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Intertemporally Dependent
Preferences and the Volatility
of Consumption and Wealth

Suresh M. Sundaresan
Columbia University

In this article we construct a model in which a con-
sumer’s utility depends on the consumption bistory.
We describe a general equilibrium framework sim-
ilar to Cox, Ingersoll, and Ross (1985a). A simple
example is then solved in closed form in this general
equilibrium setting to rationalize the observed stick-
iness of the consumption series relative to the fluc-
tuations in stock market wealth. The sample paths
of consumption generated from this model imply
lower variability in consumption growth rates com-
pared to those generated by models with separable
utility functions. We then present a partial equilib-
rium model similar to Merton (1969, 1971) and
extend Merton’s results on optimal consumption and
portfolio rules to accommodate nonseparability in
Dreferences. Asset pricing implications of our
Jramework are briefly explored.

The idea that a given bundle of consumption goods
will provide the same level of satisfaction at any date
regardless of one’s past consumption experience is
implicit in models that use time-separable utility func-
tions to represent preferences. Separable utility func-
tions have been the mainstay in much of the literature
on asset pricing and optimal consumption and portfolio

The results reported in this article were first presented at the EFA meetings in
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choice. The papers of Hakansson (1970), Samuelson (1969), Merton (1969,
1971, 1973), Breeden (1979), and Cox and Huang (1987) are some impor-
tant examples of such contributions.!

Although papers using separable utility functions have provided us with
many important insights, dissatisfaction with the assumption of separability
is evident in the economics literature. The importance of modeling non-
separability was stressed by Fisher (1930). Criticisms of the separability
assumption may also be found in Hicks (1965). In the literature on habit
formation, Pollack (1970) uses utility functions that are not separable.
Ryder and Heal (1973) examine the implications of such utility functions
in the context of optimal growth under certainty. The assumptions about
choice that give rise to nonseparable structures may be traced back to the
work of Koopmans (1960) and Koopmans, Diamond, and Williamson
(1964). A number of papers recently have contributed much to our under-
standing of how nonseparability in preferences may affect optimal behavior
and market equilibrium. Some notable examples are Bergman (1985),
Becker, Boyd, and Sung (1987), and Chang (1987). Also in a recent paper,
Huang and Kreps (1987) discuss the role of time complementarity of
consumption.?

In particular, time-separable utility functions imply that the marginal
rates of substitution between two dates #and s (s > #) depend only on the
consumption levels at # and s. This implication has correspondingly cir-
cumscribed the richness of the predictions of marginal utility-based asset
pricing models which use separable utility functions. The recent spurt of
empirical research based on nonseparable utility functions is at least in
part motivated by the inability of marginal utility-based models (which
use separable utility functions) to adequately explain the structure of secu-
rity returns.? Nor are these models based on time-separable utility able to
explain the remarkably stable behavior of the per capita consumption
series, despite the tremendous volatility of the wealth series as proxied by
the stock market wealth.

We address the problem posed by the relative stability of the consump-
tion series by focusing on the implications of endogenous consumption
smoothing for the equilibrium wealth process. We assume that the inves-
tor’s utility from a given consumption bundle depends on the consumption
history in the following way: The utility at ¢ from a consumption level of
¢, depends not only on the consumption level at ¢ but also on the hbistory
of consumption up to t. This is represented by the variable z, that is simply

The contribution of Cox and Huang (1987) is of special interest as they provide a new framework for
computing optimal policies and discuss the relationship between their approach and the traditional
dynamic programming approach.

2 No attempt is made to discuss the subject matter of each of these papers. Rather, our aim is to alert the
reader to some of the important recent works which share a similar approach.

3 The recém papers by Dunn and Singleton (1983, 1984) are prototypical of such empirical work.
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the weighted average of past consumption rates. This variable is defined
more precisely later in the article.

With this feature, we explore the optimal consumption and portfolio
rules in both general equilibrium and partial equilibrium settings. The
model’s implications for consumption smoothing and wealth variability
are investigated. We provide explicit examples of equilibrium models in
which the endogenously determined consumption is much smoother than
that yielded by models with separable utility. The key intuition behind
most of our results is the following: An increase in consumption in response
to an increase in wealth has two effects. First, it increases utility, holding
the consumption standard, z, fixed. Second, it raises the consumption
standard, z,, which may decrease utility. This possibility arises by virtue
of the assumptions in the specification of the intertemporal dependence
in utility.* Thus the response to an increase in wealth is a more moderate
increase in consumption. By the same token, the response to a decrease
in wealth will also be shown to be more moderate in our framework. Thus,
the marginal propensity to consume is generally lower in the class of
models which we present in this article. This implies that any “shock” in
the system must have a relatively greater impact on the dynamics of wealth
than it would have in a model with separable utility. We find that this is
in fact the case. The ratio of the variability of changes in consumption to
the variability of changes in wealth is shown to be strictly smaller in this
case than in the time-separable utility case. Consumption smoothing also
occurs with time-additive utility functions. But with the type of intertem-
poral utility functions used in this article, we get more consumption
smoothing and consequently the relative variability of consumption is
much lower. The simulations presented confirm this result.

The article is organized as follows. In the next section, we present a
general equilibrium framework similar to Cox, Ingersoll, and Ross (1985a).
In Section 3, we solve a specific example in that general equilibrium
setting. It will be shown there that the optimal consumption will involve
more “smoothing” than would be implied by an additive utility function
with no intertemporal dependence. The consumption volatility implica-
tions are also examined using a simulation procedure. In Section 4, we
present simple partial equilibrium extensions of the important work of
Merton (1969, 1971). Section 5 explores briefly the asset pricing impli-
cations of our framework. The final section concludes.

A General Equilibrium Framework

1.1 Assumptions
We consider in this section a single-agent economy with frictionless mar-
kets and no taxes. The assumption of a single-agent economy is standard

* See Assumption 2 on page 76.
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and is made in the spirit of Lucas (1978) and Cox, Ingersoll, and Ross
(1985a). This assumption rules out any predictions about the volume of
trade in security markets. The model is one of autarky. The assumption
of perfect markets is made so as to rule out explanations of ‘‘smoothing”
which may be driven by taxes and transactions costs.

The consumer’s momentary utility function, u(c, z,), is dependent on
not only the current consumption rate ¢, at time ¢ but also on the weighted
average of the past consumption rates, z,, where

, .
z,=2z + f e ¢ ds (1D
0

In Equation (1), 8 > 0 is a smoothing constant and c, is the flow rate of
consumption at s. The larger 8 is, the less weight is given to past con-
sumption in determining z,. By differentiating Equation (1), we obtain the
following relationship:

dzt = .B(Ct - zt) dt (2)

It is worth noting from Equation (2) that the evolution of z, is locally
nonstochastic and depends only on the pair {c, z;}. For any s > ¢, 2, will
be stochastic and this will affect the stochastic properties of ¢, conditional
on the relevant information set at 2.

The following assumptions are made concerning u(-, *):

1. u/(c, z) > 0. An increase in current consumption with no change
in past consumption will increase utility.

2. u,(c, z) < 0. An increase in past consumption with no change in
current consumption will not increase current utility and may cause it to
fall.

3. ulc, z) + u,c, z) = 0. An increase in a uniformly maintained
consumption level will not decrease utility and may cause it to increase.

4. u. (c, z) < 0; u. (c, z)u,(c, z) — [u.(c, z)} = 0. The utility
function is strictly concave in ¢, and concave in ¢, and z,.

We further assume that riskless lending and borrowing at a rate r is per-
mitted in an instantaneously riskless market. In addition, the opportunity
set is assumed to consist of many risky assets. The rate of return of asset j
is governed by the following stochastic differential equation:

— =aq, dt + o, dB(1) 3)

In the equation above, {B,(#), t > 0} is a standard Wiener process, and o;
and o? are positive scalars. The opportunity set is thus assumed to be sta-
tionary.> The assumption about the utility function is the distinguishing
feature of our model. The marginal rates of substitution between any two
dates tand sdepend on the entire consumption history up to s. As a result,

5 @ is the variance covariance matrix and g, represent its elements.
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we may expect the marginal utility-based asset pricing implications of our
framework to be correspondingly richer.

1.2 Consumer optimization problem

The state of the economy in our setting is described by the pair {W,, z},
where W, is the wealth of the consumer. The objective of the consumer is
to maximize the expected lifetime utility:

J(Wy, z) = Eo{ fo e~*u(c, z,)} 4)

where E,{-} is the expectations operator and 4§ is the subjective discount
rate.

The consumer must decide, at each instant, the optimal consumption
rate c,and the optimal investment level g,. The budget dynamics faced by
the consumer are given below:

=N =N
dw, = [2 gia,— 1) — ¢, + rW,] dt+ 2, qlo, dB(?) 5)
==t -1

Following Cox, Ingersoll, and Ross (1985a), the optimization problem
may be written as shown below:

=N
ng{u(cn z) — o]+ Jw<2 qga,— 1) — ¢, + rW,)
1

94

1 =N j=N
+ 1B(ci— 2) + ST 2 2 diqloy
=1 p=1
The existence of an interior optimum is assumed. We now proceed to
derive the necessary conditions for the optimization problem. In what
follows we are also not explicitly accounting for nonnegativity restrictions
on consumption and investment.® The first-order conditions to the con-
sumer optimization problem are stated below.
The optimality condition with respect to the consumption choice is

uc(cn zt) = jW - ﬁjz (6)

The optimality condition with respect to the investment choice is
: - =N
Julay = 1) + Jow 2 qloy=0,V, @)
=1

The optimality condition with respect to consumption captures the effect
of nonseparability succinctly. Unlike the more traditional models in which
the marginal utility of consumption is equated to the marginal utility of
wealth, in our model the marginal utility of consumption is equated to the

§ The nonnegativity constraint on investment is not binding if it can be shown that wealth is bounded away
from zero. This is because the investment is equal to the wealth at each instant, at equilibrium. The
equilibrium conditions are described in Section 2.3.
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marginal utility of wealth minus 8 times the marginal utility of z. This
illustrates clearly that the variable z, will play a role in the consumption
function of the agent.

1.3 Equilibrium

Given the price function r( W,, 2z,) and the state dynamics, the representative
individual determines the optimal consumption and investment policies
as shown in the previous section. The conditions for market equilibrium
are stated next. All wealth is invested in the risky production technology:

=N
w,= 2 g (8)
1

The agent has rational expectations. The price function and the state
dynamics assumed by the agent in solving the optimization problem are
the actual price functions and state dynamics which are implied by the
agent’s decisions. This way of closing the model is standard and follows
from Lucas (1978).

1.4 General results

Result 1.7 The equilibrium interest rate is given by the expected rate of
change in the marginal utility of wealth.

This result is simply theorem 1 of Cox, Ingersoll, and Ross (1985a) extended
to our setting. Formally, this result is stated below:®
LW

Jw

Later, by imposing additional restrictions, we explicitly solve for the equi-
librium interest rate.

r==a 9

Result 2. The price of a default-free discount bond, P(%, s), at which pays
1 unit of the consumption good at date s is given by the expected marginal
rate of substitution between ¢ and s.

This result has been derived by Rubinstein (1974) in the context of sep-
arable utility functions. Formally this result is stated below:

T (W, zs)}

P(t s) = E{—-‘—— (10)
! ]W,(‘Vn z)

While the functional forms are identical to the ones obtained by Cox,

Ingersoll, and Ross (1985b), it is useful to note that the value functions

now depend on the variable z, and significant economic differences can

arise as a result of this.

7'We have omitted proofs of Result 1 and Result 2 for brevity.

8 The notation L is used to describe the differential generator.
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It is worth noting that the wealth process at equilibrium may also be
interpreted as the asset price process.®

2. A General Equilibrium Example

The general framework presented in Section 2 is now specialized by impos-
ing more structure on preferences and the opportunity set as shown below.

* The utility function will be specialized as follows:

u(c,, Z,) = —-1—- e—d1at+e2z (11)
1

In the equation above, ¢, > ¢, = 0. The parameter ¢, determines the
strength of intertemporal dependence.

* The opportunity set specified in Equation (3) will be further simplified
as follows: The opportunity set will now be assumed to consist of a number
of instantaneous production technologies whose returns are indepen-
dently and identically distributed and have constant returns to scale with
a mean rate of return « and variance ¢2. Let x be the minimum input
necessary to produce a positive amount. Given a wealth of g, the consumer
will optimally invest an equal amount in each technology. This follows
from Samuelson (1969). Thus the problem may be seen as one in which
the agent invests g, in g,/x technologies. Then the evolution of wealth may
be approximated as

dq. = qadt + 6\/q, dB (12)
where ¢ is a scalar equal to o\/X.

This approximation provides a useful rationalization for the wealth
dynamics that are shown in the equation above. Cox and Ross (1976) point
out this interpretation. Alternatively, it may be assumed directly that the
output from the technology follows the dynamics above, although this is
less intuitive since the technology is not stochastic constant returns to
scale.

The case considered in this section corresponds to the intertemporally
dependent utility function case with constant absolute risk aversion. We
report below the key results and discuss their principal implications.!® To
solve for the value function, consumption rule, and interest rate, we sub-
stitute Equations (11) and (12) into the first-order condition (6), (7), and
the Bellman equation specified in Section 2.2. The resulting Bellman equa-
tion is a partial differential equation in W, and z,. This is solved to obtain
the value function which is of the form:

® This follows from the fact that the market price of an asset that has a claim to the output from a risky
technology 7 is simply the stock of the good in that technology. We, however, focus on the consumption
smoothing implications of ijltertemporally dependent utility functions.

1 The proof is tedious and offers little insight. Hence it is omitted.
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f(% zt) = _ble-bqu+b3zt (13)

Next, the value function is used in Equations (6) and (7) to obtain the
consumption function and the interest rate.
The optimal consumption policy is linear in wealth and the variable z,.

bzq + ¢, — bSZ, _ l In b1(b2 + .3b3) (14)

el T, &, é,

The equilibrium interest rate is a constant and is given by the expression:

¢

rea- 2 (15)

The constants of the value functions may be solved and found to be
given by the expressions below:

—0 + VI + 8aPp,°

b, 2B62

where

0=8(¢ — ¢)8* +2(B+a)>0

b = 2¢,a0 — 203b;,
2 2p, + 2
__ % [l - <bj+¢f;b,>]
b, b+ ﬁb3e (16)

It is useful to note that b, > 0, for any 7and § > 0.
In this model, the ratio of the variability of consumption to the variability
of wealth is

a*(dc) _ B
Gz(dq,) ¢%
To sharply contrast these results with the time-separable case, it is useful
to first restate the corresponding results for the base case when ¢, = 0,
which serves as a convenient benchmark since it implies no intertemporal

dependence in preferences. Setting ¢, = 0 and 8 = 0 in Equation (13), it
may be shown that the value function is

17)

Jq) = == {etertovra=ca) (18)

where!' a = 2a¢,/(2 + ¢,6%).
The constant parameter @ may be interpreted as the measure of constant

11 See Sundaresan (1983) for details.
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absolute risk aversion of the indirect value function. The optimal con-

sumption policy is
aq, o 1 )
¢=—+|-—-— 19
! oM (“ ¢, (19)

Note from Equation (19) that the model also implies the following rela-
tionship between the volatility of changes in consumption and the volatility
of changes in wealth:

o(dc) _ &
Uz(d%) (o

Comparing Equation (17) with Equation (20), and noting that b, < q,
we can draw the following important conclusion: The ratio of the variance
of consumption changes to the variance of wealth changes with intertem-
poral dependence is strictly less than the corresponding one for the base
case when ¢, = 0. This implication is stated next:

2 2
olde) B &, (21)
o (dqt) oA 1
This illustrates our key finding that nonseparable utility functions lead to
greater consumption smoothing behavior.

To assess the extent of consumption smoothing, it is useful to compare
the behavior of growth rates of consumption in the base case and in the
case corresponding to ¢, > 0. Since the consumption growth rates depend
on the dynamic properties of ¢, and z,, it becomes necessary to either
explicitly solve for the conditional density of {g, 2z} or to simulate the
paths of these variables. Since the conditional density of g, was difficult to
obtain in closed form even in the base case, it became necessary to use
the simulation approach which is explained in detail next.

The key to the simulation procedure is the discrete time approximation
for the equilibrium wealth process.

The wealth dynamics in the base case follow the process:

dq,= x{p — q}dt + 6\/q, dB(2)

(20)

where
- A2
a¢1crA 0
2 + ¢,0?
and
_a— ¢
k= Ko,

The classification of boundaries for this process has been done by Feller
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(1952). The boundaries for this process can be regular or entrance or
absorbing depending on the values of the parameters.'?

The simulation procedure was based on the discrete-time analog similar
to the one suggested in Sun (1987). The dynamics of g, may be written in
a discrete-time analog as follows:

k—1 k—1
qn,n+k - qn,n = K”'k — K 2 qn,n+i + & 2 q;r/lz,nen+i+17 n= O! 17 27 LR
=0 =0
where ¢, ¢,, . . . are identically and independently distributed normal ran-

dom variables with zero mean and unit variance. This discrete-time analog
was used where a period of one year was divided into 3000 subintervals
to get the desired accuracy. The subscript 7 refers to time period in years,
and each year is divided into ksubperiods for the purposes of sample path
simulation.?

In selecting the parameters for the simulation, the empirical findings of
Mehra and Prescott (1985) were used as a broad guideline. Mehra and
Prescott (1985) document that during 1889-1978, the mean real riskless
rate was about 0.80%. The instrument used in their study to compute the
riskless rate was 90 day Treasury bills. They also document that the real
return on S&P 500 during 1889-1978 averaged about 6.98%.

For the simulations, we employed a regular boundary which ensures
that the consumption good stock will always be nonnegative, given a pos-
itive initial value.

The simulation was carried out for a period of 30 years and the results
are shown in Table 1 for three cases. The sample mean and the standard
deviation of the consumption series were computed for the consumption
series. (All annualized.)

Case B presented below sets ¢, = 2 and case C which is presented next
sets ¢, = 3. In both cases, 8 is varied from 1 to 5. The results are tabulated
below.

It is clear from the table that as beta increases, the variance of the
consumption growth rate increases as well: intuitively, an increase in beta
causes less weight to be assigned to past consumption and the variability
approaches that generated by an intertemporally independent utility func-
tion. The effect depends on the value of ¢,. This is also evident from the
table. As ¢, increases, the strength of historical dependence increases. At
all levels of B, the variability of the growth rate of consumption is lower
than the corresponding figures reported for case A in the table.

The volatility of consumption changes in these cases is less than the
base case although this has not been reported in the table.

12 See Feller (1952) for the restrictions which lead to different boundary classifications. When « x u > 2/
2, then the boundary is entrance: This implies that zero is inaccessible. When 0 < k X p < §2/2, then the
boundary is regular: This implies that zero is accessible. But the consumption good stock will always be
nonnegative. When « X p < 0, the boundary is absorbing and the consumption good stock will converge
to zero with probability 1.

13 Each simulation run took about 12 minutes of computer time.
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Table 1
Mean and standard deviation of consumption growth rates

Standard deviation of

Regime Mean growth rate, % growth rate, %
A. Base case
¢, =0 11.66 26.18
B. ¢,=2
B=1 5.75 5.95
B=2 5.88 8.11
=5 6.08 11.26
C. ¢,=3
=1 7.05 6.62
=2 7.40 10.62
B=5 8.09 18.61

All results assume expected return on production technology, a = 6.98 percent; coefficient of risk aversion,
¢, = 4; the production technology diffusion coefficient, & = 1.965; subjective discount factor § = 0.70
percent. The parameters in the simulation procedure were calibrated to yield a riskless rate and risk
premium that are broadly consistent with the evidence reported above. The parameter values chosen
implied that k X u > 0, which is required to maintain a nonnegative consumption good stock.

The evidence presented here is only indicative of the possibility that
nonseparable utility functions may be able to reconcile the observed stick-
iness in the consumption series. We have provided a reasonable theoretical
explanation of this important regularity. Only by empirical tests of this
issue with nonseparable utility functions can one completely resolve this
regularity.

A Partial Equilibrium Example

In this section, we extend the partial equilibrium model of Merton (1969,
1971) to our framework. Unlike our earlier discussions, we will now assume
that the wealth process is exogenously specified as shown in Equation (3)
and that the consumer may borrow or lend at an exogenously determined
constant riskless rate r, and investigate the consumer’s optimal investment
and consumption strategies. A direct extension of Merton’s CPRA utility
function is presented next.
This** example considers the following utility specification:

{ C — Zr}A

1 (22)

u(c, z,) =
where 4 < 1.

This utility function has the property that as ¢, — z,, the marginal utility
tends to 0. So the level z,serves as a natural “floor level of consumption”
below which the consumer will never allow the consumption rate to fall.
We will show that this floor is endogenous and increases with time and
that it is increasing in wealth.

4 CPRA stands for Constant Proportional Risk Aversion. Note that in this example, we apply this concept
with respect to the argument, ¢, — z,, inside the utility function.

83



The Review of Financial Studies /v 2 n 1 1989

Merton (1969, 1971) shows that, without the z, variable, the optimal
consumption policy and investment policies are as shown below.’

G =AW, (23)
where
X\ = 0 — 1A — 1/2[A/(1 — A)][(a — r)z/o‘z]
1—A
_(a—nW,
470 = e (24)

These results are obtained by Merton by first solving a finite horizon prob-
lem and then taking the limit to the infinite horizon case. All our solutions
that follow in this section were obtained in the same way. The optimal
solution will preclude wealth from becoming negative and hence the indi-
vidual always consumes a positive amount.

The value function, optimal consumption policy, and investment policy
are provided below for the utility function specified in (22):

J(W, z) = QrW, — z} (25)
where
- ) e
r+8)106 — rA — 1[A/(1 — D][(a — n?/e?
=2z + {rW,— z}¥ (26)
where?®
g ST A= BA/A — Dl — Yo
Q-4+

It is useful to note that, if the initial endowment W, is such that »W, >
2y, then rW, — z, is lognormally distributed with a state space of (0, o).

This ensures that »W, > z,, and hence the value function derived above
makes economic sense.

The following properties are worthy of mention: In the absence of inter-
temporal dependence, as Merton has shown, the optimal policy is to con-
sume a constant fraction of wealth. The prediction of our model is that
the optimal consumption is a convex combination of the riskless income
on current wealth, W, and the past consumption standard, z,. Clearly, this

5 Cox and Huang (1987) extend Merton’s result to take into account nonnegativity restrictions on con-
sumption and wealth.

16 We assume that ¥ > 0, so as to ensure that ¢, > z,. The proof of this result is omitted for brevity. Interested
readers may prove this result by following the steps in Merton (1971).
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Figure 1
Optimal consumption policies (impact of parability)

The line passing through the origin represents the optimal consumption function derived by Merton. The
line with a smaller slope beginning at z,/r is the optimal consumption function corresponding to this
model. The variable z, is the past consumption standard and r is the constant riskless rate of interest.

implies significant smoothing of consumption. The marginal propensity to
consume out of wealth is strictly lower with intertemporal dependence so
long as @ is greater than zero. In Figure 1, the optimal consumption policy
is compared with that derived by Merton (1969, 1971). Furthermore, the
optimal policy is always to consume an amount greater than z, which is
increasing over time:

&,
dat

The optimal consumption rate tends to increase with time, holding wealth
fixed. In addition, z, tends to be higher as wealth level increases. This
observation follows from the fact that the optimal consumption policy is
increasing in wealth. Since z, is an integral of the consumption history, in
periods of increasing wealth, we expect it to increase.

The fraction of wealth invested in the risky asset is no longer a constant,
but an increasing concave function of wealth. Only when the wealth
approaches o does the proportion of wealth invested asymptotically
approach the policy found by Merton (1969, 1971). The optimal investment
policy is to invest a constant proportion of the wealth in excess of the
capitalized value of the consumption standard, W, — z,/r, in the risky
asset. In the portfolio insurance literature, this is sometimes referred to as
investing a constant proportion of the “cushion’ in the risky asset. See

=p{c.—2z}>0
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Figure 2

Optimal investment policies (impact of parability)

The horizontal line at the top represents the fraction invested in the riskless asset in the model due to
Merton. The curve represents the fraction invested in the risky asset according to this model. Note that
the initial wealth level is set at z,/r, where r is the riskless rate of interest and z, is the past consumption
standard.

Black and Perold (1987). The optimal investment policies are distin-
guished from the corresponding ones derived by Merton (1969, 1971) in
Figure 2.

Asset Pricing Implications

The asset pricing implications of nonseparable utility functions were dis-
cussed in some detail by Bergman (1985). We offer in this section some
observations based on our earlier results which complement his results.

When the opportunity set is nonstochastic, a single 8 consumption-based
CAPM will hold even when the utility functions are represented by the
specification discussed in Section 2.1. The intuition for this result should
be direct: The only source of randomness is the wealth process and, at
equilibrium, wealth changes and consumption changes are locally per-
fectly correlated. This partial equilibrium result extends the consumption-
based CAPM to the class of nonseparable utility functions used in this
paper. The Sharpe CAPM and the multi-3 CAPM derived by Merton also
are valid with this utility specification.

When the opportunity set is stochastic, Cox, Ingersoll, and Ross (1985a)
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have shown that the asset returns may be represented in the following
manner:

r ! ov ds dJ,
— = —— covl &
Ms jW s ) w
In the equation above, u, is the vector of expected returns and s is the
random instantaneous asset returns. It is possible to reduce this relation-
ship to the following multifactor relationship.!”

ucc szﬁ - zx:B
—r=——=V, + |-, + —=l |y
s 4 jW * ( jW ) : g ( .]W ) '

In the multifactor CAPM shown above, V,,, are the covariances of returns
of assets with the state variable i Note that despite the consumption B
which is the first term on the right-band side, additional factors become
necessary to explain the structure of expected excess returns.

These results are to be contrasted with those of Merton (1973), Breeden
(1979), and Bergman (1985). The asset pricing structure has a multi-g8
representation similar to Merton (1973), while the single-consumption 8
representation obtained by Breeden (1979) no longer obtains in this set-
ting. These conclusions reinforce the results of Bergman (1985).'® The
results also suggest that factors other than aggregate consumption may be
relevant in describing the cross-sectional variations in security returns.

Conclusions

This article provides a simple family of nonseparable utility functions to
explain the observed consumption smoothing. In addition, we have shown
that the ratio of volatility in consumption changes to the volatility in wealth
changes is much less in this family of models than in comparable models
with separable utility functions. Since it was not possible to derive the
conditional density of the consumption function in closed form, we sim-
ulated the sample path of consumption to get some insights into its behav-
jor over time. It was found that our general equilibrium model with non-
separable utility functions was capable of generating more sticky
consumption than the general equilibrium model where the utility func-
tion was separable. The impact of nonnegativity constraints on consump-
tion and investment has not been treated in this work. The results of Cox
and Huang (1987) may be applied in the context of nonseparable utility
functions used in this article. In addition, the endogenous stochastic evo-

7 This may be done by expanding the change in the marginal utility of wealth by applying Ito’s lemma.

18 In his paper, Bergman (1985) showed that the single-consumption 8 CAPM may not hold when the utility
function is nonseparable.
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lution of the term structure is yet another area of interest. These are topics
of current research.
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