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This paper compares several statistical models for monthly stock return volatility. The focus is on
U.S. data from 1834-1925 because the post-1926 data have been analyzed in more detail by
others. Also, the Great Depression had levels of stock volatility that are inconsistent with
stationary models for conditional heteroskedasticity. We show the importance of nonlinearities
in stock return behavior that are not captured by conventional ARCH or GARCH models. We
also show the nonstationarity of stock volatility.

1. Introduction

Over the last decade several models of conditional volatility in economic
time series have been proposed. Basic to all these suggestions is the notion
that volatility can be decomposed into predictable and unpredictable compo-
nents, and interest has largely centered on the determinants of the pre-
dictable part. For financial series this concern with the predictable compo-
nent of volatility is motivated by the fact that, in many models, the risk
premium is a function of it.

By definition, the predictable component of volatility in a series is the
conditional variance of that series, ¢,>. The different ways of modeling o,
reflect different answers to two basic questions. First, how does o2 vary with
information available at time ¢; that is, what is the nature of the conditioning
set F,? Second, what does the mapping between information and o> look
like? Of these two questions, the first has to be dispensed with summarily.

*We received useful comments from David Backus, John Campbell, Mahmoud El-Gamal,
Robert Engle, James Hamilton, David Hendry, Andrew Lo, Robert Stambaugh, Richard Startz,
the participants at the NBER Conference on New Empirical Methods in Finance, and from an
anonymous referee. The National Science Foundation (Pagan, under grant SES-8719520) and
the Bradley Policy Research Center at the University of Rochester (Schwert) provided support
for this research.
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Because of the large range of variables whose volatility has been measured, it
is impossible to be precise about conditioning variables, other than to say
that the history of the series being analyzed is the most popular choice. We
also make that choice by focusing on univariate time series techniques. The
debate over the mapping between o> and conditioning variables can be more
fruitfully analyzed out of the context of particular applications, and it is this
question that we concentrate on in this paper.

Suppose we write the series y, to be modeled as y, =x/8 + u,, where x, is
a set of variables affecting the conditional mean of y,, while u, is an error
term with zero mean and conditional variance E(u?|F,) =0, %. Then Engle
(1982) proposed that

q

‘712=(72+ Eakutz—k’ (1)
k=1

the ARCH(g) model. Bollerslev (1986) generalized this to

p

q
0}2'—‘0'2“" Z Bj"'rz—j+ Z akutz—k’ (2)

j=1 k=1

the GARCH( p, ¢) model, and Engle and Bollerslev (1986) extended GARCH
to the class of integrated GARCH (IGARCH) models that have the restric-
tion LB;+ La, =1. As Bollerslev (1988) records, the class of GARCH
models has been extensively applied with some success. Nevertheless, several
authors have felt that these models are too restrictive, because of their
imposition of a quadratic mapping between the history of u, and o,”. Nelson
(1988) argued that stylized facts associated with Christic (1982) and Black
(1976) imply that ¢, be an asymmetric function of the past data, and he
modified the conditional variance to

Inog"=ay+ Zﬁ Inol; + Z ak[gl/’: k+7(|l/fz Wl —(2/m )1/2)]

=1

(3)

where ¢, = u,/0,. By modeling the logarithm of the variance In %, it is not
necessary to restrict parameter values to avoid negative variances as in the
ARCH and GARCH models. An obvious name for the model in (3) is the
exponential GARCH (EGARCH) model. To identify the parameters, vy is set
to 1.

Hamilton (1988, 1989) proposed a bivariate state model in which o,> was a
linear function of the conditional probability that the economy was in a state
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§, =1, rather than the alternative S, = 0. Because the conditional probability
is a nonlinear function of F,, once again this represents a departure from the
GARCH class of volatility measures. The exact mapping between o> and F,
induced by his two-state approach depends on the data, and this raises the
broader issue of whether one might allow the data to determine the unknown
function. Pagan and Ullah (1988) argued that nonparametric estimation
methods could be used for this purpose, and Pagan and Hong (1988) gave
some examples of where there seemed to be gains in doing nonparametric
estimation rather than following the parametric formulations such as
GARCH. Very little of a comparative nature has emerged about these
methods. For this reason it is of interest to apply each of the techniques
mentioned above to the same data set, with the aim of investigating the
different implications each might have for the predictability of volatility. The
following section selects a series on monthly stock returns from 1834 to 1925
as the basis for such a comparison.

2. Estimation of stock return volatility

We concentrate on monthly stock returns from 1834-1925, previously
analyzed by Schwert (1989b). He gives details on the construction of the data
and places it in an historical context. In fact, the series extends through 1987
but, because French, Schwert, and Stambaugh (1987) and Nelson (1988) have
previously worked with the data from 1926 onward, it is useful to concentrate
on a sample that has not received much attention. Furthermore, many of the
models and estimators we consider impose covariance stationarity on the
data. There is strong evidence that the stock return series is not covariance
stationary when the period of the Great Depression (1929-1939) is included.'
If this is true, models such as Hamilton’s can be immediately rejected as
inappropriate. Moreover, the assumptions underlying nonparametric estima-
tors would also be violated, and one could not justify their usage based on
asymptotic theory. Some assessment of whether the data are covariance
stationary is therefore mandatory.

2.1. Recursive variance plots

Because covariance stationarity implies that the unconditional variance of
the data is a constant over time, a simple graphical view of the likelihood of
such constancy is available from a plot of the recursive estimates of the
variance of the series against time [see Mandelbrot (1963)]. If 4, is the
difference between the stock return and an estimate of its conditional mean

'Schwert (1989a) stresses that stock volatility was unusually high during the Depression
relative to the volatility of other important macroeconomic series.
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Fig. 1. Recursive estimates of the monthly stock return variance, 1835-1987.

described in section 2.2,
t
Aoty =1"" 3 a3 (4)
k=1

is the recursive estimate of the unconditional variance at time t. Fig. 1
displays the plot of this against ¢ for 1835 to 1987. There are three distinct
phases. In the first, ending around 1866, the unconditional variance estimate
is quite erratic. After that, the estimate is very stable until it jumps to a much
higher level around 1930. It is this latter jump that is the most striking
feature of the data and it suggests that data before 1930 has a different
variance from that after 1930. One might argue that the pre- and post-1866
data are also different, although the switch from the Macaulay (1938) to the
Cowles (1939) data occurring near that time could explain part of the
aberrant behavior.

We have done a variety of tests for whether the unconditional variance is
constant over the 1834-1987 period, and they all reject at conventional levels.
For the 1834-1925 period, however, most of these tests do not reject
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covariance stationarity at small significance levels. Hence, we use this sample
period for the remainder of our analysis.

2.2. Modeling the conditional mean return

There is a long history of arguments in the analysis of stock returns that
the mean return exhibits little predictability from the past. Qualifications to
this conclusion are the existence of a possible moving average error term
induced by nonsynchronous data and calendar effects. In the representation
y,=x!B+u,, y, being stock returns, x, would be monthly dummies, and u,
would be an MA(1), e, + 8¢,_,. To account for these effects, we regressed out
twelve monthly dummies to get 4,, and then #, was regressed against
G, yy...,0,_,. Only lags 1, 2, 3 and 10 seemed to be significant. The point
estimates for the first four lags are 0.27, —0.10, 0.07, —0.02. The alternating
signs and size suggest that this is compatible with an MA(1) with parameter
around 0.3. We decided to approximate this MA effect with an autoregres-
sion, so that &, was computed as the residuals from the regression of &,
against &,_y,...,4,_,,. The €, are then the raw data. Central to this proce-
dure is the belief that there are no dependencies in the conditional mean
other than linear ones. Nonparametric estimates of conditional mean func-
tions reported later support this assumption.

The task is to model the conditional variance of the series ¢é,. To do this, a
set of conditioning variables F, must be chosen and a decision made about
how o, relates to F,. We decided to keep F, as a function of the history of
returns alone, and this meant that F, could be constructed from either {, _}
or {é,_;}. If an infinite number of conditioning variables was possible there
would be no difference between these, as they are just different linear
combinations of y,_. Because we must restrict the lags to a finite set,
differences can arise. We adopt {¢,_;} as the basis of the conditioning set, as
this simplifies comparisons with GARCH models. Both {¢,_;} and {@,_;} were
always tried, however, and there were no important discrepancies in results.
A finite number of lags was selected by considering the regression of &2
against é2_,,...,é2 ,. This regression yields the partial autocorrelation
function of the é7. It is important to recognize that the error terms will be
heteroskedastic and to adjust ¢-statistics with the method of White (1980).
The difference in the ordinary and robust standard errors is dramatic, with
t-statistics of the estimated coefficients of é2_,, é2_,, and é2_, falling from
(6.24, 4.63, and 3.15) to (2.16, 1.77, and 1.84), while that for é/_g went from
—1.45 to —2.03. The t-statistics for the remaining lags were small. Based on
this evidence, we concluded that F*={é,_,, é,_,, é,_,, é,_g} should suffice
as the broadest set of conditioning variables, but we also conducted experi-
ments with F?>={é,_,, é,_,} and F!'={é,_,}. To anticipate later develop-
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ments, most of the information is in F,', but the expansion to the larger set
F} does improve the prediction of é2.

Having chosen F,, it only remains to describe the set of methods employed
to estimate o,>. Because ten lags were used in constructing i,, and a further
eight if F' was selected, the sample size was always July 1835 to December
1925, yielding 1086 observations. More observations were available when F!
or F? are the conditioning sets, but working with a variable sample size
makes it hard to compare the different results.

2.3. A two-step conditional variance estimator

Because E(e?|F,) =0/, a simple two-step estimator of o> can be found
as the predictions from the regression of é? against {62 ,,...,é2% ,} [see

Davidian and Carroll (1987)]. The underlying model of volatility here is

8
ol=a’+ ¥ el ,, (5)
k=1

and all one does is replace o2 by é2+ (a2 —e?) +(e2 —é2) =62 +uv,. It is
easy to show that the term (e — é7) does not affect the limiting distribution
of dpyg, s0 v, behaves like (0, — e}), which is a martingale difference with
respect to the sigma field generated by F,. Ordinary least squares is therefore
a consistent estimator, although not an efficient one. Efficiency could be
improved by doing weighted least squares with &' as weights, but the
nonnormality of v, also suggests that adaptive estimation of « might be
preferable. The role of the two-step estimator is that of a benchmark,
however, and the R* of 0.089 between > and ¢é? sets a limit to which other
models can be compared.

2.4. A GARCH model

The two-step estimator is effectively an eighth-order ARCH model and an
obvious extension is to see if a GARCH specification would be superior.
French, Schwert, and Stambaugh (1987) fitted a GARCH(1,2) model to y,
over the period 1928-1984, although the second ARCH parameter a, was
small. We estimated a GARCH(1,2) model for &, for 1835-1925. French,
Schwert, and Stambaugh allowed for an MA(1), u, =e, + ¢, _,, and we did
the same here, although since é, has been purged of a tenth-order autore-
gression, the MA term was not significant. After estimation, the following
model for o, was found (t-values in parentheses):

32=10.000239 + 0.571 62, + 0.158 &2, + 0.064 62 ,. (6)
(3.65) (6.11) (4.38) (1.35)
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A diagnostic test advocated by Pagan and Sabau (1987), involving the
regression of €2 against unity and &7, gave an estimated coefficient on 672 of
0.827 in table 1, with a r-statistic of —0.60 for testing the null that the
coefficient is unity [implied by the restriction E(e?|F,) = o;,>]. For this situa-
tion, however, where we are testing an ARCH rather than an ARCH-M
model, results in Sabau (1988) show that the test is probably rather weak. A
point to note is that the point estimates are compatible with the idea that o2
is generated by a GARCH rather than IGARCH process. The R? between
6% and é} is 0.067, which is less than the R? for the two-step method.?

2.5. An exponential GARCH model

The exponential GARCH(1,2) model allows lagged shocks to have an
asymmetric effect on conditional volatility. In particular, the evidence in
Black (1976), Christie (1982), French, Schwert, and Stambaugh (1987),
Nelson (1988), and Schwert (1990) suggests that negative stock returns lead
to larger stock volatility than equivalent positive returns. We estimate an
EGARCH(1,2) model (¢-values in parentheses):

Ing?= —1.73 + 0.747 In?,+ 0262 Z,_, + 0.124 Z,_,, (7)
(—3.90) (11.62) (5.21) (2.06)

where

(1,4l = (2/m)'7%) 0.352 Gy |»

(-

and ¢, = ¢é,/8,. The log-likelihood for this model is 2198.2 versus 2191.8 for
the GARCH(1,2) model. Thus, the estimates of Nelson’s EGARCH model
confirm the previous evidence that conditional volatility increases more when
return shocks are negative. The R? between &2 and é7 is 0.118, which is a
small improvement over the two-step method, but well above the
GARCH(1, 2) model.?

2French, Schwert, and Stambaugh (1987) also estimated a GARCH-in-mean model, where the
conditional mean return was a linear function of either the standard deviation or variance. We
estimated such models for the 1835-1925 data, and the R? statistics were 0.076 and 0.077. Thus,
the GARCH-in-mean results are essentially equivalent to the GARCH results reported in the
text.

*The log likelihood is for the returns é,, while the R? pertam to the explanation of the squared

returns €2, Hence, although the two measures point in the same direction, they are not
comparable
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2.6. Hamilton’s two-state switching-regime model

Hamilton (1989) proposes a switching-regime Markov model for GNP
growth rates as a model for recessions and expansions. Briefly, consider a
variable y, that follows an AR(m) process,

v —u(S,) :d’l[yhl _M(St—l)] +¢2[yt—2—#’(st—2)] +
+¢m[yt~m_“(st—m)] +U(St)vt’ (8)

where v, is n.i.d.(0, 1). The mean, u(S,), and the residual standard deviation,
a(S,), are functions of the regime in period . The regimes are assumed to
follow a two-state first-order Markov process,

P(S,=1S,_,=1)=p,
P(St=0|Sr71=l) :1_}7,

(9)
P(S,=1|5,_,=0)=1—g¢q,
P(S,=0|S,_,=0)=g¢g
and the parameters of (8) are modeled as
u(S) =ay+a;S,, o(S)=w,+wS,. (10)

Finally, the errors v, are assumed to be independent of all §,_;. Given this
structure, it is straightforward to use numerical procedures to maximize the
likelihood as a function of the parameters {¢,, ..., d,,, P, g, @, &1, wg, ®,).*
Besides point estimates and asymptotic standard errors, Hamilton’s algo-
rithm estimates the probability that the variable is in regime 1 conditional on
data available at data ¢. The estimates of Hamilton’s model from July 1835
through December 1925 are

- 4(S,) 7%83? (61— A(S,-1)] —(—81% [é,-,—A(S,-5)]

- 3 Q St—3
RO

—0.001 [et 4 /-'L(St—4)] +&(St)vt’ (11)
(—0.04)

i(S,) = 0.0006 — 0.0025 S, &(S,)= 0.0246 + 0.02535,,
(0.58) (—0.68) (26.02)  (8.84)

*Hamilton (1988, 1989) provides additional information about the statistical model and the
related estimation procedures. We are grateful to Jim Hamilton for providing the FORTRAN
source code used to estimate these models.
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with ¢-statistics in parentheses. The estimates of the Markov probabilities are
g = 0.9619 (with a standard error of 0.0125) and p = 0.9034 (with a standard
error of 0.0328). Thus, these estimates imply that the high variance regime is
less likely than the low variance regime, although both regimes are likely to
persist once they occur.® Schwert (1989b) shows how to compute the condi-
tional variance from this model. Briefly, if the variable was in regime 1 at
t — 1, the variance of the squared forecast error for period ¢ is

E{o?(8,)IS,_; =1} + var{u(S,)|S,_, =1}
= [E{U(St)lst—l = 1}]2 +var{0'(S,)|S,*1 = 1}
+E{[u(S,) — E(u(S)]3S,_, = 1)

=[wy+w, p) +wip(l-p) +aip(1-p). (12)

If the variable was in regime 0 at ¢ — 1, the variance of the squared forecast
error for period ¢ is

E{O'Z(S,)|S,_1 = O} + Var{,u(S,)]S,_l = O}
= [E{a(S)IS,_, = 0}]° + var{o(S,)IS,_, = 0)
+E{[1(S)) - E(u(S))]S,_, = 0}

=[wo+ 0,(1-9)]* + 02q(1—q) +aiq(1-q). (13)

Multiplying (12) and (13) by the estimates of the conditional probabilities of
being in each regime given data through r—1, P(S,_, = 11é,_,...) and
P(S,_;=0]é,_,,...) gives the estimate of the conditional variance of the
forecast error at time ¢, 6,°. The R? between é2 and 6?2 is 0.057, which is the
smallest among all the techniques we consider.

2.7. A nonparametric kernel estimator

Broadly there are two major philosophies in nonparametric estimation.
The first is essentially a weighted average, that is

T T
&12 = Z wjtéj23 Z th = 17 (14)

j=1 j=1

The expected durations of the regimes are (1 —5)” ' =10.4 months and (1 -4) ' =26.2
months.
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where T is the sample size. The weights w;, are made to depend on F; and F,
in such a way that, if F; and F, are ‘far apart’, w;, is close to zero. What this
does is make o> equivalent to the sample variance of é; using only those
observations that are close to F,. Since it is these observations that have
variance o, the method is analogous to the use of sample moments to
estimate population moments. Many weighting schemes are possible. Letting
z, be the rX 1 vector containing the elements in F,, Nadaraya (1964) and
Watson (1964) set

erZK(Zr_Zj) E:K(Zk_zt)’ (15)
k=1

where the kernel K(-) has the properties that it is nonzero, integrates to
unity, and is symmetric. The kernel used in this paper was the Gaussian one,

K(z,—z)=Qm) YAH|"exp[ - 1(z,~2) H(z,~z)]. (16)

H = diag(h, ... h,) contains the bandwidths, that were set to G, T~ '/“*"),
where ¢, is the sample standard deviation of z,,, k=1,...,r. Silverman
(1986) shows that the minimum mean square error choice of the bandwidth is
proportional to ¢, 7~ '/“*", No experimentation with the kernel or band-
width was done, and we did not look at other weighting schemes. Partly this
was due to our preference for the Fourier nonparametric estimator described
later. One important modification that was employed was to leave out the th
observation when computing 62,

T

2= X wel. (17)
j=1
j#t

Generally, it is important to adopt the ‘leave-one-out’ estimator to avoid the
situation where ‘outliers’ in the data force w,, to be unity, while all other w;,
are close to zero. In these circumstances, é? becomes the estimator of o,% if
all observations are used. While there is a sense in which this is the best
estimate of ¢, it tends to overstate the predictability of volatility by making
a perfect prediction at time ¢. Based on F,' the R? between é? and 6, is
0.126 if {é,_,} is the conditioning variable. There is a major improvement
over the GARCH and Hamilton models, and it is somewhat larger than for
the EGARCH model. The R? between é? and 67 is lower for F;> and F*.
This difference occurs because some of the observations on é7 for which 6,
was not computed were very large.
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Fig. 2. Kernel, GARCH(1,2), and Fourier estimates of the monthly stock return variance
conditional on the lagged unexpected stock return, e,_,, 1834-1925 (with the lower 95 percent
confidence interval for the Fourier estimate).

It is worth noting that the estimate of conditional variance in (17) is a
function of all the data, not just observations before time ¢. This is no
different, however, than estimating the regression parameters in (5) using all
the data. In both cases, the predictions of the conditional variance 672 are a
function of all the data. In section 3 we will discuss the results of a
post-sample prediction experiment where the forecast models are estimated
using data from 1835-1899, then forecasts are made for 1900-1925. We also
use the estimates from 1835-1925 to forecast for 1926-1937.

It is not easy to summarize the mapping between o, and {¢,_;} when the
conditioning set is F,'. Some insight is available by computing the variance of
é, when the conditioning set is F,'. Fig. 2 displays the mapping of ¢ into a
grid of fifty values of é, ,, located within the range of é,_, found in the
sample. An outstanding characteristic of fig. 2 is the difference in implied
volatility for negative and positive values of ¢, _,, a stylized fact alluded to in
the introduction. Fig. 2 is also similar to the equivalent mapping found by
Pagan and Hong (1988) in their analysis of monthly stock returns from 1953



278 A.R. Pagan and G.W. Schwert, Conditional stock volatility

to 1984. Also in fig. 2 is the o> implied by the GARCH(1, 2) model if one just
took the lead term in the distributed lag connecting &> and - ;- Comparing
the GARCH and kernel functions it is clear that the GARCH model is likely
to exhibit different volatility patterns when |é,_,| is large. For small values of
|é,_,|, the two predictions should be close. Unfortunately, this fact makes it
hard to discriminate between the two methods, because large values of [é, ]
are only a small fraction of the sample.

In addition to the conditional variance, one could compute the mean of é,
conditional on é,_, to see if there are nonlinearities present. Both the kernel
and Fourier estimators discussed later were used to estimate the conditional
mean. There was very little dependence of the mean on é,_,. Thus, for this
series it seems that the linear model used to estimate conditional means is an
adequate representation of the data. This outcome is to be contrasted with
the situation for the conditional variance.

2.8. A nonparametric flexible Fourier form estimator

An alternative nonparametric scheme involves a global approximation
using a series expansion, followed by an evaluation of o> using F,. Many
series expansions exist in the numerical approximation literature and could
be adopted here, but the one used most extensively in economics has been
the Flexible Fourier Form (FFF) [Gallant (1981)], where ¢,? is represented as
the sum of a low-order polynomial and trigonometric terms constructed
from the elements of F,, z,;=¢,_;. Applying this idea to our context gives a
model for volatility of the form

L 2
gl=0’+ ), (ajz,j+sz,2j) + Y ['yjkcos(kz,j)+6jksin(kz,j)] ,
i=1 k=1

(18)

where L =1, 2, or 4 depending on whether F!, F? or F! was used. In
theory, the number of trigonometric terms must tend to infinity, but in terms
of significance it did not seem worthwhile going above order two.

A disadvantage of the FFF is the possibility that estimates of o,° can be
negative, and indeed this happens for a few points in the sample. It has the
advantage, however, that when few observations are available in a region of
the sample space, the FFF will interpolate the function from other data
points, whereas the kernel estimate is only based on the few observations.
One must be ambivalent about this property. On the one hand, since
‘difficult’ points are often concentrated around the origin in multivariate
problems [e.g., the ‘empty space’ phenomenon discussed in Silverman (1986)],

2
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there is no ‘extrapolation outside the sample’, and the results should be
reasonable. On the other hand, it is important to know that what we are
seeing is just an interpolation. Joint viewing of output from both estimators
is a prerequisite for an understanding of the behavior of nonparametric
volatility measures.

Fig. 2 also shows the FFF estimates of 4, as a function of ¢, _, along with
the lower part of the 95 percent confidence interval for the FFF estimates.
The story of the mapping is much the same as for the kernel, except there is
a larger estimate of volatility for large positive é,_,.° In this respect the FFF
is closer to the GARCH estimate. Notice that across most of the range of
é,_,, 67 is constant, and it is only for large positive and negative values of
é,_, that any discrimination between the different ways of measuring o2 is
possible. As there is only a small fraction of the sample featuring large |é,_,|,
one must be sanguine about the possibility of differentiating between the
techniques. Nevertheless, the F-statistic that the coefficients of the trigono-
metric terms in the FFF equal 0 is 6.47, compared with the 5% critical value
of Fi5 ., =1.67 (the actual degrees of freedom are 16 and 1061). Hence, the
nonlinearities accounted for by the Fourier terms are important in explaining
volatility. The R*’s between é7 and 6,% are 0.125 (F,'), 0.185 (F?), and 0.205
(F"). Because the EGARCH model has a conditioning set more like F? than
F,', it seems more appropriate to compare the fit of the different models with
those R?, and here the nonparametric estimator seems to represent a
substantial improvement. Thus, it may be useful to consider extending the
EGARCH model by the addition of Fourier terms in Z,_, and Z,_,.

2.9. Summary

Table 1 contains estimates of the regression
52 _ A2
éf=a+pBa’+v, (19)

for 1835-1925, with heteroskedasticity-consistent standard errors in paren-
theses under the parameter estimates. If the forecasts are unbiased, a = 0
and B = 1. For the two-step and the Fourier models, least squares estimation
forces @ =0 and B = 1. For the other methods, the estimates of « and B are
within one standard error of their hypothesized values. The Box—Pierce
(1970) statistics for twelve lags of the residual autocorrelations Q(12), cor-
rected for heteroskedasticity, are large for the Markov switching-regime
model and the nonparametric kernel and Fourier (one lag) models, showing

The close correspondence was another factor in deciding not to experiment with window
width in kernel estimation.
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Table 1

Comparison of within-sample predictive power for the conditional variance of stock returns,
1835-1925.2

él=a+Bei+y,

R? for

Modei a B R? 0(12) logs

1. Two-step 0.00000 1.000 0.089 0.69 0.022
(0.00036)  (0.3402) (1.00)

2. GARCH(1,2) 0.00019 0.8274 0.067 17.3 0.033
(0.0003D)  (0.2904) (0.139)

3. EGARCH(1,2) -0.00034 1.318 0.118 14.6 0.042
0.00041)  (0.391D) (0.265)

4. Markov switching-regime —0.00009 1.165 0.057 233 0.034
(0.00021)  (0.2342) (0.025)

5. Nonparametric kernel (1 lag) 0.00028 0.7565 0.126 29.2 0.012
(0.00027)  (0.2501) (0.004)

6. Nonparametric Fourier (1 lag) 0.00000 1.000 0.125 29.0 0.015
(0.00033)  (0.3020) (0.004)

7. Nonparametric Fourier (2 lags) 0.00000 1.000 0.185 13.2 0.028
(0.00018)  (0.1606) (0.358)

*Standard errors using White’s (1980) heteroskedasticity correction are in parentheses under
the coefficient estimates. R? is the coefficient of determination. Q(12) is the heteroskedasticity-
corrected Box-Pierce (1970) statistic for twelve lags of the residual autocorrelations,
with its p-value in parentheses below it. The corrected Box-Pierce statistic is calculated by
comparing the sum of squared autocorrelation estimates, each d1v1ded by White’s (1980)
heteroskedasticity-consistent variance, and comparing thls with a x? distribution with twelve
degrees of freedom. The R? for logs column shows the R? statistic from the regression of In &7
on Ind2.

serially correlated residuals v,. The serial correlation shows there is addi-
tional persistence in volatility that is not captured by these models.

As a check on the criterion function we use to compare alternative models,
we also ran the regression

Iné? = a + BIng?* +v, (20)

to compare the R? statistics from these regressions.” These statistics, labeled
‘R? for logs’ in table 1, are motivated by the idea of a proportional loss
function, rather than the quadratic loss function implicit in (19). Mistakes in
predicting small variances are given more weight in (20) than in (19). All the
R? statistics for logs are smaller than the R?’s for the raw data. The
nonparametric estimates are affected the most, showing that their apparent

"We are grateful to the referee and to John Campbell for suggesting this analysis.



A.R. Pagan and G.W. Schwent, Conditional stock volatility 281

advantage in predicting é? is for very large values, which is consistent with
the plots in fig. 2.

3. Post-sample prediction

The previous comparisons involve within-sample estimates of R between
é? and 6,%. Since some of the methods use a large number of parameters to
model the data, there is the possibility that ‘over-fitting’ can occur. One way
to evaluate this question is to estimate the model parameters with a subset of
data and create out-of sample forecasts for the remainder.

3.1. Predictions for 1900-1925

Table 2 contains estimates of (19) and (20) for 1900-1925, where the
model parameters were estimated using data from 1835-1899. For the
two-step, GARCH(1,2), EGARCH(],2), Hamilton, and kernel forecasts,
the estimates of a and B are within one standard error of the hypothesized
values (a =0, B = 1). For the Fourier forecasts, however, the estimates of «
are more than two standard errors above 0, and the estimates of 8 are more
than two standard errors below 1. The two-step model has the highest R? of
0.110, while the GARCH, EGARCH, and Hamilton forecasts have R?’s of
about 0.07. The nonparametric forecasts have R?’s below 0.035. The
Box-Pierce (1970) statistics for twelve lags of the residual autocorrelations
Q(12), corrected for heteroskedasticity, are large for all the forecast models,
showing serially correlated forecast errors.

One might be tempted to conclude that the nonparametric methods of
modeling conditional volatility suffer from over-fitting, since the R? statistics
are so low for the out-of-sample forecasts. To check this possibility, we also
calculated the R? statistics for 1900-1925 using the fitted values from the
models estimated over the entire 1835-1925 sample period. If over-fitting is a
serious problem, these R? statistics should be much higher than the out-of-
sample prediction R?’s. Since the in-sample R?’s are only slightly higher than
their out-of-sample counterparts, however, and the differences are similar for
all the models in table 2, it seems that over-fitting or parameter instability is
not a serious problem. Rather, the nonparametric forecasting methods work
poorly in this sample because there are few large returns in the 1900-1925
period. Fig. 2 shows that the kernel and Fourier models obtain explanatory
power from a few extreme returns and, as will be shown in section 4, many of
these occur in the earlier part of the sample. It is well-known that nonpara-
metric estimators are inefficient compared with parametric estimators of a
correctly specified model. For this part of the data, the predictions of all the
models would be for small values of ¢,%, since the minimum value of €, was
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Table 2

Comparison of out-of-sample predictive power for the conditional variance of stock returns,
1900-1925.%

él=a+Bé’+y,

In-sample R? for

Model @ 8 R?  QU2) R? logs

1. Two-step -0.00020 1.112 0.110 222 0.137 0.023
(0.00045) (0.4329) (0.035)

2. GARCH(1,2) 0.00018 0.7752 0.075 304 0.077 0.027
(0.00035) (0.3427) (0.002)

3. EGARCH(1,2) 0.00007 0.8771 0.074 302 0.077 0.033
(0.00033) (0.3310) (0.003)

4. Markov switching-regime —-0.00003 1042 0.070 304 0.086 0.026
(0.00032) (0.3555) (0.002)

5. Nonparametric kernel (1 lag) 0.00027 07720 013 218 0.019 0.019
(0.00059) (0.5626) (0.040)

6. Nonparametric Fourier (1 lag) 0.00090 0.1416 0.002 23.5 0.009 0.012
(0.00024) (0.1964) (0.024)

7. Nonparametric Fourier (2 lags) 0.00051 0.4978 0.032 222 0.046 0.018
(0.00021) (0.2129) (0.036)

“Standard errors using White’s (1980) heteroskedasticity correction are in parentheses under
the coefficient estimates. R? is the coefficient of determination. Q(12) is the heteroskedasticity-
corrected Box-Pierce (1970) statistic for twelve lags of the residual autocorrelations,
with its p-value in parentheses below it. The corrected Box-Pierce statistic is calculated by
comparing the sum of squared autocorrelation estimates, each divided by White’s (1980)
heteroskedasticity-consistent variance, and comparing this with a x2 distribution with twelve
degrees of freedom. The parameters for these models are estimated using data from July 1835
through December 1899, then forecasts of conditional variances ¢ are made for the January
1900 through December 1925 period. The in-sample R? statistic in the next-to-last column
measures the relation between fitted values from the model estimated over the entire 1835-1925
period with é2 over the 1900-1925 subsample. The R? for logs column shows the R? statistic
from the regression of In é2 on In ¢ for the forecasts from 1900-1925.

—0.09. As seen from the slope coefficients, the nonparametric estimates have
more variable &, than necessary, a sign of an inefficient estimator.

The R? statistics for logs from (20) are again smaller than for the raw data.
The ranking of alternative methods is similar, however. Nelson’s EGARCH
model has the highest R? for In é2.

3.2. Predictions for 1926-1937

Table 3 contains estimates of (19) and (20) for 1926-1937, where the
model parameters were estimated using data from 1835-1925. As mentioned
earlier, the Great Depression from 1929-1939 was a period of unprece-
dented stock return volatility. The recursive variance estimates in fig. 1
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Table 3

Comparison of out-of-sample predictive power for the conditional variance of stock returns,
1926-1937.2

52 = A2
e;=a+pBo"+v,

R? for
Model a B R? Q(12) logs
1. Two-step 0.00373 0.8146 0.055 7.6 0.066
(0.00170) (0.4409) (0.813)
2. GARCH(1,2) 0.00288 0.9209 0.078 84 0.091
(0.00148) (0.3918) (0.754)
3. EGARCH(1,2) 0.00136 1.895 0.080 6.4 0.111
(0.00112) (0.5478) (0.893)
4. Markov switching-regime —0.00406 5.644 0.045 7.0 0.026
(0.00184) (1.490) (0.861)
5. Nonparametric kernel (1 lag) 0.00670  -0.0115 0.000  24.0 0.025
(0.00160) (0.2522) (0.020)
6. Nonparametric Fourier (1 lag) 0.00631 0.0074 0.019 12.9 0.033
(0.00120) (0.0077) (0.374)
7. Nonparametric Fourier (2 lags) 0.00642 0.0071 0.016 15.8 0.047
(0.00120) (0.0078) (0.202)

“Standard errors using White’s (1980) heteroskedasticity correction are in parentheses under
the coefficient estimates. R is the coefficient of determination. Q(12) is the heteroskedasticity-
corrected Box-Pierce (1970) statistic for twelve lags of the residual autocorrelations, with its
p-value in parentheses below it. The corrected Box—Pierce statistic is calculated by comparing
the sum of squared autocorrelation estimates, each divided by White’s (1980) heteroske-
dasticity-consistent variance, and comparing this with a y? distribution with twelve degrees of
freedom. The R? for logs column shows the R? statistic from the regression of In é2 on In 6,

strongly show that the unconditional variance is not constant between
1835-1925 and 1926-1937. Thus, we should expect that forecasting condi-
tional variances in this sample period will be difficult. Nevertheless, the large
changes in stock prices that occurred in this period provide an interesting
out-of-sample experiment. If the 1900-1925 period was too quiet, the
1926-1937 period may be too volatile,

Indeed, the estimates (19) in table 3 show substantial bias in the forecasts.
Most of the intercept estimates & are more than two standard errors above 0,
and the slope coefficient estimates 8 are more than two standard errors from
1. The two-step, GARCH(1,2), and EGARCH(1,2) models seem to work
best, probably because they capture the persistence in volatility that was
important in this period. Hamilton’s model has an upper bound on the
conditional variance that is too small, so the slope coefficient is over 5.5.
While the Markov model correctly identifies periods of high variance, its
estimate of volatility is too low. The nonparametric models also do poorly in
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this period. The large positive and negative monthly returns that occurred in
the 1926-1937 period have no precedent in the 1835-1925 sample, so the
kernel has no basis for making predictions of conditional variance. The
Fourier model also does poorly because it has to extrapolate outside of the
range of the data.®

The R? statistics from the log regressions (20) are generally larger for this
sample period. The large values of é? are difficult for all the models to
predict. Nevertheless, the relative ranking of the methods is similar: the
EGARCH model does best, followed by the other parametric models, and
the nonparametric methods do worst in this out-of-sample prediction experi-
ment.

4. Analysis of important episodes of stock volatility

Another way to contrast the behavior of the alternative variance estimators
is to analyze their behavior during important subperiods in the sample. Fig. 2
shows that the main difference between the GARCH(1,2) model and the
kernel or Fourier estimator occurs for large negative returns. These data also
explain the difference between Nelson’s EGARCH model and the GARCH
model. Thus, it is worthwhile to plot some of the variance estimates around
major drops in stock prices from 1835-1925. Schwert (1989b) notes that many
of the stock market ‘crashes’ during the 19th century occurred at about the
same time as banking panics. Therefore, we will use the dates of the bank
panics and other major events to evaluate the different predictions of stock
return volatility.

4.1. The banking crisis of 1837

There was a major banking crisis in May 1837. This is one of the cases
where many banks refused to redeem demand deposits for currency. Stock
prices fell in early 1837 as investors seeking liquidity sold stocks [see Sobel
(1988, ch. 2) for an interesting history of this episode]. Fig. 3a plots the
unexpected stock return é, (E)° along with the one-lag Fourier (F), kernel
(K), Hamilton (H), EGARCH(],2) (EG), and GARCH(1, 2) (G) estimates
of the conditional standard deviation for 1837. Stock prices fell during carly
1837, with monthly returns of —2, —5, —8, and —8 percent in February
through May. On the other hand, the rise in stock prices in July 1837 of over

®Some of the forecasts of conditional standard deviation are over 200 percent per month from
the Fourier models in this period.

The unexpected stock returns é, (E) in figs. 3a-3d are multiplied by 0.1 so they do not
dominate the plots of the standard deviations. Thus, when E is —0.01 in one of these plots, the
unexpected stock return was — 10 percent that month.
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Fig. 3a. Unexpected stock returns, e,, and estimates of conditional standard deviations from
Fourier (F), kernel (K ), Hamilton ( H), EGARCH (EG), and GARCH (G) models, 1837.

12 percent is the third largest monthly return in the sample. This is character-
istic of conditional heteroskedasticity — large returns follow large returns,
with random signs. Among the volatility estimates, the Fourier estimate
moves the least. The kernel estimate and the GARCH estimate increase in
August 1837, following the erratic pattern of returns earlier in the year. The
kernel estimate drops back to its previous level in September 1837, while the
GARCH estimates gradually decay.

4.2. The banking panic of 1857

There was a major banking crisis in the Fall of 1857 [see Sobel (1988,
ch. 3)]. Several major firms went bankrupt and there was a similar financial
crisis in Europe. Fig. 3b plots the unexpected stock return é, (E) along with
the various conditional standard deviation estimates for the last half of 1857
and the first half of 1858. Stock prices fell 6, 14, and 13 percent in August,
September, and October 1857. Then, in November 1857, prices rose by more
than 16 percent. The returns for September—November 1857 are three of the
four largest in absolute value for the 1835-1925 period. This episode is the
best experiment to differentiate among the alternative variance estimators.
Both the kernel and the Fourier estimates rise dramatically in October 1857,
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Fig. 3b. Unexpected stock returns, e,, and estimates of conditional standard deviations from
Fourier (F), kernel { K), Hamilton (H), EGARCH (EG), and GARCH (G) models, 1857-58.

and they decline sharply in December 1857. In contrast, the GARCH and
EGARCH estimates rise gradually, peaking in December 1857 and gradually
decaying after that. Hamilton’s estimate rises and falls much less. Thus, the
nonparametric estimates adapt more quickly to the fast increase in volatility
and to its decrease when the panic subsided.

4.3. The start of the Civil War, 1860

It is not surprising that the beginning of the Civil War increased the
volatility of stock returns. Fig. 3c plots the unexpected stock return é, (E)
along with the various conditional standard deviation estimates for the last
half of 1860 and the first half of 1861. Stock prices fell 4, 10, and 5 percent in
the last three months of 1860, rising about 10 percent in January 1861, only
to fall 9 and 6 percent in April and May 1861. Again, the Fourier estimate of
the conditional standard deviation rises the most in December 1860 and May
1861, returning to more normal levels in the next month. The other methods
show a smaller increase in volatility in December 1860 and slight decay from
that point.
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Fig. 3c. Unexpected stock returns, e,, and estimates of conditional standard deviations from
Fourier (F), kernel (K ), Hamilton (H), EGARCH (EG), and GARCH (G) models, 1860-61.
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Fig. 3d. Unexpected stock returns, e,, and estimates of conditional standard deviations from
Fourier (F), kernel (K), Hamilton (i), EGARCH (EG), and GARCH (G) models, 1907.
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4.4. The banking crisis of 1907

The banking crisis of 1907 is often credited with leading to the creation of
the Federal Reserve System in 1914. Fig. 3d shows that stock prices fell by
almost 9 percent in March, August, and October 1907. All the estimates of
conditional standard deviations rose in April 1907, with the kernel and
Fourier estimates dropping in May. The Fourier estimate jumps from Octo-
ber to November, then falls back to its previous level in December. The
GARCH, EGARCH, and Hamilton estimates remain high throughout the
second half of 1907.

4.5. Summary

The plots in figs. 3a-3d show that the nonparametric estimates of condi-
tional volatility (kernel and Fourier) are different from the parametric
estimates (GARCH, EGARCH, and Hamilton) in periods when stock prices
fall. In particular, volatility rises fast after large negative unexpected returns.
The parametric estimates all show slow adjustment to large volatility shocks,
but the effects of these shocks persist after the crises subside. These plots
reinforce the impression given by the goodness-of-fit regressions in tables 1,
2, and 3. The parametric and nonparametric methods of modeling condi-
tional volatility capture different aspects of the data. The parametric methods
use the persistent, smoother aspects of conditional volatility, while the
nonparametric methods use the highly nonlinear response to large return
shocks. Neither method subsumes the other.

5. Nesting parametric and nonparametric models

The previous evidence shows that parametric and nonparametric models
for stock volatility capture different aspects of the data. One way to nest
these models is to add Fourier terms to the parametric models. For example,
we added the sine and cosine of lagged stock returns y,_, to the GARCH(1,2)
model in (6) for 1835-1925 and the log-likelihood increased by 4.8. The
likelihood ratio test statistic of 9.6 has a p-value of 0.008. When Fourier
terms were added to the EGARCH(1,2) model in (7), however, the log-likeli-
hood increased by only 0.77, yielding a small test statistic with a p-value of
0.46. Thus, it seems that for the 1835-1925 period the EGARCH model
captures the asymmetry in the relation between stock return and volatility.

We also added Fourier terms to GARCH and EGARCH models estimated
over the entire 1835-1987 period. The y? statistic for the Fourier terms is
16.8 in the GARCH model (with a p-value of 0.0002), which again shows the
importance of asymmetries missed by the GARCH model. The x? statistic is
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11.8 for the EGARCH model, which has a p-value of 0.003. Thus, it seems
there are important asymmetries missed by the EGARCH model over the
longer sample period. It remains an open question whether the nonstationar-
ity of the variance over this period affects the tests for the Fourier terms.

6. Conclusions and suggestions for future work

Our aim was to compare various measures of stock volatility. Taking the
1835-1925 period as the sample, it emerged that the nonparametric proce-
dures tended to give a better explanation of the squared returns than any of
the parametric models. Both Hamilton’s and the GARCH model produced
weak explanations of the data. Nelson’s EGARCH model came closest to the
explanatory power of the nonparametric models, because it reflects the
asymmetric relation between volatility and past returns.

In out-of-sample prediction experiments, the nonparametric models fared
worse than the parametric models. Nonparametric estimators of conditional
moments are ineflicient relative to parametric ones, and this is likely to show
up in too much variability in the estimates of o>. An improved ability to
capture the movements in ;> when returns decline therefore has to be set
against this tendency, and it appears that even with a sample of the size used
here nonparametric methods find it hard to overcome their inherent ineffi-
ciency. Previous uses of nonparametrics in this area, for example Pagan and
Hong (1988), used the estimate of o> in a regression to semiparametrically
estimate risk coefficients, and hence the ‘averaging’ of ¢ makes the semi-
parametric and parametric estimators equivalent.

Our results imply that standard parametric models are not sufficiently
extensive. Augmenting the GARCH and EGARCH models with terms sug-
gested by nonparametric methods yields significant increases in explanatory
power. This fact points to the need to merge the two traditions to capture a
richer set of specifications than are currently employed. Nevertheless, our
results emphasize that any extensions are best done in a parametric frame-
work.

A secondary concern of the paper, which grew out of the data analysis, is
that data taken over long periods cannot be assumed to be covariance
stationary. Much work in this area ignores this question entirely, although the
models proposed to fit the data imply covariance stationarity. A simple
recursive variance test showed that the data could not be thought of as
homogeneous before and after the Great Depression. This was illustrated by
the fact that all the models performed poorly in predicting conditional
variances in the 1926-1937 sample. If covariance nonstationarity is found to
be a feature of many financial series, it forces us to examine what are likely
to be good models of such data.
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