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Abstract. In this paper, we provide a simple, “generic” interpretation of multifractal scaling laws and
multiplicative cascade process paradigms in terms of volatility correlations. We show that in this context
1/f power spectra, as recently observed in reference [23], naturally emerge. We then propose a simple
solvable “stochastic volatility” model for return fluctuations. This model is able to reproduce most of
recent empirical findings concerning financial time series: no correlation between price variations, long-
range volatility correlations and multifractal statistics. Moreover, its extension to a multivariate context,
in order to model portfolio behavior, is very natural. Comparisons to real data and other models proposed
elsewhere are provided.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.45.Df Fractals –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

As shown by most recent empirical studies on huge
amount of data, the market price changes are charac-
terized by several “universal” features [1,2]: price incre-
ments are not correlated, volatilities are strongly (power-
law) correlated and price increment probability density
function (pdf) shapes depend on the time scale. From
quasi Gaussian at rather large time scales, these pdf are
characterized by fat tails at fine scales. Many authors
in the recently emerged field of “econophysics” [1–3] as
well as in classical empirical finance, aim at proposing
simple, discrete or continuous time models that are able
to account for these observations. Among all the pro-
posed models, one can distinguish several streams, from
the simplest Brownian process, that constitutes the main
tool used by practitians, to the class of “heteroskedas-
tic” nonlinear processes as proposed in references [6,7].
To account for the letpokurtic nature of the small scale
pdf, Mandelbrot [4] and Fama [5] proposed the Levy
stable paradigm that has been recently improved no-
tably in the “truncated Levy” version [8]. More recently,
an interesting comparison between market price varia-
tions and the fluctuations of the fluid velocity field in
fully developed turbulence has been suggested [9]. Be-
sides the real pertinence of such an analogy that has been
widely commented [2,11,12], this work opens the door
to another important paradigm to model financial time
series, namely multifractal processes. The multifractal
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processes1, and the deeply connected mathematics of large
deviations and multiplicative cascades, are well known to
be useful to describe the intermittent nature of fully devel-
oped turbulence [24]. Recent empirical findings [10,13–18]
suggest that in finance, this framework is also likely to be
pertinent as far as the time scale dependence of the sta-
tistical properties of price variations is concerned.

Our purpose in this paper is twofold. First, we make
a brief review of multifractals in order to specify what
is a multifractal process. We try to provide several com-
plementary points of view and to understand what are
the main ingredients for “multi-scaling”. We also com-
ment about the criticisms raised by several authors about
multifractality in finance. Our second goal is to pro-
pose a simple multifractal “stochastic volatility” model
that captures very well all the above mentioned fea-
tures of financial fluctuations. This model, that has been
originally introduced in reference [21], is compared to
real data and some models proposed elsewhere. We dis-
cuss its possible multivariate extension in order to use
it in management applications. The paper is organized
as follows. The review on multifractal processes is made
in Section 2. We introduce notations, the related no-
tions of multi-scaling, scale-invariance, cascade process
and self-similarity kernel. We illustrate our purpose us-
ing empirical estimates for some high frequency financial
data. In Section 3 we review some findings of reference [10]
concerning the magnitude correlations for cascade

1 People sometimes refer to “multi-affine” processes or
processes that display “multi-scaling”.
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models and suggest a link with 1/f processes as recently
observed in financial time series. In Section 4 we introduce
the multifractal random walk defined in reference [21] as
a stochastic volatility model. We discuss its main prop-
erties and propose a natural multivariate generalization.
Our discussion is illustrated by numerical simulations. In
Section 5 we propose estimators for the few parameters
of our model and compute them for some intraday and
daily time series. In Section 6 we discuss some related
works about multifractality in finance. Conclusions and
some prospects are reported in Section 7.

2 Multifractal processes and cascade models

In this section we briefly discuss the related notions of mul-
tifractality and multiplicative cascade. Most of the ideas
and concepts that we recall below have been introduced in
the field of fully developed turbulence where people aim at
accounting for the so-called “intermittency phenomenon”
(for a review of this subject see e.g., [24]).

2.1 Multifractality of financial time series

Let us consider the variations of a stochastic process X(t)
at a time scale l. For that purpose, one can consider the
increments of the process, δlX(t) = X(t + l) − X(t) or
more generally its wavelet transform [25–27]

T (t, l) = l−1

∫
ψ

(
t′ − t
l

)
X(t′)dt′

where ψ(t) is the so-called analyzing wavelet, i.e, a func-
tion well localized in both Fourier and direct spaces2. Let
us denote M(q, l) the order q absolute moment of δlX(t)
or T (t, l), (in this paper E(.) will be used for the mathe-
matical expectation and we will always suppose that the
considered processes has stationary increments)

M(q, l) = E(|δlX(t)|q). (1)

We will say that the process is scale-invariant, if the scale
behavior of the absolute moment M(q, l) is a power law.
Let us call ζq the exponent of this power law, i.e.,

M(q, l) ∼ Cqlζq , (2)

where Cq is a prefactor that will be interpreted below.
The process is called monofractal if ζq is a linear func-
tion of q and multifractal if ζq is nonlinear. Note that,
from the concavity of the moments of a random variable,
it is easy to show that ζq, as defined from the scaling

2 One nice property of wavelet transform is that it can be in-
verted, i.e., one can recover the original signal from its wavelet
coefficients. Another interesting feature is that there exist or-
thonormal wavelet bases. Such bases are very useful for sig-
nal synthesis and modelling, as it is illustrated for cascade
processes in reference [36].

behavior (2) in the limit l → 0+, is necessarily a con-
vex function of q. The same argument leads to the con-
clusion that such scaling behavior with a nonlinear ζq
cannot hold for all scales l. Thus, for a multifractal pro-
cess there exists at least one characteristic time T (here-
after referred to as the integral time) above which the
behavior (2) is no longer valid. Multifractality has been
introduced in the context of fully developed turbulence in
order to describe the spatial fluctuations of the fluid ve-
locity at very high Reynolds number [24]. As suggested by
recent studies [9,10,13–15,17,18], multifractality is likely
to be a pertinent concept to account for the prices fluctua-
tions in financial time-series. This is illustrated in Figure 1
where the ζq function is estimated for the future S&P500
index over the period 1988–1999. The original intraday
time-series has been sampled at a 10 mn rate (Fig. 1a) in
order to obtain equi-sampled data. We consider the asso-
ciated continuously compounded return time-series, (i.e.,
the logarithm of the index value) that has been detrended
and de-seasonalized3. The ζq spectrum in Figure 1c is ob-
tained using linear regression fit of “log-log” representa-
tions of the behavior of the qth order moment versus the
time scale as illustrated in Figure 1b. In this figure, the
scales span an interval from 10 minutes to approximately
1 year. Moment estimates at larger time scales are very
poor because of the finite size of the overall record. From
the linear behavior of such curves, one clearly sees that
the scale-invariance hypothesis is satisfied over around 3
decades. In Figure 1b we have plotted log2

M(q,l)
M(1,l)q versus

log2(l). The fact that such plots are not constant reflects
the nonlinearity the ζq spectrum. The future S&P500 can
thus be considered, at least at this description level, as a
multifractal signal. Let us notice that we have computed,
in Figure 1d, the ζq values for qth order moments that
include negative values of q. This can be achieved using
a wavelet based technique that has been introduced in
references [28–31]. This spectrum turns out to be well fit-
ted by a parabolic shape ζq = 0.53q − 0.015q2. The non
linear parabolic component of ζq has been plotted in the
inset of Figure 1d.

2.2 Multifractal processes, self-similar processes
and multiplicative cascades

Multifractality (in the sense defined above) is a notion
that is often related to an underlying multiplicative cas-
cading process. In the context of deterministic functions
the situation is rather clear since the analyticity of the
ζq spectrum is deeply connected to the self-similarity
properties of the function [29–32]. Roughly speaking, a
function is self-similar if it can be written as a multi-
plicative cascade in an appropriate space-scale (or time-
scale) representation [29,30,32]. In that context, the so-
called multifractal formalism is valid, i.e., one can relate
the ζq spectrum to the D(h) singularity spectrum that

3 The amplitude of the return variations in each intraday
period is normalized according to the estimated U-shaped
intraday r.m.s.
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Fig. 1. Multifractal analysis of the intraday future S&P500
index over the period 1988–1999. (a) Plot of the original in-
dex time-series. The analyzed time-series is the detrended
and de-seasonalized logarithm of this series. (b) Log-log plots
of M(q, l) versus l for q = 1, 2, 3, 4, 5. The time scales l
range from 10 minutes to 1 year. (c) log2(M(q, l)/M(1, l)q)
for q = 2, 3, 4, 5. Such plots should be horizontal for a process
that is not multifractal. (d) ζq spectrum for the S&P 500 fluc-
tuations. The plot in the inset is the parabolic nonlinear part
of ζq.

provides information about the statistical distribution of
singularity (Hölder) exponents h. The things are somehow
more complex for stochastic processes. One of the goals of
this paper is to provide some simple elements about this
subject.

In the mathematical literature, a process X(t) is called
self-similar of exponent H if ∀λ > 0, λ−HX(λt) is
the same process as X(t). According to this definition,
the Brownian motion is self-similar with an exponent

H = 1/2. This definition is however too restrictive for our
purpose since it excludes multifractal processes. Indeed,
let us consider Pl(δX) the probability density function
(pdf) of δlX(t)4. If X(t) is self-similar with an exponent
H, then it is easy to prove that

Pl(δX) = λHPλl(λHδX). (3)

Then, the moments at scale l and L = λl are related by

M(q, l) = Cq

(
l

L

)qH
, (4)

with Cq = M(q, L). Thus one has a “monofractal” process
with ζq = qH. In order to account for multifractality, one
has to generalize this classical definition of self-similarity.
This can be done by introducing a weaker notion, as orig-
inally proposed in the field of fully developed turbulence
by Castaing and co-authors [34]. According to Castaing’s
definition of self-similarity, a process is self-similar if the
increment pdf’s at scales l and L = λl (λ > 1) are related
by the relationship [34,35]:

Pl(δX) =
∫
Gl,L(u)e−uPL(e−uδX)du , (5)

where the self-similarity kernel Gl,L depends only
on l/L. Let us note that this definition generalizes
equation (3) that corresponds to the “trivial” case
Gl,L(u) = δ(u−H ln(l/L)). This equation basically states
that the pdf Pl can be obtained through a “geometrical
convolution” between the kernel Gl,L and the pdf PL. A
simple argument shows that the logarithm of the Fourier
transform of the kernel Gl,L can be written as Fl,L(k) =
ln Ĝl,L(k) = F (k) ln(l/L) 5. Thus, from equation (5), one
can easily show that the q order absolute moments at
scales l and L are related by:

M(q, l) = Ĝl,L(−iq)M(q, L) = M(q, L)
(
l

L

)F (−iq)

, (6)

and then Cq = M(q, L) and ζq = F (−iq). A nonlinear ζq
spectrum implies that F is nonlinear and thus that G is
different from a Dirac delta function6. For example, the
simplest non linear case is the so-called log-normal model
that corresponds to a parabolic ζq function and thus to a
function G that is Gaussian.

The equation (5) can be interpreted as follows: the
pdf at scale l, Pl is written as a weighted superposition

4 Note that from stationarity of the increments, the law of
δlX(t) is the same as the law of X(l) if one assumes that
X(0) = 0.

5 It essentially results from the fact that Gl,L depends only
on l/L and satisfies the semi-group composition law Gl1,l3 =
Gl1,l2 ∗ Gl2,l3 where l1 ≤ l2 ≤ l3 and ∗ is the convolution
product [34,35].

6 Note that from the above mentioned semi-group property,
the Levy theorem [33] implies that G is necessarily an infinitely
divisible law.
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of the rescaled versions of the pdf at scale L, PL, the self-
similarity kernel Gl,L being the associated distribution of
weights. In the case of a monofractal process as described
by equation (3), a single value of u is sufficient in the
equation (5) since Pl and PL have the same shape and
differ only by the scale factor e−u = (l/L)H = λH . This
explains the Dirac function for the kernel G. This situa-
tion can be easily generalized by considering other shapes
for the kernel Gl,L. In that case, the shapes of the pdf
Pl across scales are no longer the same: when going to
small scales, fat tails emerge and the pdf become strongly
leptokurtic (see Refs. [9,34] or Fig. 4).

Let us now make the link with multiplicative cascades.
This can be easily done if one consider discrete scales
ln = 2−nL. Let us suppose that the local variation of
the process δlnX at scale ln is obtained from the variation
at scale L as

δlnX(t) =

(
n∏
i=1

Wi

)
δLX(t) (7)

where Wi are i.i.d. random positive factors. This is the
cascade paradigm. Realizations of such processes can be
constructed using orthonormal wavelet bases as discussed
in reference [36]. If one defines the magnitude ω(t, l) at
time t and scale l as the logarithm of “local volatility” [10]:

ω(t, l) =
1
2

ln(|δlX(t)|2), (8)

then the previous cascade equation becomes a simple ran-
dom walk equation, at fixed time t, versus the logarithm
of scales:

ω(t, ln+1) = ω(t, ln) + ln(Wn+1).

If the noise lnWi is normal N(µ, λ2), the pdf of ω, Pl(ω),
thus satisfies a simple diffusion equation with a Gaussian
kernel:

Pln(ω) =
(
N(µ, λ2)∗n ∗ pL

)
(ω) (9)

where ∗ is the convolution product. Going back to the
original variable δX , the previous equation corresponds
exactly to Castaing’s formulation of self-similarity (5) with
the log-normal propagator:

Gln,L = N(µ, λ2)∗n = N(nµ, nλ2).

Conversely, let us consider a process that satisfies
Castaing’s equation with a normal kernel G. This means
that one can write,

δlX(t) ≡Wδ2lX(t) (10)

where ≡ means the equality in law of the two random
variables and W is a log-normal random variable which
mean µ and variance λ2 do not depend on l. By iterating
this equation n times, one thus recover, at least heuristi-
cally, the cascade equation (7). Thus, the cascade picture
across scales, constitutes a kind of paradigm of non-trivial
self-similar processes. As explained in reference [21], the
problem with such processes is that they involve repre-
sentations (e.g., orthonormal wavelet bases) that are con-
structed on a discrete set of scales (e.g., dyadic scales ln =
2−n) and in turn cannot be invariant under continuous
scale dilations.

3 Magnitude correlations and 1/f spectra

We have seen in the previous section that multifractality
can be interpreted as a diffusion of the magnitude of the
variations of the return from large time scales to small
time scales. In the financial framework, magnitudes at all
scales are nothing but a logarithmic representation of lo-
cal volatilities. In this section we would like to address
the problem of volatility correlations. The “heteroskedas-
tic” nature of financial time-series is now a well established
empirical fact. Volatility possesses long-range positive cor-
relations: periods of strong activity alternate with quiet
periods. A lot of models have been proposed to account
for this phenomenon from the famous GARCH models to
various stochastic volatility models. Let us proceed with
the multifractal and cascade picture and study what kind
of correlations are associated to these models. This prob-
lem has already been considered by Arneodo, Muzy and
Sornette in reference [10] (see also Refs. [36,37]). These
authors have shown that a log-normal cascade model on
the dyadic tree associated to the orthonormal wavelet rep-
resentation leads naturally to magnitude correlation func-
tions Cω(l, τ) = Cov(ω(t, τ), ω(t + l, τ)) that are zero for
l > T and that behave as −λ2 ln(l/T ) for T > l > τ .
This behavior has been shown to provide good fits of the
empirical estimates of the correlation functions from real
data [10]. In Figure 2 is reported the magnitude corre-
lation function Cω(l, τ) (we choose τ = 10 min) of the
S&P500 time series studied in Figure 1. One can see that,
when plotted versus the logarithm of the time lag, ln(l),
the correlation function is well fitted by previous expres-
sion. It decreases linearly with a slope λ2 ' 0.025 as far
as l is smaller than an integral time T which logarithm
can be estimated from the intercept of such straight line.
In our case, we have approximately T ' 3 years (note
that because we get an estimate of ln(T ) the error on the
value of T is very large). We have checked that those re-
sults are stable when changing the reference time τ for
return calculation. As it will be illustrated in Section 5,
for various financial time series, the “cascade ansatz” is
very pertinent to describe the volatility correlations. Let
us notice that the very slow (logarithmic) decrease of the
correlation functions for time lags below the integral time
T , is reminiscent of the ultrametric nature of the tree
naturally associated to the time-scale (or time-frequency)
representation [10,36,37]. Moreover, let us remark that,
as far as power spectrum is concerned, Gaussian pro-
cesses with such correlation functions can be seen as “1/f”
processes. Indeed, if the correlation function is given by
the above expression, the power spectrum can be shown
to reduce to

S(f) = 2λ2f−1

∫ Tf

0

x−1 sin(x)dx. (11)

In the high frequency limit f → +∞, we then have
S(f) ∼ λ2πf−1. Another intuitive way to understand this
property, comes from the fact that the logarithmic de-
cay of the correlation function can be understood as the
limit H → 0 in the power-law correlation function k−2H
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Fig. 2. Magnitude correlation function of the S&P 500 future.
(a) Cω(l, τ ) versus l for τ = 10 min. The solid line represents a
fit according to the cascade model logarithmic expression. (b)
Cω(l, τ ) versus ln(l). The cascade model predicts a linear be-
havior that crosses the y-axis at ln(l) = ln(T ). The small scale
cross-over is due to the smoothing window used to estimate
the local magnitude ω(t, τ ).

of a fractional Gaussian noise of exponent H. This prop-
erty will be explicitly used in the discussion of Section 6.3.
Let us finally remark that 1/f spectra have been observed
in a wide range of applications [38]. Recently, Bonanno
et al. [23] suggested the possible pertinence of such pro-
cesses to account for the fluctuations of the number of
trades of different stocks.

4 A simple solvable multifractal model

As emphasized previously, multiplicative cascade models
represent the paradigm of multifractal processes in that
they contain the main ingredient leading to multifractal-
ity, i.e, the scale evolution of the magnitudes, from coarse
to fine scales, is a random walk. Besides the problems of
continuous scale invariance and stationarity of standard
hierarchical constructions of such processes, they cannot
be formulated using a stochastic evolution equation as one
would expect for a model for financial time series. In this
section we propose a “stochastic volatility” model that
has been introduced in reference [21], that does not pos-
sess any of these drawbacks: it has stationary increments,
it has log-normal multifractal properties and is invariant
under continuous dilations. The key idea underlying this
model is that the stochastic volatility possesses, as for cas-
cading processes, a “1/f” spectrum, or, more precisely, a
correlation function with a logarithmic behavior.

4.1 The multifractal random walk

Let us briefly recall the construction of the multifractal
random walk (MRW) proposed in [21]. A discretized ver-
sion of the model X∆t (using a time discretization step
∆t) is built by adding up t/∆t random variables :

X∆t(t) =
t/∆t∑
k=1

δX∆t[k],

where the process {δX∆t[k]}k is a noise whose variance is
stochastic, i.e.,

δX∆t[k] = ε∆t[k]eω∆t[k] , (12)

where ω∆t[k] is the logarithm of the stochastic variance.
More specifically, we will choose ε∆t to be a Gaussian
white noise independent of ω and of variance σ2∆t. The
choice for the process ω∆t introduced in [21], is dictated
by the cascade picture. It corresponds to a Gaussian sta-
tionary process whose covariance can be written

Cov(ω∆t[k], ω∆t[l]) = λ2 ln ρ∆t[|k − l|]

where ρ∆t is chosen in order to mimic the correlation
structure observed in cascade models with an integral
time T :

ρ∆t[k] =

{
T

(|k|+1)∆t for |k| ≤ T/∆t− 1

1 otherwise
.

Hereafter, we will refer to the process ω(t) as the “magni-
tude process”. In order the variance of X∆t(t) to converge
when ∆t → 0, one must choose the mean of the process
ω∆t such that [21]

E (ω∆t[k]) = −Var (ω∆t[k]) = −λ2 ln(T/∆t),

for which we find Var(X∆t(t)) = σ2t. Let us review the
multifractal properties of MRW.

4.2 ζq spectrum: computation of the moments

The qth-order moment of the increments of the MRW can
be computed. Since, by construction, the increments of
the model are stationary, the law of X∆t(t + l) −X∆t(t)
does not depend on t and is the same law as X∆t(l).
In reference [21], it is proven that the moments of X(l) ≡
X∆t→0+(l) can be expressed as

E(X(l)2p) =
σ2p(2p)!

2pp!

∫ l

0

du1...

∫ l

0

dup
∏
i<j

ρ(ui − uj)4λ2
,

(13)

where ρ is defined by

ρ(t) =

{
T/|t| for |t| ≤ T
1 otherwise

.
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Using this expression in the above integral, a straightfor-
ward scaling argument leads to

M(2p, l) = K2p

(
l

T

)p−2p(p−1)λ2

, (14)

where we have denoted the prefactor

K2p = T pσ2p(2p− 1)!!
∫ 1

0

du1...

∫ 1

0

dup
∏
i<j

|ui − uj|−4λ2
.

(15)

Note that K2p is nothing but the moment of order 2p of
the random variableX(T ) or equivalently of δTX(t). From
the above expression, we thus obtain

ζ2p = p− 2p(p− 1)λ2

and by analytical continuation, the corresponding full ζq
spectrum is thus the parabola

ζq = (q − q(q − 2)λ2)/2. (16)

Let us remark that one can show that Kq = +∞ for q > 2
if ζq < 1 and thus the pdf of δlX(t) have fat tails [21]. In
order to control the order of the first divergent moment
(without changing λ), one could simply choose for the
ε∆t’s a law with fat tails. Indeed, the prefactor σ2p(2p−1)!!
in equation (15) comes directly from the fact that the ε∆t’s
have been chosen to be Gaussian. Using instead fat tail
laws (e.g., t-student laws) would allow us to control the
divergence of this prefactor.

In Figure 3 we have estimated the scaling behavior
of the absolute moments M(q, l) for a discrete simulation
of a MRW (Fig. 3a). In order to simulate the sampling of
a time continuous MRW, we have generated a discretized
MRW using ∆t� 1 and then subsampled it at the sample
period 1. Using this procedure, we have generated a 217

long time-series using the parameters ∆t = 1/16, T = 215,
σ2 = 1 and λ2 = 0.03. In Figure 2b, we have plotted, in
double logarithmic representation M(q, l) versus l for dif-
ferent values of q. In these representations, the linear be-
havior of each moment indicates that the scaling hypoth-
esis is verified. The estimation of ζq (made by estimating
the slope of each of such curve) is reported in Figure 2c.
As expected this spectrum is a parabola that is in very
good agreement with expression (16).

It is clear that the same power law scaling does not
stand when l goes to +∞. Since ρ(l) = 1 for large l (as
compared to T ), we get

E(X(l)2p) ∼l�T
σ2p(2p)!

2pp!

∫ l

0

du1...

∫ l

0

dup

∼ Clp.

Thus, there is a cross-over from the parabolic multifrac-
tal behavior at time scales l ≤ T which is described by
equation (16) to the Brownian-like behavior at larger time
scales (l � T )

ζq = q/2.

Fig. 3. Multifractal analysis of a MRW sample. (a) Plot
of a sample time serie of length 217. The sampling size and
the trend amplitude have been chosen arbitrarily to be com-
pared to Figure 1a. (b) Log-log plots of M(q, l) versus l for
q = 1, 2, 3, 4, 5. The time scales l range from few minutes to
one year. (c) ζq spectrum estimation (dots) and comparison to
prediction as given by equation (16) (solid line).

In equation (6), we have shown that there exists a deep
link between the self-similarity kernel and the ζq spectrum.
This suggests that the probability distribution functions
of our model satisfy Castaing’s equation when going from
large to small time scales with a Gaussian kernel Gl,T .
Thus, as far as the increment pdf at different time scales
are concerned, they will satisfy an evolution equation from
“quasi-Gaussian” at very large scale (l � T ) to fat tailed
pdf’s at small scales. This transformation of the pdf’s is
illustrated in Figure 4a where are plotted, in logarithmic
scale, the standardized pdf’s (the variance has been set
to one) for different time scales in the range [1, 4T ]. The
pdf’s have been estimated for 500 realizations of size 217

of MRW with parameters λ2 = 0.03 and T = 213. In solid
line, we have superimposed the Castaing’s transformation
obtained from the coarse scale pdf (at scale T ) using the
appropriate normal self-similarity kernel. If Figure 4b we
have reproduced similar analysis for the S&P500 future
variations. Besides statistical convergence limitations, one
can observe the same features as in Figure 4a.
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(a)

(b)

Fig. 4. Continuous deformation of increment pdf’s across
scales. (a) MRW Model. Standardized pdf’s (in logarithmic
scale) of δlX(t) for 5 different time scales (from top to bottom),
l = 16, 128, 2048, 8192, 32768. These pdf’s have been estimated
on 500 MRW realizations of 217 sampled points with λ2 = 0.03,
∆t = 1/16 and T = 8192. One can see the continuous defor-
mation and the appearance of fat tails when going from large
to fine scales. In solid line, we have superimposed the deforma-
tion of the large scale pdf using Castaing’s equation (5) with
the normal self-similarity kernel. This provides an excellent fit
of the data. (b) S&P 500 future. Standardized pdf’s at scales
(from top to bottom) l = 10, 40, 160 min, 1 day, 1 week and one
month. As in Figure a the scale is logarithmic and plots have
been arbitrarily shifted along vertical axis for illustration pur-
pose. Notwithstanding the small size of the statistical sample
(as compared to (a)), one clearly sees the same phenomenon as
for the MRW. The fact the Castaing’s equation (5) allows one
to describe the pdf’s deformation across time scales of finan-
cial assets has originally been reported in reference [9] where
similar plots for FX rates can be found.

4.3 Volatility and magnitude correlation functions

4.3.1 Volatility correlation functions

As recalled in the introduction, increments of financial
time series are well known to be uncorrelated (for time
lags large enough) while their amplitude (“local volatili-
ties”) possesses power-law correlations. Let us show that
our model satisfies these two properties at all time scales

smaller than the “integral time” T . By construction,
the increment correlation function,

〈(X∆t(t+ τ)−X∆t(t))(X∆t(t1 + τ1)−X∆t(t1))〉

(∀ |t1− t| > τ), is zero in our model. Let us study the cor-
relation function of the squared increments. Since the in-
crements are stationary, we can choose arbitrarily t1 = 0.
Thus we need to compute, in the limit ∆t → 0, the fol-
lowing correlation function, that corresponds to a lag l
between increments of size τ

C(l, τ) = 〈(X∆t(l + τ)−X∆t(l))2X∆t(τ)2〉. (17)

From the results of reference [21] and in the case
0 ≤ l < T , 0 ≤ τ + l < T , we get,

C(l, τ) = σ4

∫ l+τ

l

du
∫ τ

0

dvρ(u− v)4λ2
.

A direct computation shows that∫ l+τ

l

du
∫ τ

0

dv|u− v]−4λ2
=

1
(1− 4λ2)(2− 4λ2)

((l+ τ)2−4λ2
+ (l− τ)2−4λ2 − 2l2−4λ2

),

and consequently

C(l, τ) = K(|l + τ |2−4λ2
+ |l − τ |2−4λ2 − 2|l|2−4λ2

) (18)

where

K =
σ4T 4λ2

(1− 4λ2)(2− 4λ2)
·

Let us note that in the usual case 0 ≤ τ � l, one gets

C(l, τ) ' σ4τ2

(
l

T

)−4λ2

(19)

i.e., for fixed τ , the volatility correlation function scales as

C(l) ∼ l−2ν (20)

with ν = 2λ2. From the estimates λ2 ' 0.025 −
0.05 for financial assets (see Sect. 5), one thus obtains
ν ' 0.05− 0.1, values very close to the ones observed em-
pirically in many works.

4.3.2 Power of returns and magnitude correlation functions

Let us now show that magnitude correlation functions be-
have as expected, i.e, decrease very slowly as a logarithmic
behavior.

For that purpose, the previous computation of the cor-
relation function can be extended to the power of returns
|X∆t(l+ τ)−X∆t(τ)|p. Several empirical works have con-
cerned the study of such “generalized volatilities” and peo-
ple often noticed variations of amplitude of the correlation
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Fig. 5. Magnitude correlation function of the model. The cor-
relation function has been estimated on 16 integral scales (see
text). In continuous line we have superimposed the correlation
function of the magnitude process ω∆t that is involved in the
stochastic volatility.

and of the power-law exponent νp when varying the order
p [40]. In reference [21], it is shown that the quantity,

Cp(l, τ) = 〈|X∆t(l + τ) −X∆t(l)|p|X∆t(τ)|p〉, (21)

behaves, when τ is small enough, as

Cp(l, τ) ∼ K2
p

( τ
T

)2ζp
(
l

T

)−λ2p2

(22)

where the constant Kp has been defined previously. Using
analytical continuation of the behavior of Cp in the limit
p = ε → 0, we can obtain, from previous expression, the
behavior of the magnitude correlation function Cω(l, τ):

Cω(l, τ) ' ε−2
(
Cε(l, τ)−M(ε, τ)2

)
∼ −λ2 ln(

l

T
). (23)

The magnitude correlation function, for τ small enough,
has thus the same behavior as the correlation function
of the underlying magnitude process ω∆t. This result is
checked in Figure 4 where we have plotted the magnitude
correlation function for τ = 32∆t as a function of ln(l).
This correlation function has been estimated using a single
realization of the process of 217 sampled points, i.e, 16
integral scales. The linear behavior we obtain is exactly
the same one as predicted from equation (23) and Figure 2.
Measures of the slope and the intercept of such straight
line provide a good estimate of respectively λ2 and T .

4.4 Extension to a multivariate process

In order to account for the fluctuations of financial port-
folios and to consider management applications of our ap-
proach, it is important to build a multivariate, i.e. a vector
valued, version of the previous multifractal random walk.
Since only Gaussian random variables are involved in the
construction of Section 4, this generalization can be done

by considering two uncorrelated Gaussian random vectors
ε∆t(t) and ω∆t(t) whose covariance matrices are denoted
respectively Σ and Λ. Hereafter, we will call these matri-
ces respectively the “Markowitz matrix” Σ (in reference
to Markowitz’s classical portfolio analysis [19]) and the
“multifractal matrix” Λ. One can then define the multi-
variate multifractal random walk (MMRW) X(t) as:

Xi(t+∆t)−Xi(t) = εi(t)eωi(t), (24)

with Cov(εi(t), εj(t+ τ)) = δ(τ)Σij and Cov(ωi(t), ωj(t+
τ)) = Λij ln(Tij/|∆t + |τ |) (note that the previously de-
fined coefficients σ2 and λ2 for an asset i correspond re-
spectively to the diagonal elements Σii and Λii). Let
us briefly review some of the properties of this model,
postponing its detailed analysis to a forthcoming publi-
cation [20]. A quantity that will be of central interest is
the k-point joint moment of order q1, q2, ..., qk that can be
defined as:

Mi1,...,ik(q1, ..., qk) = E (|Xi1(l)|q1 ...|Xik(l)|qk) . (25)

When k = 2, by denoting i1 = i, i2 = j, q1 = p and q2 = q,
let us define the joint scaling exponent spectrum as:

Mi,j(p, q) = Ci,j(p, q)lζi,j(p,q). (26)

This spectrum can be computed analytically. If the matrix
Σ is diagonal (the εi’s are uncorrelated), a straightforward
calculation shows that the scaling exponent ζi,j(p, q) is the
following:

ζij(p, q) = ζi(p) + ζj(q) −Λijpq, (27)

where ζi(q) is the ζq spectrum for the component Xi(t).
Thus, for uncorrelated ωi’s, one has ζij(p, q) = ζi(p)+ζj(q)
while for the extreme case ωi = ωj , the exponent becomes
ζij(p, q) = ζi(p + q) = ζj(p + q). The computation of the
scaling exponent is trickier for general Markowitz and mul-
tifractal matrices. Under some mild conditions that are
necessary for the existence of a non trivial limit ∆t→ 0+,
one can show that the previous scaling law remains valid
even for non diagonal matrix Σ [20].

In order to define a simple way to get an estimate of
the multifractal covariance coefficient Λij , let us define
the moment ratio:

Rij(q, l) =
E(|Xi(l)|q|Xj(l)|q)

E(|Xi(l)|q)E(|Xj(l)|q)
∼ lκij(q). (28)

From equation (27), the value of κij(q) is simply

κij(q) = −Λijq2. (29)

Thus, the non-diagonal element in the multifractal matrix
Λ corresponds to the nonlinear behavior of the exponent
spectrum κ(q) of the moment ratio R. Along the same line
as for the computation of the magnitude auto-correlation
in previous section, one can get the correlation function
of magnitudes ωi(t, l) and ωj(t, l) from the limit q → 0 of
Rij(q, l):

Cov(ωi(t, l), ωj(t, l)) ∼ −Λij ln(l) + C, (30)
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where C is a constant related to Tij [20]. Thus the scale
behavior of the magnitude covariance provides an estimate
of the multifractal correlation coefficient Λij . This is the
generalization of the classical result in multifractal anal-
ysis that relates the intermittency coefficient λ2 = Λii to
the scale behavior of the variance of the magnitude.

Let us remark that the covariance of the variations of
the assets i and j can be obtained by a direct calculation:

Cov(Xi(l), Xj(l)) = Σije
1
2 (Λii+Λjj−2Λij)l. (31)

This covariance between Xi(t) andXj(t) thus depends not
only on Σ, the “Markowitz” covariance matrix, but also
on the multifractal matrix Λ. This expression, allows us
to get an estimate of the value of Σij once the values of
Λ are known.

Finally, let us mention that the idea of “multi-
variate multifractality” has been recently introduced in
reference [22] where the authors propose a phenomeno-
logical generalization of Castaing’s equation to the
multivariate setting. Evidences that financial assets are
characterized by non trivial multifractal matrices are also
provided. We are currently working to obtain further em-
pirical evidences towards such conclusions. Moreover, a
precise link between the present model and the extended
Castaing’s approach of reference [22] is under progress.

5 Parameter estimation for real financial data

We have seen that the MRW is characterized mainly by
3 parameters: σ2, the white noise variance, T the inte-
gral scale and λ2 the magnitude variance. We have shown
that this model is able to reproduce all the main features
of the future S&P 500 time series. Natural estimators of
those parameters can be defined from the results of previ-
ous section. The parameter λ2 can be obtained from the
shape of the ζq spectrum that is itself estimated using the
scaling behavior of the absolute moments M(q, l). This
parameter can also be estimated thanks to the magnitude
correlation function Cω(l, τ) that behaves as −λ2 ln(l/T ).
From the intercept of such correlation function as a func-
tion of ln(l), we can define an estimator of the integral
scale T . Finally, the parameter σ2 can be obtained using
the classical relationship Var(δlX∆t(t)) = σ2l. In this sec-
tion, we report estimates of the multifractal parameters
λ2 and T for some financial time series. We do not have
the ambition to provide fine estimates of those parame-
ters. Our aim is rather to get an idea of realistic values
of the parameters of the model for real assets. A precise
discussion of the properties of various estimators from a
statistical point of view is out of the scope of this paper
and will be addressed in a forthcoming publication. Note
that a similar empirical study has already been performed
in reference [22]. We have studied some high frequency fu-
ture time series that are sampled at a 10 min rate over the
7 years period from 1991 to 1997. We have also processed
a set of daily index values for 8 different countries over
the period from 1973 to 1997. The results are reported in
Table 1.

Table 1. Multifractal parameter estimates for various assets.

Series Size λ2 T

Future S&P500 7× 104 0.025 3 years

Future JY/USD 7× 104 0.02 6 months

Future Nikkei 7× 104 0.02 6 months

Future FTSE100 7× 104 0.02 1 year

S&P500 index 6× 103 0.024 3 years

French index 6× 103 0.029 2 years

Italian index 6× 103 0.029 2 years

Canadian index 6× 103 0.024 3 years

German index 6× 103 0.027 3 years

UK index 6× 103 0.026 6 years

hong-kong index 6× 103 0.05 3 years

We remark that the values of the multifractal param-
eter λ2 are all very close to 2.5 × 10−2 (excepted for the
hong-kong index). The integral time T values are centered
around 3 years but with a large spread. Let us notice that
we get an estimate of ln(T ) and thus the error on the
estimate of T can be very large. We do not report here
the values of the errors and confidence intervals for the
proposed estimators that will be studied elsewhere.

6 Discussion about other approaches
and findings

In this section, we make some comments about related
studies that concern multifractals and finance.

6.1 Turbulence and finance

The analogy between turbulence and finance has been
originally proposed by Ghashghaie et al. [9]. These au-
thors proposed to describe the pdf’s of FX price changes
at different time scales in the same way physicists describe
the pdf’s of velocity variations at different space separa-
tions in fully developed turbulence. This approach natu-
rally leads to the notions of cascading process, Castaing’s
formula and multifractality as described in Section 2. This
work suggests that the key mechanism at the origin of
these observations, is an information cascade according
to which short-term traders are influenced by long-term
traders. This cascade is the analog of the Richardson’s
kinetic energy cascade in turbulence where small eddies
result from the breakdown of larger ones and so on [24]. If
the observations reported in reference [10] strongly sup-
port this point of view, its quantitative understanding
in terms of “microscopic” mechanisms remains an open
question. In this section we would like to comment about
some criticisms that have been raised about the analogy
between turbulence and finance. The first one concerns
the power spectrum behavior in both situations [2,11,12].
In turbulence, Kolmogorov theory predicts a k−5/3 power
spectrum that is confirmed in experimental situations. In
finance, since price fluctuations are almost uncorrelated,
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they are characterized by a k−2 spectrum. For a general
multifractal process, the exponent β of the power spec-
trum behavior can be shown to be related [30,31] to the
value of ζ2: β = 1 + ζ2. Thus, from the cascading process
point of view, nothing prevents the exponent β from be-
ing equal to the exponent of the Brownian motion, i.e.,
β = 2. In other words, as exemplified by the MRW, a
cascading process can have uncorrelated increments. We
could also remark, that in turbulence β = 5/3 has a di-
mensional origin, i.e., it is the exponent of the spatial
spectrum of velocity fluctuations within an Eulerian de-
scription. If one adopts a Lagrangian description and one
is interested by temporal fluctuations of a fluid particle
velocity, then the dimensional value of the power spec-
trum exponent is β = 2. Thus the value of this exponent
is not a pertinent argument to reject the analogy with
turbulence. Another difference that has been raised in [2]
concerns the behavior of the probability of return to ori-
gin Pl(0) that has been shown to possess a scaling regime
in finance while its behavior is more complex for a tur-
bulent velocity field. First of all, let us point out that
whatever the quantity studied (probability of return or
absolute moments), it is well known that there is no ob-
served well-defined scaling regime in turbulence: the clas-
sical “log-log” plots always display some curvature across
scales. This curvature is Reynolds number dependent and
several studies suggest that it vanishes, i.e. the field
is scale-invariant, only in the limit of infinite Reynolds
number [24,34,42]. However, within the cascade paradigm
and using Castaing’s equation, the scaling behavior of the
probability of return to origin is easy to show. Indeed, by
setting δX = 0 in (5), one obtains, from the definition of
ζq and the self-similarity kernel:

Pl(0) = PT (0)
∫
Gl,T (u)e−udu = PT (0)

(
l

T

)ζ−1

. (32)

The exponent for the probability of return to origin is thus
simply ζ−1. For the log-normal stochastic volatility model
introduced in Section 4, we thus get

Pl(0) ∼ l− 1+3λ2
2 . (33)

To conclude, neither the power spectrum exponent, nor
the scaling behavior of the probability of return to origin
can be used as argument against the existence of a cas-
cading process at the origin of the fluctuations of financial
time series.

6.2 Subordinated processes. Multifractal time

Subordinated processes are Markov processes in a time
variable µ(t) that is itself an (increasing) random
process [33]. Such processes have been introduced in fi-
nance by Mandelbrot and Taylor [39] to account for the
existence of Levy stable laws as the result of a Brownian
motion in some stochastic time. Today, the idea of mod-
elling financial return fluctuations as a Brownian motion
in a “fractal time, “trading time” or “financial time” can

be found in many approaches. In references [13,15], the
multifractal nature of these fluctuations has been mod-
elled by a (fractional) Brownian motion subordinated with
a multifractal stochastic measure. In this section, without
any concern for rigor, we would like to make a link be-
tween our stochastic volatility approach and the multifrac-
tal time approach of Mandelbrot and co-authors. Let us
first remark that if we drop the noise ε in equation (12) and
keep only the stochastic volatility σ(t), we can construct a
stochastic measure µ(dt) that satisfies µ(dt) = eω(t)dt. Us-
ing exactly the same kind of computation as in Section 4,
one can show that this measure is stationary and its mul-
tifractal spectrum τ(q) is

τ(q) = ζ2q − 1, (34)

as usually defined by

〈µ([0, t])q〉 ∼ tτ(q)+1. (35)

Let us note that the existence and the construction of
such a measure that is stationary and possesses a contin-
uous scale invariance, was at the heart of the construc-
tion in references [13,15] and was still an open problem.
According to these studies, one can thus construct a mul-
tifractal process by simply considering the subordinated
process S(t) = B(µ([0, t])) where B(t) is the standard
Brownian motion. The ζq spectrum of such process would
be exactly the same as the stochastic volatility process
defined in Section 4. This is not so surprising since, for-
mally, a differential form for the process S(t) would be
dS = dµ

dt dB(µ(t)). If one assumes that a white noise that
is subordinated remains a white noise, one thus obtains
dS = e

1
2ω(t)dB(t) that is the equation that defines the

MRW of Section 4. The questions of well-definiteness of
this construction, its statistical properties and the pre-
cise mathematical justification of such results, will be ad-
dressed in a forthcoming work.

6.3 Some remarks about Bouchaud, Potters
and Meyer’s model

Besides multifractal and cascade pictures, our present ap-
proach has been inspired by a recent paper by Bouchaud,
Potters and Meyer [41]. These authors have proposed a
model that is very similar to ours: the stochastic volatil-
ity σ(t) instead of being log-normal (eω(t)) is a normal
(ω(t)) random process with long-range (power-law) cor-
relations. By a simple analytical computation, they have
shown that the q-order cumulants of such a process sat-
isfy a simple scaling behavior but the moments display
apparent multiscaling caused by a “competition” between
the different cumulant behavior on a finite scale range.
They thus conclude that a distinction between multifrac-
tality and such “apparent multifractality” is a difficult
task for finite size time series. As far as multifractal anal-
ysis and modelling of financial time series are concerned,
this work is very interesting and the previous assertion
is undoubtedly difficult to infirm. However, let us remark
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that in order to illustrate their purpose, Bouchaud et al.
choose a “stochastic volatility” σ(t) = eω(t) instead of
their “monofractal” model σ(t) = |ω(t)|. The reason in-
voked by the authors is that the log-normal is “a more
realistic time series as compared with real data...without
changing the feature of the above model, i.e. the very slow
decay of the volatility correlations”. They thus claim that
the scaling features of both models are the same and thus
that the multifractality observed for the simulations of
the “log-normal” volatility model is only apparent as pre-
dicted by their theory for the “normal” volatility model.
The results reported in Section 4 can be used to propose
another interpretation. Let us indeed reconsider both re-
sults of reference [41] and Section 4. According to the
“normal” volatility model, the moment of order q = 2p
is written in terms of cumulants and behaves as [41]:

M(2p, l = N∆t) = A2p,0N
(1−ν)p + ... + A2,..,2N

p,
(36)

where the constants Aq1,..,qk depend only qi, λ2 the vari-
ance of ω and ν the exponent for the correlation func-
tion of ω: Cω(l) ∼ l−ν. According to this equation, if
N is small enough, M(2p, l) ∼ l(1−ν)p while, for N very
large, M(2p, l) ∼ lp. The transition scale N∗(q = 2p)
above which the scaling exponent is ζq = q/2 can be es-
timated if we define it as the scale where the contribu-
tion to the moment of order q of the cumulant of order 4
and 2 are equal. Using the expression in reference [41]
for second and fourth cumulants, C2 and C4, we can
show that at scale N∗(q = 2p), we have (2p − 1)!!Cp2 '
p(p− 1)(2p− 1)!!Cp−2

2 C4/6. From the value of C4, we ob-
tain (q > 1):

N∗(q = 2p) =

(
p(p− 1)ν222(ν−1)

+∞∑
m=1

m2(ν−1)

) 1
2ν

.

(37)

This function only depends on q and ν and is increasing
as q → +∞. Thus, the larger the q value, the wider the
range of scales on which apparent multifractality exists.
However, a numerical computation of the values of N∗ for
ν = 0.2 shows that the value N∗ ' 100 is reached only for
the moment of order p = 15. The greatest moment value
attained in practical situations is q ' 6, for which N∗ < 1 !
That means that for all moments less that 10, the model of
Bouchaud Potters and Meyer predicts the trivial spectrum
ζq = q/2 without any cross-over phenomenon. For their
numerical simulations, they have used a log-normal model.
However, within the log-normal ansatz, the conclusions
of reference [41] are questionable since, when ν is small
enough, this model is very close to the model introduced
in Section 4. Let us indeed consider as in [41] that Cω(l) ∼
λ2
(
Γ (ν) cos(πν2 )

) 1
2 l−ν with ν very small7. By expanding

7 Notice that there is no reason to consider the same value
of ν for the normal and log-normal models. The results of this
paper suggest that, in finance, the value for the correlation
exponent in the log-normal model is very close to zero and
significantly smaller than 0.2.

this expression, we obtain

Cω(l) =
λ2

ν
− λ2 ln(l) +O(ν ln(l)). (38)

If we set T = eν
−1

, then for 1 ≤ l � T , this equation
becomes

Cω(l) = λ2 ln(T/l) (39)

that is the same correlation function as introduced for
the multifractal model in Section 4. Let us notice that for
ν = 0.1 we have T ≈ 2×104, T ≈ 3×105 for ν = 0.08 and
T ≈ 5 × 108 for ν = 0.05 ! In this model T is increasing
very fast as ν goes to zero. We can thus conclude, that the
model numerically studied in reference [41] can be seen as
multifractal from one point of view: whatever that scaling
range [1, T ], there exists ν small enough (ν ≈ 1/ ln(T ))
such that the model displays multiscaling with log-normal
ζq spectrum in this scale range. According to these re-
marks, we thus think that the multifractal picture is more
realistic to describe multiscaling in financial time series.

7 Summary and prospects

In this paper we have reviewed what are the main features
of multifractal processes. We have shown that the Multi-
fractal Random Walk is a very attractive alternative to
classical cascade processes in the sense that it is station-
ary, continuously scale-invariant and formulated using a
simple stochastic evolution equation. As a model for finan-
cial engineering, MRW are interesting for many reasons.
First, as illustrated in details for the S&P 500 intraday
time series, this model is able to reproduce the main em-
pirical properties observed for financial time series. More-
over, as Brownian motion and other stable walks, it is a
“scale-free” model in the sense that it does not have to fit
a particular time-scale since it is scale-invariant. This kind
of stability with respect to time “aggregation” is a seri-
ous advantage as compared to classical ARCH-like models
which parameters strongly depend on the time-scale one is
interested in. Moreover, as discussed in Section 4.4, a sim-
ple multivariate formulation of MRW can be proposed. To
our knowledge, it is the first example of an extension of the
notions of multifractality to a vector field. The empirical
results reported in reference [22] suggest that MMRW can
be pertinent for portfolio theory. We are currently working
on applications of MRW to classical problems of finance
like management problems and option pricing theory.

From a theoretical point of view, MRW can be seen as
the simplest model that contains the main ingredients for
multifractality. In that respect, it can be very helpful to
elucidate, in many fields where multiscaling is observed,
what are the generic mechanisms that are involved lead-
ing to “non-trivial” self-similarity properties. Various “mi-
croscopic” models, as proposed in finance or other fields,
could be considered within this perspective. It could also
be interesting to recast our approach within a field the-
oretical formulation involving some renormalization pro-
cedure. From a mathematical point of view, this problem
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is deeply linked to the existence of a limit stochastic pro-
cess when the sampling time ∆t goes to zero. The con-
vergence of the moments is not sufficient to prove this
non trivial assertion. Such a limit could be very useful
to develop a new stochastic calculus within which, for
example, one could formulate the model of multifractal
time of Mandelbrot and co-authors very naturally (see
Sect. 6.2). Finally, in a forthcoming work, we will discuss
the generalization of such approach to other laws than the
(log-)normal.

We acknowledge Matt Lee and Didier Sornette for the permis-
sion to use their financial data. We are also very grateful to
Alain Arneodo, Jean-Philippe Bouchaud and Didier Sornette
for interesting discussions and remarks. All the computations
in this paper have been made using the free GNU licensed
software LastWave [43].
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