are
then denoted Buy rule and Sell rule respectively. Hereinafter we use the notation
gs to denote a trading rule applied to one specific stock s.

Example 1. Function g is defined as

1: if mavg(t) > mavg(t) AN mavs(t —1) < mavg(t — 1)
g(t) =< —1: ifmavg(t) < mavr(t) A mavs(t —1) > mavr(t —1) (3)
0: otherwise

where mavg(t) is a moving average of length k defined as

-1

7

mavy(t) = % Close(t —m). (4)

3
I

The trading rule in the example is illustrated in Figure 1. The trading rule (3) signals
Buy, if the short moving-average mavg crosses the long moving-average mavy, from
below. A Sell signal is issued when mavg crosses the mav;, from above. The optimal
settings for S and L are determined by the learning process.
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Figure 1: A trading rule based on moving averages

For a general trading rule, a learning task can be defined as finding the optimal
function ¢g. In the case of standard technical indicators function ¢ is normally
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parameterized with a few parameters that have to be determined. In the example
above, the optimal settings for the moving-average lengths S and L are unknown
and should be determined by a learning algorithm. This learning task is described
in more detail in Section 4.

In this paper, the moving-average rule described above, as well as two other
trading rules for generating Buy signals, are used to demonstrate the techniques with
constrained optimization. All three are based on standard technical indicators, well-
known by the trading community. For a thorough introduction to the subject, refer
to [15]. However, the standard indicators have been augmented with a term that
includes the traded volume. This too is in accordance with common practice among
traders. Trading signals are often given higher significance if they are accompanied
by a high-traded volume for the stock in question. The dependence between traded
volume and future stock prices has also been analyzed in academic research. The
reliability of past stock returns is modeled taking the volume into account in [2]. In
[4] the interaction between different types of market actors is analyzed with respect
to the traded volume and the reversed returns. A survey of research dealing with
the relation between traded volume and stock returns can be found in [14]. We
include the traded volume as a term in all our technical trading rules. To facilitate
a uniform modeling for all stocks in the market, a normalized measure has to be

defined.

2.1 Gaussian Volume

The Gaussian volume V,,(t) is a transformation of the traded volume (number of
stocks) V(t) defined as

Va(t) = (V(t) = my(t))/ov(t), (5)

where my () and oy (t) are computed in a running window of length n as

m(t) = -3 V(i) (6)

and

n

v = | =S (V(t i) — my ()2 (1)

n— 14
=1

V,, expresses the number of standard deviations, by which the volume differs from
its running mean. The normalization makes it possible to compare values of V,, for
different stocks and also for different times. In this paper the Gaussian volume Vg is
used and is denoted by gvol10, since this is the name of the ASTA [9] implementation
of the function.

2.2 Crossing Moving-Averages

This trading rule is based on the principle shown in the example in the beginning of
Section 2. Moving averages have been used, for a long time, both by practitioners
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and academics investigating the predictability of financial markets. Levich and
Thomas [18] find that moving-average rules produce statistically significant average
returns for future contracts on currencies. Brock, Lakonishok and LeBaron [3] find
the same behavior for the US stock market. A theoretical analysis of when and why
moving-average trading rules work, is found in [16]. In this paper we define the Buy
rule mav as

mav(zy, Ty, x3) = Mavz(xy, x2) A gvoll0 > x3, (8)
where
Mavz(xy,x2) = mavy, (t) > mavy, (t) A mave, (t — 1) < mav,, (t — 1) (9)

and mav,, and mav,, are given by (4).

2.3 Trading Channel Breakout

The main part of this trading rule is what is popularly known as Bollinger Bands
(see e.g. page 91 in [15]). The complete trading rule is defined as

break(zy, 9, x3) = breakout(xy, ) A gvoll0 > x3, (10)

where the breakout function is defined as

breakout(zy,x2) = Close(t) > (mavy, (t) + x2- 04, (t)) A (11)
Close(t — 1) < (mawg, (t) + xo - 04, (1))

and mav,, (t) is given by (4). Function o, (t) computes the standard deviation of
the Close as

x1—1

> " (Close(t — i) — mavy, ()2 (12)

1=0

1

o-ml (t) = Ty — 1

The idea is to define an upper boundary for a trading channel and generate a Buy
signal when the Close penetrates this boundary from below. This upper boundary
is defined as the sum of a moving average mav,, and x, times an estimate of the
standard deviation o, .

2.4 Level of Resistance

The trading rule Level of Resistance, in this paper denoted resist, is based on a
technique commonly executed by manual inspection of the stock charts. The general
idea is to identify peaks in a window backwards, where the Close price is roughly
the same. When such peaks are found, a Buy signal is generated if the Close price
crosses from below the level for the found peaks. We define the trading rule resist
as

resist(xy, x9, T3, xy) = xresist(xy, xo, x3) A gvoll0 > x4 (13)
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where

xresist(xy, xe, x3) = Close(t) > plevel A Close(t — 1) < plevel (14)
and
~if at least z, peaks in Close that differs by less than 3% can
plevel = " be identified at level [ in an x; -day-long window backwards.

0: otherwise

3 Performance Evaluation

Performance evaluation for a trading rule is needed in two stages of the process.
First, in the learning phase, when optimal parameters for the trading rule have to
be determined. The second stage is when the final trading rule is evaluated on the
test data set previously unseen. For more information about performance evaluation
refer to [8] or [19].

Trading-rule-based methods are normally evaluated by trading simulation, where
the trading rule controls the buying and selling of one or several stocks over a
period of time. Examples of this approach in conjunction with optimization can
be found in [10]. However, it is also possible to evaluate a trading rule with a fixed
prediction horizon, of which the advantage is that all situations where the trading
rules fire (i.e.: T(t) # Do Nothing in (1)) are evaluated. When performing a trading
simulation, this is normally not the case, since the simulated trader is bounded by
the real-world constraint of a limited amount of money. This prevents the trader
from executing some of the Buy signals that the trading rules produce. Since the
fraction of left-out trades can be as high as 80-90%, a scheme with randomization and
repeated simulations is normally required to produce reliable performance measures
for the trading rules. Therefore in this study we evaluate trading rules at fixed
prediction horizons. The measure of interest is the correctness of the sign of the
price change from the time of the prediction to 1 or 5 days ahead. This way of
evaluating predictions has gained increased interest in recent years as an alternative
to the more conventional way of minimizing the error of the level prediction. A
comparative study of sign and level methods can be found in [17] where the presented
experiments suggest that methods predicting the sign provide higher profits than
methods predicting the level for a number of investigated stock indexes.

For a time period [1,...,T| and a set of stocks S, the h-day positive hit rate for
a Buy rule g is defined as

+ card{(t,s)|Rp(t+h) >0,g,(t) =1,1 <t <T —h,s€ S}
9 card{(t,s)|Rs(t+h) #0,g,(t) =1,1 <t <T —h,s €S}

(15)
where g5 is the function specifying the trading rule as described in (1). The return
R; is the relative change in price and is defined as

Closes(t) — Closes(t — h)
Closes(t — h)

R (t) =100 - (16)
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where Close,(t) is the price for a stock s at the end of day ¢. The hit rate H, for
a Buy rule g indicates how often a Buy signal is followed by a true increase in the
stock price. The hit rate H for a Sell rule is defined correspondingly but with
returns R, < 0.

3.1 Benchmarks

A benchmark should provide an alternative and a standardized way to produce
predictions. The algorithm at test is then compared to the alternative to evaluate
the performance. Three common benchmark predictors are presented below.

3.1.1 Naive Prediction of Returns

The naive prediction of the return for a stock s asserts today’s return Rj(t) (price
increase since t — h) as the best estimate of Rj(t + h). This naive prediction is
formed from the observation of a 1-step memory in the price-generating process. It
is well known (see e.g. [7]) that the autocorrelation of stock returns often exhibits
a positive first lag component that indicates a positive correlation between adjacent
returns. Since we are studying the performance for Buy rules, only predicted positive
returns are of interest. For a time period [1,...,T] and a set of stocks S, the h-day
positive hit rate for the naive return predictor is computed as

o+ — card{(t,s)|Ri(t+h) >0,R;(t) >0,1<t<T—h,se S}
N card {(t, s)|Rs(t+h) #0,R5(t) >0,1<t<T—h,s€S}

(17)

In this paper we use 1-day and 5-day returns (h = 1 and h = 5 in equation (17)) to
form two benchmarks denoted Naive-1, and Naive-5, respectively.

3.1.2 Naive ¢ Prediction

The naive prediction of prices for a stock s asserts today’s price Closes(t) as the best
estimate of Close,(t + h). This naive prediction is a consequence of the Random
Walk Hypothesis and is often used as a benchmark when predicting levels of returns.
To enable comparison of hit rate predictions, the naive predictor is modified so the
best estimate of today’s price is assumed to be Closes(t + h) + . This means that
the predicted returns R; are always positive. This naive predictor is denoted below
Nuaive-e. For a time period [1,...,T] and a set of stocks S, the h-day hit rate for the
Naive-¢ predictor is computed as

_card{(t,s)|Rj(t+h)>0,1<t<T—h,s€S}
° card{(t,s)|Ri(t+h) #0,1<t<T—h,s€S}

(18)

4 Optimization

For a general trading rule, finding the optimal function g in (2) can be defined as
an inductive learning task that can be solved using historical data. In the case
of standard technical indicators, the function g is normally parameterized with a
few parameters x that have to be determined in order to maximize the chosen
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performance measure on the historical data. To express this parameterization, the
notation g[z| will be used in this Section.

One big problem about trading rules in general and optimizing them in partic-
ular is the statistical significance of the estimated performance. The trading rule
(1) normally issues Buy or Sell signals only for a minor part of the points in the
time series. This results in low levels of significance for the produced performance
measures. It is often easy to find a trading rule that historically outperforms any
benchmark, as long as it does not have to produce more than a few signals per year.
However, the performance on previously unseen data is most often very bad in these
situations. We therefore formulate a constrained optimization problem for a Buy
rule g (Sell rules can be treated in a similar way) as

arg mng;w]

card{(s,Dlgulal(t) = 1,6 <T — h, s € 5} > N,
xp <rxr <y

where x;, and xy are lower and upper bounds for the unknown parameters and the
other constraint is the total number of Buy signals. The hit rate H;M is given by
definition (15). With the introduced notation, g,[z](¢) denotes the trading rule g
parameterized with parameters  and applied to stock s for time ¢. The optimization
routine performs simulations up to time 7" to compute the hit rate and number of
trading signals for a given g[x]. The purpose is to maximize the hit rate H;[I] by
altering the variables = that parameterize the function g. The final performance
measure is the out-of-sample hit rate H;Tw], computed for time ¢ > T with the
optimal estimated parameters x.

Using a ‘hard’ constraint in the optimization problem in (19) leads to a non-
smooth problem. Because of the uncertainty in the choice of the ‘most’ suitable
value of Ny, it is reasonable to reformulate the problem using a ‘soft’ constraint
approach that generates a smooth problem. The approach uses a sigmoid func-
tion to smoothly model the behavior of the added constraint and is inspired by the
membership-function concept used in fuzzy logic [6]. The new problem formulation,
in which the objective function in (19) is weighted with the output of a sigmoid, is

arg maz H;[I] - supporty, (card{(s,t)|gs[z](t) =1,t <T —h,s € S})
s.t. (20)

rp <x<xy

where supporty, is given by the sigmoid function

1

- (21)

supporty, (n)
The parameters « and (3 are computed to fulfill the equations support y,(Ny) = 0.99
and supportn,(Ny - 0.5) = 0.01. This ensures a smooth penalty for trading rules
that generate less than N; trading signals. If more than N, trading signals are
generated, the supporty, function returns essentially 1 and hence does not affect
the search for an optimal function g. The constraint acts like a regularizer, since the
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search space for the function g is reduced by requiring a minimum number of trading
signals. This improves the statistical significance of the estimated performance and
the generalizability of the found solution (i.e. the achieved hit rate on previously
unseen data). The choice of the cut-off value Ny is a trade-off between the achieved
hit rate on the training data and the generalizability.

The optimization problem (20) is a box-bounded nonconvex global optimization
problem. It is suitable to use derivative free methods, since no analytical expressions
for g[z] and H;[I] are available. In our tests we are using the DIRECT algorithm
by Jones [13] as implemented in the TOMLAB optimization environment [1, 11].
The DIRECT algorithm operates on a grid covering the input space. The Lipschitz
constant is viewed as a weighting parameter that indicates how much emphasis to
put on global versus local search.

Technical analysis of stocks is normally based on the premise that the market’s
behavior does not change much over time. While future movements in stock prices
are never copies of the past, the market’s way of responding to new situations is
assumed to be similar to the way it has handled them in the past [5]. Since this is
not necessarily a valid assumption the optimization will be performed with a sliding
window technique as described in the next Section.

5 Empirical Tests

The following results are obtained by using historical data from the Swedish stock
market to optimize the trading rules described in Section 2. The hit rate H, g+ in
the object function (19) is computed using the non-interactive version of the ASTA
system, which performs market simulations of trading rules given in symbolic form.
The ASTA system has a large number of technical indicators implemented and is
thoroughly described in [9)].

The test is utilizing a sliding-window technique with a 2-year training data period
followed by a 1-year test period. The starting point of the training period is moved
between 1990 and 1995 in 1-year steps. This results in six separate modeling/test
periods. The presented performance is the total for the 6 test periods (1992,...,1997).
The purpose of using sliding windows in the optimization is twofold. First, the
stability in the performance can be studied since we get six performance measures
instead of one. Second, the trading rules are allowed to adapt to time-varying market
conditions such as volatility, long-term trends etc. The 32 largest Swedish stocks are
included in the test, which provides a total number of data points of around 35000
(not all stocks have data for the entire period). The trading rules select a small
fraction of these points (date and stock) as suggested opportunities to buy stocks.
The results are presented in tables with positive hit rate H* and number of points
N where a trading signal is generated. Separate measures for training data and test
data are presented in the columns labelled Hy,., Ny, Hie and N;.. Results for 1-day
prediction horizon are presented in Table 1 and for 5-day prediction horizon in Table
2. The rightmost column shows the lower 90% confidence limit! for the hit rate H,.
This entity depends on both H; and N;. and provides a risk-adjusted estimate of

!The lower boundary for a 90% confidence interval.
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H;.. The computation is based on standard expressions for the confidence interval
for a binomial distribution and is described in [20], for example. The cut-off value
Ny, used for the regularization, is set to 100. The choice is determined by the
preferred trading activity and may vary depending on the application. This means
that the generated trading rules fire for at least 100 cases in the training data set.
This corresponds to approximately 50 trading signals per year. The sum of the N
for the 6 test periods should therefore be at least 300 trading signals for each of the
regularized trading rules. The sum of the V;,. should be the double, i.e. at least 600,
since the training data period is twice as long.

Each of the 9 rows represents a prediction method. The first three rows show
the results for the trading rules previously described in Section 2. The parame-
ters xq,xs,... are optimized for best performance on the training data, using the
regularization described above (Vg = 100).

e resistipg. Level of Resistance Indicator.
e breakigy. Trading Channel Breakout Indicator.

e mavygy. Crossing Moving-Averages Indicator.

The following three rows show the same trading rules as above, but with no
regularization to control the number of generated trading signals (Ny = 1).

e resist;. Level of Resistance Indicator.
e breaky. Trading Channel Breakout Indicator.

e mavy. Crossing Moving-Averages Indicator.
Performance for the following benchmark methods are also reported:

e Naive — 1. The sign of the next return® is assumed to be the same as the
sign of the current 1-day return.

e Naive—5,. The sign of the next return is assumed to be the same as the sign
of the current 5-day return.

e Naive — . The sign of the next return is assumed to be positive.

The computed optimal parameters for a specific Buy rule vary for the 6 test
periods. The ones computed for test period 1992 are presented in Table 3 for the
1-day predictions, and in Table 4 for the 5-day predictions.

21-day or 5-day return depending on the prediction horizon.
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Table 1: Hit rate and number of selected points for optimized trading rules. Totals
from 6 1-year test periods (1992-1997) with the preceding 2 years for training. 1-day
prediction horizon.

Method H,, Ny, H,. Nie | 90%—low Hy.
resistiog 69.48 616 | 65.90 390 61.74
breakioo 70.95 747 | 65.25 446 61.36
mavigg 63.14 | 1069 | 56.08 576 52.57
resisty 91.18 68 | 73.53 34 58.35
break, 73.93 280 | 67.00 200 61.12
mauv; 89.04 73 | 44.12 34 29.51
Naive —e | 49.55 | 73283 | 50.47 | 38893 50.05
Naive — 1, | 52.19 | 30701 | 53.03 | 16860 52.40
Naive — 5, | 50.81 | 34128 | 51.26 | 18839 50.66

Table 2: Hit rate and number of selected points for optimized trading rules. Totals
from 6 1-year test periods (1992-1997) with the preceding 2 years for training. 5-day
prediction horizon.

Method H,, Ny, H,. Nie | 90%—low H;,.
resistioo 63.61 753 | 58.72 516 55.03
breakig 68.36 708 | 64.22 450 60.33
mavioo 65.62 701 | 61.21 397 57.01
resist; 86.27 51 | 64.29 28 47.00
break, 73.56 295 | 56.32 190 50.09
mav; 85.11 94 |1 61.70 47 48.67
Naive —e | 50.83 | 80456 | 52.35 | 42372 51.95
Naive — 1, | 51.97 | 33437 | 52.77 | 18257 52.16
Naive — 5, | 52.01 | 37519 | 52.17 | 20539 51.59

Table 3: Optimized trading rules for 1992. 1-day prediction horizon.

Method | Optimized expression

resistipg | xresist(21,3,5.72) A gvoll0 > 1.11
breakypy | breakout(30,1.28) > 0 A gvoll0 > 1.39
mavigy Mavx(3,37) A gvoll0 > 0.26

resisty zresist(21,5.33,1.83) A gvoll0 > 3.33
break; breakout(59,1.5) > 0 A gvoll0 > 2.5
mavy Mavz(11,200) A gvoll0 > 1.44
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Table 4: Optimized trading rules for 1992. 5-day prediction horizon.

Method | Optimized expression

resistipy | xresist(74,3,5.72) A gvoll0 > 0.67
breakypy | breakout(38,1.39) > 0 A gvoll0 > 1.87
mavig Mavx(3,37) A gvoll0 > 0.33

resist, zresist(21,6,1.83) A gvoll0 > 0.67
break; breakout(124,2.5) > 0 A gvoll0 > 2.5
mavy Mavz(11,112) A gvoll0 > 1.44

5.1 Empirical Results

As expected, the optimized trading rules perform much better for the training data
than for the test data. This effect is much more emphasized for the non-regularized
trading rules than for the regularized ones. The difference can be understood as
over-fitting of data that can be controlled by the regularization. The out-of-sample
hit rates H;. show no systematic difference between the two kinds of predictors. The
small observed differences should be seen rather as stochastic fluctuations caused by
the low accuracy in the estimation of the hit rates for the non-regularized trading
rules. The lower 90% confidence limit reveals how uncertain the hit rates H,. are for
these rules. This uncertainty comes from the low number of predictions generated.
None of these trading rules can be said to significantly outperform the benchmark
predictors, while all the regularized predictors exhibit a significantly higher hit rate
than the benchmarks.

5.2 Stability of the Found Optima

The experimental setup with sliding windows gives a stable evaluation of the trading
rules. In this section an additional test of the stability and relevance of the optimized
trading rules is performed. In Tables 5 and 6, the six trading rules optimized with
data from 1990-1991 are applied not only for 1992 but also for the following years up
to 1997. This means that the optimized rules are regarded as globally valid instead
of valid only for the year following the optimization period. The results show that
the hit rate for the trading rules clearly degrade with time. Also, five out of six rules
have a mean value for the six years clearly lower than the average hit rate achieved
by the sliding-window approach, as shown in Tables 1 and 2 (the relevant value
for comparison is shown in column Hy.). These observations give further credibility
to the sliding-window results and show that the optimizations really are catching
patterns and regularities in the data and not only spurious local optima in random
and noisy object functions.
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Table 5: Hit rate for trading rules optimized with data from 1990-1991. 1-day
prediction horizon.

Method | 92 93 94 95 96 97 Average | Hye

resistigg | 67.2 | 55.6 | 61.1 | 61.2 | 32.1 | 54.3 | 55.6 65.90
breakgy | 72.6 | 69.7 | 64.3 | 62.8 | 55.7 | 58.5 | 63.2 65.25
mavig 59.0 [ 63.1 | 58.9 | 60.0 | 54.9 | 54.9 | 58.2 56.08

Table 6: Hit rate for trading rules optimized with data from 1990-1991. 5-day
prediction horizon.

Method | 92 93 94 95 96 97 Average | Hy,

resistigy | 54.7 | 58.7 | 51.0 | 56.6 | 52.5 | 53.5 | 54.6 58.72
breakiopo | 72.2 | 66.0 | 62.7 | 51.1 | 58.3 | 55.0 | 59.8 64.22
mavyg 56.7 | 70.3 | 53.9 | 51.2 | 61.5 | 59.7 | 58.7 61.21

6 Conclusions

The optimized trading rules give a significantly higher hit rate than the benchmark
methods when tested out-of-sample. The three regularized 5-day predictors give
hit rates for the sign between 59% and 64%, while the benchmark methods give
less than 53%. The 3 non-regularized predictors produce comparable results, but
the risk-compensated hit rate is much lower and not significantly better than the
benchmarks.

The constrained optimization that avoids too few selected points is essential
both for practical reasons (since we want to get assistance in our buy and sell
decisions more than a few times per year), and for a reasonably safe estimate of the
expected hit rate out-of-sample. Without safeguarding against too few points, the
found optima gives excellent performance on the training data, but no significant
improvement relative to pure chance on the test data. Furthermore, the results
show that the high hit rates achieved, to a large extent are a result of the adaptive
modeling with sliding windows. Techniques such as the ones shown in this paper
are therefore a vital part of both development and evaluation of optimized trading
strategies.

7 Acknowledgments

The author is grateful to Xavier deLuna for useful comments. Also many thanks to
Kenneth Holmstrom for fruitful discussions and for supplying the implementation
of the DIRECT algorithm.

147



References

1]

2]

3]

[4]

(6]

7]

[10]

[11]

[12]

[13]

[14]

M. Bjorkman and K. Holmstrém. Global Optimization Using the DIRECT
Algorithm in Matlab. Advanced Modeling and Optimization, 1(2):17-37, 1999.

L. Blume, D. Easley, and M. O’Hara. Market statistics and technical analysis:
The role of volume. Journal of Finance, 49:153-181, 1994.

W. Brock, J. Lakonishok, and B. LeBaron. Simple technical rules and the
stochastic propertites of stock returns. Journal of Finance, 47:1731-1764, 1992.

J. Y. Campbell, S. J. Grossman, and J. Wang. Trading volume and serial
correlation in stock returns. Quarterly Journal of Economics, 108:905-940,
1993.

R. Gencay and T. Stengos. Moving average rules, volume and the predictability
of security returns with feedforward networks. Journal of Forecasting, pages
401-414, 1998.

G.J.Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic. Theory and Applications.
Prentice-Hall, Inc, New Jersey, USA, 1995.

T. Hellstrom. A Random Walk through the Stock Market. Licentiate thesis,
Umea University, Umea Sweden, 1998.

T. Hellstrom. Data Snooping in the Stock Market. Theory of Stochastic Pro-
cesses, 5(21)(1-2):33-50, 1999.

T. Hellstrom. ASTA - User’s Reference Guide. Technical Report UMINF-00.16
ISSN-0348-0542, Department of Computing Science Umea University, Umea
Sweden, 2000.

T. Hellstrom and K. Holmstréom. Parameter Tuning in Trading Algorithms
using ASTA. In Y. S. Abu-Mostafa, B. LeBaron, A. W. Lo, and A. S. Weigend,
editors, Computational Finance 1999, pages 343-357, Cambridge, MA, 1999.
MIT Press.

K. Holmstréom. The TOMLAB Optimization Environment in Matlab. Advanced
Modeling and Optimization, 1(1):47-69, 1999.

Donald L. Iglehart and Siegfried Voessner. Optimization of a trading system
using global search techniques and local optimization. Journal of Computational
Intelligence in Finance, 6:36-46, 1998.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Applica-
tions, 79(1):157-181, October 1993.

J. M. Karpov. The relation between price changes and traded volume. Journal
of Financial and Quantitative Analysis, 22:109-126, 1987.

148



[15]

[16]

[17]

[18]

[19]

[20]

Perry J. Kaufman. Trading Systems and Methods. John Wiley and Sons, New
York, 1998.

G. W. Kuo. Some exact results for moving-average trading rules with appli-
cations to UK indices. In E. Acar and S. Satchell, editors, Advanced Trading
Rules, pages 81-102. Butterworth Heinemann, Oxford, 1998.

Mark T. Leung, Hazem Daouk, and An-Sing Chen. Forecasting stock indices: a
comparison of classification and level estimation methods. International Journal
of Forecasting, 16:173-190, 2000.

R. M. Levich and L. R. Thomas. The significance of technical trading-rule
profits in the foreign exchange market: a bootstrap approach. Journal of In-
ternational Money and Finance, 12:451-474, 1993.

Apostolos-Paul Refenes. Testing strategies and metrics. In Apostolos-Paul
Refenes, editor, Neural Networks in the Capital Markets, chapter 5, pages 67—
76. John Wiley & Sons, Chichester, England, 1995.

Jerrold. H. Zar. Biostatistical Analysis. Prentice-Hall, Inc, New Jersey, USA,
1999.

149



