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Stock Price Distributions with
Stochastic Volatility: An
Analytic Approach

Elias M. Stein
Princeton University

Jeremy C. Stein
Massachusetts Institute of Technology

We study the stock price distributions that arise
when prices follow a diffusion process with a sto-
chastically varying volatility parameter. We use
analytic tecbniques to derive an explicit closed-
Jorm solution for the case where volatility is driven
by an aritbmetic Ornstein-Ublenbeck (or ARI)
process. We then apply our results to two related
problems in the finance literature: (i) options pric-
ing in a world of stochastic volatility, and (ii) the
relationsbhip between stochastic volatility and the
nature of ‘fat tails” in stock price distributions.

In this article, we study the stock price distributions
that arise when prices follow a diffusion process with
a stochastically varying volatility parameter, as
described in the following two equations:

dP = uPdt + oPdz )
and
do = —06(c — 0) dt + kdz,, )

where P is the stock price, ¢ is the ‘“‘volatility” of the
stock, k, u, 6, and 6 are fixed constants, and dz, and
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dz, are two independent Wiener processes. Thus, the model is one
where volatility is governed by an arithmetic Ornstein—Uhlenbeck
(or AR1) process, with a tendency to revert back to a long-run average
level of 6. We use analytic techniques (related to the heat equation
for the Heisenberg group) to derive a closed-form solution for the
distribution of stock prices in this case.

Our primary interest in doing so is to generate an options pricing
formula that is appropriate for the case where volatility follows an
autoregressive stochastic process. A large and growing literature sug-
gests that this case is empirically relevant. Although the empirical
literature offers many different models for time-varying volatility, of
which the AR1 is but one example, the AR1 model provides a natural
starting point for the types of questions we address here.? It is par-
simonious enough that the analysis is tractable, yet (as we argue in
more detail below) it captures many of the documented features of
volatility data.

Recently, interesting papers by Johnson and Shanno (1987), Wig-
gins (1987), and Hull and White (1987) have also examined options
pricing in a world where stock price dynamics are similar to those
given by Equations (1) and (2). The first two papers use numerical
methods to determine options prices. In the third, Hull and White
solve explicitly for the options price by using a Taylor expansion
about £ = 0 (i.e., about the point where volatility is nonstochastic).
It is not clear that such an expansion provides a good approximation
to options prices when k is significantly greater than zero. Further-
more, Hull and White only apply this series solution for the case 6 =
0. (They use numerical methods to study the case of nonzero 4.)

Although our closed-form solution is quite cumbersome, it is com-
posed entirely of elementary mathematical functions. Consequently,
it is readily and directly applied on a desktop computer. We are thus
able to avoid using more burdensome numerical methods, or any
assumptions about kbeing close to zero. Also, our method is capable
of handling a nonzero mean reversion parameter 6, which should be
valuable, given the empirical evidence that volatility is strongly mean-
reverting.

In addition to deriving an exact closed-form solution for the stock
price distribution, we also use analytic techniques to develop an
approximation to the distribution. The approximation has the advan-
tage of being even less computationally demanding than the exact

Empirical articles that model volatility as an AR1 process include Poterba and Summers (1986),
Stein (1989), and Merville and Pieptea (1989). (The latter allows the AR1 process to be displaced
by white noise.) Alternative models include the ARCH model of Engle (1982) and its descendants
such as Bollerslev (1986), Engle and Bollerslev (1986), and Engle, Lilien, and Robins (1987). [See
also French, Schwert, and Stambaugh (1987) and Schwert (1987, 1989).]
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solution. For most parameter values, we also find that the approxi-
mation is reasonably accurate—it leads to options prices close to
those obtained with the exact formula.

A by-product of our analysis is that it allows us to draw a direct link
between the parameters of the volatility process and the extent to
which stock price distributions have “fat tails” compared to the log-
normal distribution [see, e.g., Fama (1963, 1965) and Mandlebrot
(1963)]. We are able to show explicitly how the shape of stock price
distributions depends on the parameters of our Equation (2), thereby
tracing fat tails back to their “primitive origins,” the constants 6, 8,
and k.2

The remainder of the article is organized as follows. Our principal
results for exact and approximate stock price distributions are pre-
sented in Section 1. In Section 2, these results are applied to options
pricing. Using the empirical literature on stochastic volatility as a
guide, we select a range of ‘‘reasonable” parameter values and com-
pare the prices generated by our model to Black-Scholes (1973)
prices. In Section 3, we explore the connection between our model’s
parameters and the degree to which stock price distributions over
different time horizons have fat tails. In Section 4, we conclude and
discuss some possible extensions of our work.

The problems studied in this article require a substantial amount
of mathematical analysis. In order not to interfere with the presen-
tation of the main ideas, most of it is omitted from the text. The
Appendixes contain a brief review of the important derivations. Fur-
ther detail is available from the authors on request.

Before proceeding, we ought to comment on our assumption that
volatility is driven by an arithmetic process, which raises the possi-
bility that ¢ can become negative. This formulation is equivalent to
putting a reflecting barrier at ¢ = 0 in the volatility process, since o
enters everywhere else in squared fashion. Although this is not a very
natural feature, geometric models for ¢ are much less analytically
tractable.® Furthermore, as we argue in Section 2.1 below, any objec-
tions to the arithmetic process are more theoretical than practical.
For a wide range of relevant parameter values, the probability of
actually reaching the point o = 0 is so small as to be of no significant
consequence.

? There are analogous results in the literature for different models of volatility. For example, Praetz
(1972) and Blattberg and Gonedes (1974) show that if ¢ follows an inverted gamma distribution,
then prices are distributed as a log ¢ [see also Clark (1973)]. Engle (1982) computes the kurtosis
of an ARCH process as an explicit function of the ARCH parameters.

3 While we have been able to solve a model where ¢ follows a geometric random walk (and the
results are considerably more computationally cumbersome than those reported here), we have
been unable to make any progress on the case>where ¢ follows a geometric Ornstein-Uhlenbeck
process. Since mean reversion appears to be one of the most important empirical characteristics
of volatility, the practical usefulness of the geometric random walk model is unclear.
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. Exact and Approximate Stock Price Distributions

1.1 The closed-form exact solution
An explicit, closed-form solution for the stock price distribution cor-
responding to Equations (1) and (2) is presented below. As a nor-
malization, we set the initial stock price, P,, equal to unity.

We start by defining the following new variables:

= —0/k?, B =05/k?, c= —MNk 3

A and B are simply functions of our primitive parameters; C also
contains A, which is a dummy variable to be used in defining an
integral expression below.

Next, we define

a= (4> —2C)"?, b= —A/a, 4
P oa-afeniieet) o
= a1} ©
N = ”Z;ZA[aZ — AB? — Balk®t + %‘ﬂ

A+ a) + 24 — a)e*@*
A+ a+ (a— A)e)

24BYa* — A%e
aS(A +a+(a— A4 eZ“’ez')

_ 1 14 o _AY e
2log{2<a+1)+2(1 a)e }, @)

I=exp(Lo?/2 + Mo, + N). (8)

+

and

Notice that J, in addition to being a function of the primitive param-
eters 0, 0, &, ¢, and g, also depends on the dummy variable A\. We
denote this relationship by writing 7 as I(\). We now write down an
expression for the stock price distribution in two steps. First, we define
So(P, 1) as the time #stock price distribution in the special case where
the stock price drift u = 0. It is given by
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So(P D) = 2m)—1 P32

2 — - in log P
X £=_m 1((17 + 4)2)e 87 gy, )

The time ¢ stock price distribution for the more general case of a
nonzero u, which we denote simply by S(P, ), is then

S(P, t) = e #Sy(Pe~»). (10)

Although the formula for S(P, #) is complicated, it is composed entirely
of elementary functions and requires only a single integration. Also,
note that S(P, #) is a conditional distribution, conditional upon the
current stock price and current volatility—more comprehensive nota-
tion would involve writing this distribution as S(P, ¢ | P,,d,).

1.2 An approximate solution
In some cases, it may be useful to have a somewhat simpler approx-
imation to S(P, t). In order to derive such an approximation, we note
that our exact distribution can always be expressed as an average of
lognormal distributions, averaged via a mixing distribution. (This is
proved in Appendix A.) That is,

S(P, 1) = f L(o)m,(0) do, 1D

where L(o) is a lognormal with the same mean as S(P, ¢) and volatility
o, and m,(o) is a mixing distribution. The ¢ subscript on m,(¢) empha-
sizes the fact that the mixing distribution depends on the time hori-
zon.

Our approximation technique works by approximating this mixing
distribution m,(¢). In Appendix C, we show that m,(¢) can be well
approximated (in a sense we make precise) by 7%,(s), which has the
simple form

m, (o) = pe=’e /", (12)

where the parameters p, «, and 8 are defined in Appendix C. With
(o) in hand, our approximate stock price distribution S(P, ©) is
given by

S(p, 1) = f L(0)1,(0) do. (13)

. Application to Options Pricing

In this section, we apply our results to the pricing of European stock
options. It can be shown that, given our assumptions, the price of an
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option F must satisfy the partial differential equation
302P2F,, + rPF, — rF + F, + ; k?F,, + F,[—0(c — 0) — ¢k] = 0. (14)

Here ¢ denotes the market price of the stock’s volatility risk and 7 is
the riskless interest rate. The presence of ¢ in Equation (14) reflects
the fact that with stochastic volatility, one cannot use arbitrage argu-
ments to eliminate investor risk preferences from the options pricing
problem, because the volatility ¢ is itself not a traded asset.*

As we demonstrate below, our analytic results allow us to solve
(14) both in the case where ¢ is zero, as well as in the case where ¢
is a nonzero constant. Before doing so, however, it is worth noting
when either of these two assumptions can be justified in the context
of a specific equilibrium model. Wiggins (1987) contains a thorough
discussion of the equilibrium determinants of ¢, drawing on the results
of Cox, Ingersoll, and Ross (1985). Wiggins points out that, in general,
¢ need not be constant, and indeed may not be expressible in a closed
form. However, he goes on to identify some interesting special cases
that obtain when there is a representative consumer with log utility.

With log utility, ¢ = 0 if the option in question is an option on the
market portfolio. Somewhat more generally, Wiggins argues that log
utility also leads to a constant (though possibly nonzero) ¢ for indi-
vidual stocks, so long as the following underlying moments them-
selves remain constant: the standard deviation of the market portfolio,
and the pairwise correlation coeflicients between the individual stock’s
returns, its volatility, and the return on the market portfolio. These
results imply that the assumption of a constant ¢ can indeed be
compatible with a fully specified (but somewhat restrictive) equilib-
rium model. In the case where ¢ = 0, the pricing equation simplifies to

162P%F,, + rPF, — rF + F,+ }k?F, + F[—6(c — 0)] = 0. (14")

Equation (14”) does not depend on risk preferences. Thus, in a
world where ¢ = 0, we can calculate the option price by assuming
that risk neutrality prevails. This implies that the price of a European
call is given by

F,= e"’f [P— K]S(P,t| 6,1,k06) dP. 15)
K

4 Very similar expressions appear in Wiggins (1987) and Hull and White (1987). In particular, our
PDE is a simplification of Wiggins’ equation (8) (p. 355) to the case where dz, and dz, are
uncorrelated and where ¢ follows an arithmetic, rather than geometric, process. Our model is not
as general as Wiggins’ because we have been unable to apply our analytic techniques when dz;
and dz, are correlated. However, it may be possible to capture the tendency for volatility and stock
prices to move together even without assuming an instantaneous correlation between dz; and dz,.
This might be accomplished in our framework by using a constant-elasticity-of-volatility general-
ization of Equation (1). We discuss this briefly in Section 4.
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The subscript 0 on F emphasizes the fact that Equation (15) applies
only to the case where ¢ = 0. The stock price distribution S(P, #) in
this equation is generated using the parameters 6, &, and 6, along with
the assumption that the stock’s drift equals the riskless rate r. Thus,
the mean of S(P, ©) in (15) is equal to P,e"’

Now consider the somewhat more general case of a nonzero but
constant ¢. From a comparison of (14) and (14’), it is apparent that
if the solution to (14”) is given by (15), then the solution to (14)
must be given by

Feer [ p-KIS@ 80, (16)
K

where 6 = 8 — ¢k/5. Therefore, in addition to setting the stock price
drift to », we also modify the parameter 8 to account for the effect of
volatility risk on options prices. When the volatility risk premium ¢
is positive, 8 is lower than 6, and options prices are lower, all else
being equal.

Before presenting some sample options prices, we briefly discuss
two practical issues. The first concerns the calibration of the model—
that is, the choice of appropriate parameter values. The second con-
cerns the implementation of the model on a computer.

2.1 Calibrating the model
In order to choose reasonable values for the parameters 6, &, and é,
we draw on the existing empirical literature on the time-series prop-
erties of volatility, focusing upon those articles that use an AR1 model
for volatility. While an AR1 model cannot be expected to fit the data
as well as a less parsimonious one, there is some evidence that sug-
gests it does quite a good job, at least for aggregate stock indices.
For example, Stein (1989) finds that when modeling the implied
volatility of S&P 100 index options, the corrected R? from an AR1
model is the same as that from a model that includes eight lags. Using
a different data set, Poterba and Summers (1986) also come to the
conclusion that an AR1 model provides a good description of the
time-series behavior of volatility.®

A related concern is the appropriateness of using an arithmetic
versus geometric specification for the volatility process. However,

Hull and White produce a similar result [equation (6), p. 283] also by effectively assuming that ¢
=0.

Using implied volatilities for individual stocks, Merville and Pieptea (1989) argue that a better fit
is obtained by allowing the AR1 process to be displaced by white noise. One plausible interpretation
is that “true” volatility follows an AR1, but that their implied volatilities contain significant white
noise measurement errors.
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note that Stein (1989) finds no evidence of skewness in the implied
volatilities of S&P 100 index options, concluding that it is reasonable
to model the volatility process in levels. In addition, empirically
reasonable parameter values imply a very small probability that an
arithmetic volatility process will ever reach zero.

Two studies are used as principal sources for parameter values,
those of Stein (1989) and Merville and Pieptea (1989). Both studies
use options-implied volatilities as their data, rather than relying on
volatilities estimated from stock price returns. The former focuses on
S&P 100 index options, while the latter looks primarily at 25 individ-
ual stocks.”

Using data from 1983 to 1987, Stein (1989) finds that index volatility
averages between about 15 and 20 percent, depending on the sample
period. The half-life of a volatility shock is approximately one month
for the entire sample, corresponding to a § of 8. However, in some
subsamples, the half-life is as short as two weeks, corresponding to
a 6 of 16.® Estimates of % range from 0.15 to 0.30.

The individual stocks examined by Merville and Pieptea (1989)
have (not surprisingly) higher average implied volatilities than the
index, generally ranging between about 25 and 35 percent. Mean
reversion is typically stronger than with the index, with a median
value of 6 in the range of 14, and several individual observations over
20. The parameter kalso tends to be higher, often exceeding 0.4 and,
in some cases, 0.5.° There appears to be a cross-sectional correlation
between 6 and k: those stocks that have higher #’s also often have
higher §’s.

It is straightforward to demonstrate that the unconditional standard
deviation of volatility, denoted by s,(¢), is given by

s, (o) = k/(26)2, a7

This formula allows one to calculate the unconditional probability
of obtaining values of o less than zero with the arithmetic AR1 process.

7 It should be noted that the implied volatilities used in these studies are generated from pricing
models that assume nonstochastic volatility. If volatility is in reality stochastic, then the implied
volatilities will be subject to measurement error, and any parameter estimates derived from them
may be biased. However, as Stein (1989) argues, any such biases are likely to be extremely small.
This is because variations in measurement errors for a given option are dwarfed by variations in
the level of volatility. (Table 1 provides some intuition for how the measurement error on a given
option changes with a change in the level of volatility.) Moreover, the parameter values used below
are only intended to give a rough, “ballpark” idea of the relevant magnitudes. We do not intend
to suggest that they represent the best possible statistical estimates.

® These estimates of the half-life of stock index volatility are broadly consistent with those seen in
a number of other studies using a variety of other empirical formulations.

 Merville and Pieptea (1989) do not present k directly, since they are not exactly estimating an AR1
process. However, it is straightforward to recombine their parameter estimates to calculate what &
would have been had they specified their empirical model as an AR1. In particular, & = ¢,/(1 —
NVR)'2, where the variables are defined in their table 4 (p. 205).
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For example, a typical set of parameter values for an individual stock
would be 6§ = 0.30, 8§ = 16, k = 0.4. This implies that the standard
deviation of volatility is 0.07, or less than one fourth of its mean.
Clearly, the probability of observing a negative ¢ is extremely small.
Other configurations of the parameters lead to similar conclusions,
as it is difficult to generate reasonable examples where the uncon-
ditional probability of a negative ¢ exceeds 1 or 2 percent.

2.2 Computational considerations
The techniques involved in computing prices numerically based on
the pricing formulas are neither complex nor particularly costly in
terms of computer resources. The code used to produce the results
presented here, essentially a collection of numerical integration rou-
tines, was written by Ron Henderson in the “C” programming lan-
guage and was implemented by him on a Silicon Graphics Iris 4D
240 GTX workstation. At the heart of the computations is a Romberg
integration routine with some slight modifications to truncate an inte-
gral over infinity to some finite region containing enough information
to produce accurate results. Romberg integration was chosen over
several other candidate schemes (i.e., quadrature formulas) because
of its robustness and ability to adjust to a widely varying integrand.
.Our program was able to generate options prices for most parameter
values in less than one minute, and in many cases, in less than 15
seconds. Using the approximate distributions instead of the exact
ones reduced the amount of computation by a factor that varied
between about 10 and 100. It may also be possible to streamline the
computation of prices based on the exact distributions. One alter-
native to the current approach would be to use a fast Fourier transform
(FFT) in the calculations. This would effectively reduce the two inte-
grations now involved to a single real FFT and a summation, and
could bring computational “‘cost” to a level comparable to that required
to evaluate the Black-Scholes formula numerically. We are currently
pursuing this possibility.

2.3 Sample options prices
Options prices based on the exact stock price distributions S(P, £)
are presented in Table 1. The table is divided into 10 panels, labeled
A-J. Each panel looks at seven strike prices and three maturities (one
month, three months, and six months)—a total of 21 options. For each
option, three numbers are calculated: the Black-Scholes price, a “new”
price corresponding to our exact distribution, and the Black-Scholes
implied volatility associated with the new price.

The panels cover a broad range of the parameter values discussed
in Section 2.1. [In all cases, we set ¢ = 0 and r = In(1.1) = 9.53
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Table 1
Comparison of Black-Scholes and new prices
1 Month 3 Months 6 Months
Black- Implied  Black- Implied  Black- Implied
Strike Scholes New vol. Scholes New vol. Scholes New vol.
A. (o =0.20, 8 = 0.20, 6 = 4.00, £ = 0.10)

90  10.76 10.77  0.2023 12,55 1257 0.2024 15.12 1516  0.2025
95 6.20 6.20  0.2009 8.50 8.52 0.2013 11.34 11.38  0.2017
100 2.71 2.71 0.2003 5.23 524  0.2008 8.14 8.18  0.2013
105 0.83 0.84  0.2006 2.90 291 0.2008 5.58 5.62  0.2012
110 0.17 0.18  0.2015 1.44 146 02013 3.66 3.69 0.2013
115 0.02 0.03  0.2029 0.65 0.67  0.2021 2.29 233  0.2017
120 0.00 0.00  0.2050 0.26 0.28  0.2032 1.38 142 0.2022
B. (¢ =0.20,0=0.20, 5 = 8.00, & = 0.20)
90 10.76 10.77  0.2070 12.55 12.60  0.2060 15.12 1520  0.2056
95 6.20 6.21 0.2029 8.50 855  0.2037 11.34 1144  0.2044
100 2.71 272 0.2011 523 528  0.2025 8.14 8.24  0.2037
105 0.83 0.85  0.2020 2.90 295  0.2025 5.58 5.68  0.2035
110 0.17 0.19  0.2048 1.44 1.50  0.2035 3.66 3.76  0.2037

115 0.02 0.03 0.2088 0.65 0.70 0.2054 2.29 2.40  0.2043
120 0.00 0.00 0.2133 0.26 0.31 0.2077 1.38 148  0.2052
C (e =0.20, 6 = 0.20, § = 16.00, & = 0.30)

90  10.76 10.78  0.2103 12.55 12.61 0.2073 15.12 1522 0.2066
95 6.20 6.23  0.2046 8.50 857  0.2051 11.34 11.46  0.2058
100 2,71 273 0.2021 5.23 5.31 0.2041 8.14 8.28  0.2053
105 0.83 0.86  0.2033 2.90 298  0.2041 5.58 573  0.2052
110 0.17 0.20  0.2073 1.44 1.52 0.2050 3.66 380  0.2053
115 0.02 0.04 0.2127 0.65 0.72 0.2067 2.29 243 0.2057
120 0.00 0.00  0.2187 0.26 0.32 0.2088 1.38 150  0.2063
D. (6 =10.25,0=0.25, 6 = 4.00, k= 0.20)
90  10.88 1090  0.2550 13.03 13.10  0.2558 15.94 16.05  0.2565
95 6.56 6.58  0.2521 9.26 9.32 0.2536 12.44 1256 0.2550
100 3.28 329  0.2510 6.19 6.24 02525 9.45 9.56  0.2541
105 1.31 133 0.2515 3.88 393  0.2525 6.99 7.10  0.2538
110 0.41 0.43  0.2534 2.28 2.35 0.2535 5.03 5.15  0.2541
115 0.10 0.12  0.2563 1.26 133 0.2552 3.54 3.66  0.2548
120 0.02 0.03  0.2598 0.66 0.73  0.2574 2.42 256 0.2559
E. (6 =10.25,0=0.25, 6 = 8.00, k£ = 0.30)
90  10.88 10.91 0.2589 13.03 13.13  0.2585 15.94 16.09  0.2588
95 6.56 659  0.2539 9.26 9.36  0.2558 12.44 12.61 0.2574
100 3.28 330  0.2520 6.19 6.28  0.2545 9.45 9.63  0.2566
105 131 134 0.2530 3.88 397  0.2545 6.99 7.17  0.2563
110 0.41 0.45  0.2563 2.28 238  0.2557 5.03 522  0.2566
115 0.10 0.13  0.2610 1.26 137  0.2578 3.54 372  0.2572
120 0.02 0.03  0.2665 0.66 0.76  0.2604 2.42 2.61 0.2582
F. (6 =10.25,0=0.25, 6 = 16.00, k= 0.40)
90 10.88 1092  0.2608 13.03 13.13  0.2587 15.94 16.09  0.2587
95 6.56 6.61 0.2553 9.26 9.37  0.2567 12.44 12.62  0.2579
100 3.28 3.31 0.2530 6.19 630 02557 9.45 9.65  0.2575
105 131 1.35  0.2541 3.88 4.00  0.2558 6.99 720  0.2573
110 0.41 0.46  0.2579 2.28 240  0.2566 5.03 524  0.2575
115 0.10 0.14  0.2632 1.26 138  0.2581 3.54 3.74  0.2578
120 0.02 0.04 0.2693 0.66 0.76  0.2601 2.42 2.61 0.2584
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Table 1
Continued
1 Month 3 Months 6 Months
Black- Implied  Black- Implied  Black- Implied
Strike  Scholes New vol. Scholes New vol. Scholes New vol.
G (0 = 0.35, 0 = 0.35, 6 = 4.00, k = 0.40)

90 11.34 11.39  0.3588 14.31 14.48  0.3619 17.93 1825  0.3650

95 7.44 7.48  0.3545 10.95 11.10  0.3587 14.83 15.15  0.3628
100 4.42 445  0.3529 8.13 8.27  0.3572 12.12 12.43 03616
105 2.36 240  0.3537 5.87 6.01 0.3572 9.80 10.11 0.3612
110 1.13 1.18  0.3565 412 428  0.3586 7.83 816 03616
115 0.49 0.54 0.3606 2.82 3.00 0.3610 6.20 6.55 0.3626
120 0.19 0.24 03657 1.88 2.08  0.3642 4.87 523  0.3641

H. (o =0.35,0 = 0.35, 6 = 8.00, &= 0.50)

90 11.34 11.41 0.3612 14.31 1450  0.3629 1793 1825 0.3650

95 7.44 7.50  0.3516 10.95 11.12  0.3602 14.83 1517  0.3636
100 4.42 4.47  0.3540 8.13 830  0.3588 12.12 1247  0.3629
105 2.36 2.41 0.3550 5.87 6.04 0.3588 9.80 10.15  0.3626
110 113 1.20  0.3584 4.12 4.31 0.3600 7.83 820  0.3629
115 0.49 0.56  0.3634 2.82 3.02 0.3622 6.20 6.57  0.3635
120 0.19 025  0.3694 1.88 210 0.3649 4.87 5.24 0.3645

I (¢ =10.35,0 =0.35, 8 = 16.00, k= 0.60)

90 11.34 11.41 0.3615 14.31 1448  0.3616 17.93 1820  0.3628

95 7.44 7.51 0.3567 10.95 11.12 0.3599 14.83 1513  0.3622
100 4.42 448  0.3548 8.13 8.31 0.3592 12.12 12.44 03618
105 236 242 03557 5.87 6.05 0.3592 9.80 10.13  0.3617
110 113 1.20  0.3589 4.12 4.31 0.3599 7.83 8.17  0.3618
115 0.49 0.56  0.3637 2.82 3.01 0.3611 6.20 6.53  0.3621
120 0.19 0.25 0.3694 1.88 2.06  0.3628 4.87 519  0.3626

J. (o =0.35, 0 = 0.25, 8 = 16.00, k= 0.40)

90 11.34 11.14 0.3129 14.31 13.42 0.2832 17.93 16.33  0.2715
95 7.44 7.07 0.3097 10.95 9.78  0.2817 14.83 12.93 0.2709
100 4.42 3.95 0.3085 8.13 6.79 0.2811 12.12 10.00 0.2705

105 2.36 1.92 0.3091 5.87 4.50 0.2811 9.80 7.56 0.2704
110 1.13 0.82 0.3111 4.12 2.85 0.2817 7.83 5.61 0.2705
115 0.49 0.32 0.3143 2.82 1.74 0.2828 6.20 4.08  0.2708
120 0.19 0.11 0.3182 1.88 1.02 0.2842 4.87 291 0.2713

The “new” price corresponds to the equations

dP = uP dt + oP dz, (€Y)
and

do = —8(c — 0)dt + k dz, . (@3]

For all entries, P = 100, the riskless rate r = 9.53 percent, and the volatility risk premium ¢ = 0.
The Black-Scholes price corresponds to the nonstochastic volatility setting where 6 = k= 0.

percent.] Panels A-C encompass the values that appear to characterize
stock index options, setting § = o, = 0.20 and allowing é to range
from 4 to 16, while kranges from 0.10 to 0.30. The subsequent panels
examine higher values of volatility and k that seem appropriate for
options on individual stocks. In D-F, 6 = ¢, = 0.25 and kranges from
0.20 to 0.40. In G-I, 6 = ¢, = 0.35 and k ranges from 0.40 to 0.60.
Finally, in panel J, we consider a case where initial volatility differs
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from its long-run mean, replicating all the parameters of panel F
except setting o, = 0.35, rather than its long-run mean of 0.25.

Several observations emerge from the table. First, stochastic vola-
tility exerts an upward influence on all options prices. Whenever g,
= §, the new price exceeds the Black-Scholes price for the same 6.
Second, stochastic volatility is “more important” for away-from-the-
money options than for at-the-money options, in the sense that the
implied volatilities corresponding to the new prices exhibit a U-shape
as the strike price is varied. Implied volatility is lowest at-the-money,
and rises as the strike price moves in either direction.

The concept of the mixing distribution for ¢ provides a useful
heuristic device for understanding these effects. Given Equation (11),
one can always represent our ‘“‘new’” price as an average of Black-
Scholes prices with different ¢’s, weighted by the mixing distribution
m,(0). Intuitively, the difference between the Black-Scholes and new
prices should depend both on the mean of the distribution m,(e¢) as
well as on its dispersion.

As it turns out, the Black-Scholes formula is very close to linear in
volatility for at-the-money options. This suggests that, for these options,
all that should matter (loosely speaking) is the mean of the mixing
distribution. Now, even when ¢, = 6, it is not the case that the mean
of the mixing distribution equals 6. For example, when volatility
evolves deterministically over time, the mean of the mixing distri-
bution is given by the square root of the average value of ¢ over the
life of the option [see Equation (A2) in Appendix A]. By Jensen’s
inequality, this is greater than the average value of ¢. A similar (though
more complex) logic also applies for the case when volatility is sto-
chastic. This “mean of the mixing distribution effect” (roughly)
explains the implied volatilities seen at-the-money.

For away-from-the-money options, there is a second effect. For these
options, the Black-Scholes formula is convex in volatility. Thus, for
a fixed mean of the mixing distribution, these options are more valu-
able when the mixing distribution has more dispersion. This ‘“dis-
persion of the mixing distribution effect” explains the U-shape in
implied volatilities mentioned above.

Table 1 shows that the overall impact on options prices can be
economically significant, especially when the options are out-of-the-
money and the parameter kis allowed to take on large (but plausible)
values. For example, in panel H, where ¢, =0 = 0.35,06 = 8,and k=
0.50, our model prices a three-month option with a 120 strike at 2.10,
or 11.7 percent more than its Black-Scholes price of 1.88. The new
price corresponds to an implied volatility of 36.5 percent. Even larger
proportional effects can be observed with cheaper options. A one-
month option with a 120 strike has a new price of 0.25, which is 31.6
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Table 2
Comparison of exact and approximate prices

(6 =10.25,8 =0.25, 6 = 16.00, k= 0.40)

Strike Black-Scholes New Approximation
1 Month
90 10.88 10.92 1091
95 6.56 6.61 6.61
100 3.28 3.31 3.34
105 1.31 1.35 1.37
110 0.41 0.46 0.45
115 0.10 0.14 0.12
120 0.02 0.04 0.03
3 Months
20 13.03 13.13 13.13
95 9.26 9.37 9.39
100 6.19 6.30 6.34
105 3.88 4.00 4.04
110 2.28 2.40 243
115 1.26 1.38 1.38
120 0.66 0.76 0.75
6 Months
90 15.94 16.09 16.10
95 12.44 12.62 12.65
100 9.45 9.65 9.68
105 6.99 7.20 7.23
110 5.03 5.24 5.28
115 3.54 3.74 3.76
120 2.42 2.61 2.63

The “new” price corresponds to the equations

dP= uP dt + oP dz, (1)
and

= —6(c — O)dt + k dz,. )

For all entries, P = 100, the riskless rate » = 9.53 percent, and the volatility risk premium ¢ = 0.
The “approximate” price corresponds to the approximation technique described in Section 1.2 of
t_h% text. The Black-Scholes price corresponds to the nonstochastic volatility setting where § = &
percent more than its Black-Scholes price of 0.19, and which cor-
responds to an implied volatility of 36.9 percent.

In Table 2, the approximate prices [based on the approximate dis-
tribution S(P, )] are compared to the exact new prices. Black-Scholes
prices are also included as a benchmark for comparison.’® In Table
2, the same parameter values are used as in panel F of Table 1, and
the results are representative of those seen with other parameter
values. As the table shows, the approximate prices are quite close to
the exact prices for away-from-the-money options. For example, at a
maturity of three months and a strike price of 120, the approximate

1 By comparing the errors incurred with our approximation technique to the errors incurred with
the Black-Scholes formula, one can get a rough idea of how useful the approximation technique
is relative to the “default” option of not modeling stochastic volatility at all.
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price is 0.75, as compared to an exact price of 0.76 and a Black-
Scholes price of 0.66. In other words, the approximation error is
roughly one tenth of the error incurred in using Black-Scholes.

According to this criterion, the approximation technique works
somewhat less well at-the-money, although it still outperforms Black-
Scholes substantially. At a maturity of three months and a strike price
of 100, the approximate price is 6.34, as compared to an exact price
of 6.30 and a Black-Scholes price of 6.19. In this case, the approxi-
mation error is about one third of the error incurred with Black-
Scholes.”

3. Asymptotic Behavior of Stock Price Distributions

In this section, we explore the connection between the parameters
of the process driving ¢ and the degree to which stock price distri-
butions have fat tails. In discussing fat tails, we focus primarily on
the asymptotic shape of stock price distributions, and on the related
question of what moments of the distribution exist.> We begin by
stating the following definition.

Definition. Two functions F(2) and G(2) are asymptotically equiv-
alentas z - o (or as z = 0) if log F(2)/log G(z) = 1 as z — oo (or
'as z — 0). This will be denoted as F(2) = G(2).

Because we are looking at asymptotic behavior, the reflecting bar-
rier assumption inherent in the arithmetic process of Equation (2)
will not color our conclusions. The existence of a reflecting barrier
at ¢ = 0 may lead to unnatural implications about the movements of
o when it is close to zero. However, all that is important for the
asymptotics is the nature of ¢’s movements when it is large (i.e., how
quickly can ¢ move toward infinity?).

To see this point heuristically, note that we are looking at processes
for o of the form

do = a(e) dt + b(o) dz. (18)

The asymptotic nature of stock price distributions will be determined

11 The fact that there are larger errors at-the-money suggests that our approximate distribution does
a better job of matching the tails of the true distribution than it does of matching the central part
of the true distribution. Clearly, a more complete analysis would involve a detailed comparison
(perhaps via simulation) of the approximate and true distributions. Our aim is not so much to
make a strong case for the use of the particular approximation described here, especially since the
exact formula is relatively easily implemented. Rather, we believe that the general method of
approximation is instructive—as we explain in Section 4, it may be of practical relevance in more
complicated models whose exact solutions prove elusive.

1z Empirical studies often quantify fat tails by computing an estimate of the kurtosis, or fourth moment
of the distribution. Unfortunately, such higher moments do not always converge for our theoretical
stochastic volatility distributions, so we are unable to make a direct comparison in this regard.
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by the limiting behavior of a(¢) and b(s) as o gets large. Thus, the
noteworthy difference between an arithmetic and a geometric Brown-
ian motion model for ¢ is that in the former b(c) remains constant
as o gets larger, while in the latter it increases indefinitely with ¢.
The fact that b(e) is also constant for small ¢ may be an unrealistic
aspect of arithmetic Brownian motion, but it does not affect asymptotic
stock price distributions—a more reasonable process that had b(o)
shrinking for small ¢ but remaining bounded for large ¢ would lead
to the same basic conclusions.

Once the stock price distributions are given, their asymptotic order
can be recovered using a well-known technique called Laplace’s
method, or the theory of stationary real phase. [For a complete descrip-
tion, see Erdelyi (1956, pp. 36-38).] The derivations are outlined in
Appendix D, where we also make the heuristic argument above more
precise. Here we simply present and discuss our results.

The benchmark for comparison is the lognormal distribution L(e).
Its asymptotic order is given by

L(o) =~ exp(—(log P)?/2q¢%t) asP->0orP-oo. (19)

Thus, the relative thinness of the tails of the lognormal is reflected
in the rapid decrease of the exponential as P goes to zero or infinity.
- In comparison, the stochastic volatility distributions studied here
have asymptotic behavior that can be written as

S(P, ) = P as P - oo, 20)
S(P,H) =Pt asP-0. 21n
The exponent v is given by
y=3+30 +4/1)7, (22)
where
t= k%t/(v* + 126%).

and v = v(2d) is the smallest positive root of the equation cosv +
(t6/v)sin v = 0. The variable v always lies between /2 and =, and v
= /2 when 6 = 0.

Several observations follow from (20)-(22). First, and most obvi-
ously, the asymptotic behavior of stock price distributions, which
might be termed “power behavior,” implies slower rates of decrease
(i.e., fatter tails) than the lognormal. This power behavior is com-
patible with the generalized beta distribution (GB2) introduced by
Bookstaber and McDonald (1987) to fit stock return data. In particular,
an inspection of their formula (1a) (p. 403) shows that our parameter
v is essentially equivalent to unity plus the product of their parameters
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aand g. They note that no moments of order equal to or higher than
aq will exist; analogously, it can be shown in our models that no
moments of order equal to or greater than (y — 1) will exist for stock
price distributions. For example, when v =< 3, the distribution will
not have a well-defined variance.

Next, it is easy to verify that in our model v always exceeds 2, and
can exceed 3, depending on the values of the parameters. Thus, for
this model, stock prices sometimes have a well-defined variance.!3

Equation (22) implies that v approaches infinity as ¢ or & goes to
zero. When o follows an arithmetic process, decreasing its end-of-
horizon variance makes stock price tails thinner, and higher and
higher moments exist.

If 6 = 0, there is no mean reversion in ¢, and v approaches 2 as ¢
or k goes to infinity. Thus, if the horizon is very long, so that there
is a great deal of variance in the ultimate value of g, the stock price
distribution gets very fat-tailed, losing all its higher order moments
up to and including the variance.

In contrast, when there is a nonzero mean reversion coefficient 4,
v approaches a number that is strictly greater than 2 as ¢ goes to
infinity. The greater is §, the larger is this limiting v. Intuitively, a
nonzero 6 bounds the end-of-horizon variance for o away from infinity,
no matter how long the horizon. Consequently, the limiting case of
v = 2 is never approached, even for very large values of ¢

The implications of the model with a positive 6 appear to accord
closely with the empirical findings of Bookstaber and McDonald
(1987). They note that while one- and five-day stock returns have
significantly fatter tails than lognormals of the same variance, returns
over longer horizons (e.g., 250 days) are much better described by
a lognormal distribution. This observation, taken together with our
analytical results, would seem to provide indirect support for the
hypothesis that volatility follows a stationary process.’* If volatility
were nonstationary, then our results would lead one to expect long-
horizon returns that look substantially fatter-tailed than lognormals.

4. Conclusions and Extensions

We have used analytic techniques to derive both exact and approx-
imate stock price distributions for the case where stock price dynam-
ics are given by Equations (1) and (2). Our results have enabled us

'3 In contrast, we can show that a geometric process for o leads to “hyper-fat” tails—a v of 2 and an
unbounded variance for any nonzero values of tand k.

14 The question of whether volatility contains a unit root has been the subject of a great deal of direct
testing. Schwert (1987) provides a detailed discussion of the issues that arise in such direct testing
for stationarity.
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to develop closed-form options pricing formulas that incorporate
important aspects of the time-series properties of volatility, as well
as to sketch some links between these time-series properties and the
extent to which stock price distributions have fat tails.

Although our approximation technique appears to work relatively
well in pricing options (particularly those away from the money),
one might question its usefulness, given that the exact formula can
itself be quite easily implemented. However, it should be noted that
our basic approximation methodology may be helpful in attacking
more general models than the one studied here, where exact solutions
prove less tractable.

Consider, for example, a constant elasticity of volatility (CEV) gen-
eralization of Equation (1), that is,

dP = rPdt + oP/dz, ¢

where 0 < j < 1. This extension, when combined with Equation (2),
captures other empirically relevant aspects of volatility, including the
tendency for percentage returns to be more volatile when prices are
low. We do not know whether a tractable exact solution exists for
stock price distributions generated by (1”) and (2).

However, it would appear that we can apply a variant of our approx-
imation technique. The logic is as follows. Suppose we know the
stock price distribution corresponding to just (1’) with ¢ fixed.’ It
can be shown that an analogue to Equation (11) holds in that our
desired exact distribution for the stochastic volatility case can be
represented as a mixture of fixed ¢ CEV distributions. The mixing
distribution is somewhat more complicated than m,(¢), but has a
similar form. This suggests that even if we cannot solve for the exact
distribution as readily as above, we may be able to use the same
method of approximation. As in Equation (13), we might use a simple
substitute for the mixing distribution to generate an approximate
stock price distribution.

In this vein, it should be noted that our method of approximating
m,(a) can probably be refined, by allowing 72,(¢) to be less tightly
parameterized and thereby fitting more of the characteristics of m,(¢).
Such refinement may prove worthwhile for addressing the sorts of
problems described above.

Appendix A: Derivation of Formula for §

We now sketch the derivations of the results presented above. Our
first observation is that the distribution of prices generated by the

15 Cox and Ross (1976) provide a closed-form solution for this distribution in the case where j= 3.
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two stochastic equations (1) and (2) is a mixture of lognormal dis-
tributions. We begin by making this precise.

If we solve Equation (1), with ¢ fixed and u = 0, the resulting
distribution of prices is the lognormal L(s), given by

—(logP + t02/2)2>‘ D

L(o) = 2wte2P2)~1/2 exp( o
2

It is easy to show that if o is not constant, but a deterministic function
a(), the distribution of prices is given by L(a()), where

. 172
a(f) =<1t f 2(s) ds) . (A2)

That is, in this case, prices are still lognormally distributed, with a
variance that corresponds to the average o2 over the time interval.
In the case where o(#) is stochastic, and by Equation (2) is given
by an AR1 process, we can write ¢ = o,(#), where w is the point in
the probability space that labels the stochastic path. By the reasoning
above, each path w implies a price distribution L(«,(#)), where

: 12
(D) =(1t fo o2 (s) ds) . (A3)

The desired price distribution Sis simply the expectation of L(e,(#))
so that

S=E{L(a,())}. (A4)

We now focus on the random variable «,(f). Let m,(¢)do be its
distribution function so that

Prob, {b > a () > a} = f m, (o) do. (A5)

This implies that, for any function F,

E,(F(a, (1)) = f F(o)m, (o) do.
Therefore, (A4) implies
S= f L(o)m,(o) do. (A6)
This is the claim that was stated in (11)—that is, our desired dis-

tribution is a mixture of lognormals, averaged via the mixing distri-
bution m,(¢). This conclusion holds generally for the type of sto-

744



Stochastic Volatility

chastic equations we consider in this article, and not just the particular
example at hand [see, e.g., Hull and White (1987)].

It is clear that what we need to understand next is the mixing
distribution m,(¢). The key to this is the formula for the “moment
generating function,”

I = E (e 0) = f e m,(g) do,
0

which is given by the lemma below.

Lemma. For all A = 0, the function I(\) is given by Equation (8),
where the quantities appearing in its definition are given by Equa-

tions (3)-(7).
The proof of the lemma will be described in Appendix B. In the
special case where the parameters are ¢, = 0,6 = 0, and § = 0,
I(\) = [cosh(2N\) 2 kr/2)]~1/2, (A7)

This formula goes back to Cameron and Martin (1944).

With the lemma in hand, the exact formula can now be derived
from (A1) and (A6) using the Fourier transform formula for g(¢) and
the inversion formula for f{x):

8® = f _ e () ax, (A8)

fx) =(C2m)~ J: e~ g(§) dé. (A9)

We define f(x) = P-S(P, ©), with the change of variables x = log P.
Using (A6), this yields the following definition of f(x):

—_ 2 2
flx) = f (2mte?)~12exp (—(ﬂ;—;ﬁ> m(o) do. (A10)
Now we apply the Fourier transform formula (A8) to f(x) to obtain

g = f m(o) {f (2mto?)—1/2

— + 2 2
X exp <——(ﬁ—2—;t:izl-> et dx} do. (Al1)

The term in braces is the Fourier transform of
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» —(x + 102/2)?
(2wte?) 12 exp<T>,

which equals exp(— (& + i£€)¢?#/2). [This is a standard fact about
Fourier transforms, as illustrated in Wiener (1933, p. 50).] Therefore,
Equation (A11) can be rewritten as

g = f m(e) exp(—(g2 + i§) ”—zz—t> do. (A12)

Now recall that I(\) is defined as

) = f e m(o) do.

This definition means that (A12) can be reexpressed as
8® = I1((& + i&)1/2). (A13)
We now apply the Fourier inversion formula (A9) to (A13) yielding

fx) = @2m)~ f e“"”((éz + i) %) dE. (A14)

We then make the change of variables £ = n — #/2 in the above
formula, also performing the indicated shift of contours in the com-
plex plane. Since & + i = #* + 1, this becomes

S(x) = Q2nr)"te=/? f e—fxﬂ((nZ + %)%) dn. (A15)

When we recall our definitions f{x) = P-S,(P, £) and x = log P, Equa-
tion (A15) becomes Equation (9), which is the exact distribution
formula for S,(P, ). This completes the derivation.

Appendix B. Proof of the Lemma

According to the Feynman-Kac formula [see, e.g., Durrett (1984, pp.
229-234) and Freidlin (1985, pp. 117-126)], for suitable functions ¢

we have
E (exp(f' c(o(s)) ds)) = u(oy D), (B1)
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where a(#) is the AR1 process given by
do = —6(c — 0) dt + kdz, (B2)

with ¢(0) = o, and u is the solution of

u(x,

o(x—0) Y

u(x, b _ (B3)

ou(x, t)
0x ax

1
E/e2 + cu(x b =
with the initial condition u(x,0) = 1.

In our case, we are dealing in effect with the situation that arises

when c(x) = —Ax?2. With that choice of the function ¢, we have
u(oy, ) = E(exp(—k f a2(s) ds)) =JI(\D.
0
Therefore,
u(o,, ) = IQ\). (B4)

To simplify the presentation we now relabel the parameters above
so that our problem is reduced to that of solving the differential
equation

lazU(x, ) b o(ax + B)GU(x, )] boexiU(x f) = 0U(x, )

2 Ox? ax a (B5)

with the initial condition U(x, 0) = 1.
It can be shown theoretically that this problem always has a solution
of the form

U(x, ©) = exp(L,x?/2 + Myx + N,), (B6)

where L,, M,, and N, are suitable functions of . Once we know that
U(x, t) is of the above form, we can explicitly determine L, M,, and
N, by direct computation. The result is the following proposition.

Proposition. Equation (B5) bas a solution (BG), where the functions
L, M,, and N, are given by the formulas (5), (6), and (7), with k=
1. In these formulas, we have used the definition a = (A? — 2C)¥?
and b= —A/a.

Finding a solution to (B5) with the functional form of (B6) is
equivalent to solving three differential equations that determine L,,
M, and N,. These are
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1 dL,(8) 1 i

2D Gt 2y + AL, ®7)
DD L0 M(0) + BL(D + AM(0), (B8)
WD 1 e s L
T = 2 (Ml(t)) + 2L1(t) + BM1(t)~ (B9)

The initial condition U(x,0) = 1 is equivalent to the initial con-
ditions Z,(0) = 0, M,(0) = 0, and N,(0) = 0.

The solution of (B7) is given by (5) (with & set equal to 1). Next,
with L, (#) known, one solves (B8). The solution is given by (6) (again,
with &= 1). Finally, with L, and M, known, one solves (B9), and its
solution is given by (7), with £ = 1. To check that (B6) is indeed a
solution [with L,, M,, and N, given by (5)-(7)] is a straightforward
but tedious task. It also has been checked using the computer program
MATHEMATICA for symbolic manipulation.

Finally, to determine /(\) from these considerations, we first replace
tby k%t in the formulas for L,, M, and N,, giving us the functions L,
M, and N, respectively. We also set A = —8/k?, B = 05/k?, and C =
—M\/k? and, because of (B4), replace A by A/#and x by g,. The result
is'the substitution (3) and the formula

IN) = exp(Loi/2 + Mg, + N). (B10)

The lemma stated in Appendix A is therefore proved.

Appendix C. The Mixing Distribution and Approximate
Mixing Distribution

There are three significant asymptotic characteristics of the mixing
distribution 72,(¢). The first is that

m,(o) = e/, as o — 0o, (c)
where
t= k2t/(v? + 126%) (€2)

and v = v(#6) is the smallest positive root of the equation cos v +
(t8/v)sinv=0 (/2 < v < ).

We shall prove here that if m,(¢) = e, for some fixed a, as ¢ -
oo, then indeed a = 1/2% as claimed in (C1). To see this, consider
I\), which equals [5e* m,(¢) do, as noted above. This integral
converges when A = 0, and actually also does so for some negative
values of \, if m,(¢) = e~=?, as ¢ - 0. In fact, the first negative value
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below which the integral I(\) diverges is exactly A = —a. Now if we
examine the formula (8) [also (3)-(7)] giving the exact value of I(\),
we see that this singularity occurs at exactly that value of A for which
cosh(ak?t) + bsinh(ak?t) = 0. Now recall that a = (42 — 2C)2, b
= —A/a, with A = —§/k?, C = —\/k>t. Making the indicated substi-
tutions gives a = 1/2¢, with zas in (C2).

The second important fact about the mixing distribution is that it
decreases very rapidly as o = 0. More precisely,

m, (o) < c,e=/, as o — 0, (c3)

for two positive constants ¢, and c,. This is a consequence of a cor-
responding rapid decrease of I(\) as A = co. This decrease is given by

IN) = e @, Ao oo, (cH

for some positive constant ¢;. This in turn follows directly from an
examination of the formula for the term N entering in the definition
of I(\). The formula for N is a sum of four terms. The first and fourth
terms contribute essentially at/2 — at = —at/2, for large values of
A, while the second and third terms contribute negligible quantities.
Since a = (4 — 2C)V?, which is essentially (2\/k2)2, when \ is
large, the conclusion (C4) is established.

. Since

(*e)
f e m, (o) do < e=N",
0

it follows that, for each s,
s
f m, (o) do < e’ e~ N, (Cs)
0
Now in the above, choose A so that As? = 3¢;A\/2. Thus,
s
f m, (o) do < e~ (/DN = g=(a/D?s72,
(4]

which asserts that the claimed estimate (C3) holds on the average,
at least. The fact that the full estimate (C3) holds is proved by a more
refined version of this argument.

The third important fact about the mixing distribution we want to
point out is that

J’°° o?m,(o) do = —1’(0), (C6)
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so that the mean of ¢2 with respect to the mixing distribution is easily
determinable from the function /(\). Equation (C6) follows imme-
diately from the definition

I = J‘°° e m,(o) do.

The above observations concerning the mixing distribution m,(o)
suggest that we can approximate the distribution m,(¢) by a simpler
one, m,(¢), which has the form

m,(0) = pe—e’e /7, «<”n

where a, 3, and p are parameters that are picked in order to obtain
the best fit with m,(o).

Intuitively, the form for #(s) is chosen because the factor e’
matches the asymptotic behavior of m,(¢) at infinity given by (C1),
and the factor e~#7* matches the decay of m,(s), as ¢ — 0, given by
(C3).

As we have said, we choose a = 1/2%, in accordance with (C1).
Next, 8 and p are determined by the requirements that [§ 7#,(¢) do =
1, and, like (C6), that [ ¢21,(c) do = —I'(0).

These requirements give

B =[—a21(0) — 1/2aV?,  p= (2/\/m)-&<"#"-aV/?. (C8)

Appendix D. Fat Tails

The asymptotic formula S(P) = P~7, P - oo [and the corresponding
formula S(P) = P~'*7, P - 0] given in (20) and (21) can be derived
by using Laplace’s method for finding asymptotics of integrals with
real phase functions. [For a description of this method, see Erdelyi
(1956, pp. 36-38) and Hsu (1951).]

We use the identity (A6) and the asymptotic formula (C1). As is
easily seen, this implies that S(P, ©) =~ S(P, 1), where

sS(pY = f e B(x, 0) do, (DD
0
and
A(x,0) = —(x + 162/2 — rt)?/216% — 2/21, (D2)
B(x,0) = 2nte?e®2wt) V2, (D3)

with x = log P.
We are interested in the asymptotics as x - *oo. Now it is not
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difficult to see that the main contribution to the integral (D1) when
x is large occurs for large values of ¢ (with | x| and ¢2 being roughly
of the same order of magnitude). Thus, if we disregard terms of
negligible size in A(x, ¢), we can simplify matters and replace A(x, o)
by A(x, 0), where

A(x,0) = —(x + 102/2)%/2t6* — ¢*/21. (D4)
According to the recipe of stationary phase, the asymptotic behavior
of this integral is given by
e}i(x, a*)

Ve B(x,0%), (D5)

where o* is the critical point of A(x, ¢) as a function of o, that is,

dA(x, o)

=o0.
do | =

The value of ¢* is readily determined, and substituting it in (D5)
leads to the formulas in the text.
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