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1 Introduction

Accurately measuring and forecasting financial volatility is of crucial importance for

asset and derivative pricing, asset allocation and risk management. Merton (1980)

already noted that the variance over a fixed period can be estimated arbitrarily

accurately by the sum of squared intra-period realizations, provided the data are

available at a sufficiently high sampling frequency. With transaction prices becom-

ing more widely available, Andersen and Bollerslev (1998) kick-started a flurry of

research on the use of high-frequency data for measuring and forecasting volatility.

Andersen and Bollerslev (1998) showed that ex-post daily exchange rate volatility

is best measured by aggregating 288 squared five-minute returns. The five-minute

frequency is a trade-off between accuracy, which is theoretically optimized using

the highest possible frequency, and noise due to, for example, the bid-ask bounce.1

Ignoring the small remaining measurement error the volatility essentially becomes

“observable” ex-post.2 As such, volatility can be modeled directly, rather than be-

ing treated as a latent variable as is the case in GARCH and stochastic volatility

models. The main drawback of such models is the need to make specific assumptions

regarding the distribution of shocks and the properties of the latent volatility factor.

The sum of intraday squared returns is also a much more accurate measure of daily

realized volatility than the popular daily squared return.3

Several recent studies document the properties of realized volatilities constructed

from high-frequency data for different financial assets, including exchange rates (An-

dersen, Bollerslev, Diebold and Labys, 2001), stock indexes and corresponding fu-

tures (Ebens, 1999; Areal and Taylor, 2002; Martens, 2002; Thomakos and Wang,

2003) and individual stocks (Andersen, Bollerslev, Diebold and Ebens ,2001). One

of the most important stylized facts to come out of these studies is that realized

volatilities are fractionally integrated of order d, where d typically is around 0.4.

This property is used for modeling and forecasting volatilities at daily or longer

horizons for both exchange rates (Andersen, Bollerslev, Diebold and Labys, 2003;

Li, 2002; Pong, Shackleton, Taylor and Xu, 2004) and stock indexes (Ebens, 1999;

Hol, Jungbacker and Koopman, 2004; Martens and Zein, 2004). These studies use

1See Zhang, Mykland and Aït-Sahalia (2003), Aït-Sahalia, Mykland and Zhang (2004) and
Bandi and Russell (2003, 2004) for recent discussions involved in the choice of optimal sampling
frequency.

2See Andersen, Bollerslev and Diebold (2002) and Barndorff-Nielsen and Shephard (2002a,b,
2003, 2004a,b) for formal discussions of the theoretical properties of realized volatility and the
related concept of power variation.

3More accurate in the sense that it has smaller variance. Also, of relevance to this study,
estimates of the degree of fractional integration are unbiased for daily volatility based on intraday
returns, whereas they are severely downward biased when estimated from daily squared returns,
see Bollerslev and Wright (2000).
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Autoregressive Fractionally Integrated Moving Average (ARFIMA) models to cap-

ture both the long memory characteristic and any remaining short-term dynamics.

The resulting forecasts generally outperform those obtained from ARCH models (in-

cluding GARCH, EGARCH and FIGARCH), Riskmetrics’ historical volatility with

exponentially declining weights, and stochastic volatility models, and they can com-

pete with implied volatility forecasts obtained from options. The latter is noteworthy

as the current literature (e.g. Jorion (1995) and Christensen and Prabhala (1998))

suggests that implied volatility forecasts are superior to forecasts obtained from

ARCH models, to the extent that ARCH forecasts do not contain any information

not already subsumed by implied volatility forecasts.

Except for Ebens (1999) all the aforementioned studies use linear models, which

ignore several empirically important aspects of financial volatility. First, linear mod-

els do not allow for the so-called leverage effect documented by, among others, Black

(1976), Pagan and Schwert (1990) and Engle and Ng (1993). These studies show an

asymmetric relation between news (as measured by lagged unexpected returns) and

volatility, in that a negative return tends to increase subsequent volatility by more

than would a positive return of the same magnitude. Second, Longin (1997) reports

that shocks may be less persistent in periods of high volatility than in case volatility

is low. Third, occasional structural breaks can spuriously suggest the presence of

long memory, as shown by Diebold and Inoue (2001), among others. As financial

volatility has been found to experience irregular level shifts (see Lamoureux and

Lastrapes, 1990, and Andreou and Ghysels, 2002), it seems important to consider

this characteristic when modeling realized volatility. Fourth, Baillie and Bollerslev

(1989) and Harvey and Huang (1991), among others, find that average volatility is

not constant across the different days of the week but rather displays a pronounced

U-shaped pattern with volatility being lowest on Wednesdays.

In this paper, we propose a nonlinear model for realized volatilities that simulta-

neously captures long memory, leverage effects, volatility persistence that depends

on the size of the shock, structural breaks and day-of-the-week effects. To the best

of our knowledge, we are the first to develop such a comprehensive nonlinear model.

The small number of previous studies that have considered nonlinearities in real-

ized volatilities all are limited in one way or another. Ebens (1999), Oomen (2002)

and Giot and Laurent (2004) incorporate leverage effects in a long memory model

for various stock indexes. Only Giot and Laurent (2004) consider out-of-sample

forecasting, but only at the one-day horizon. Maheu and McCurdy (2002) use a

regime-switching model for the DM/$ exchange rate, but do not consider any other

nonlinearities or long memory and only forecast one-day-ahead.

Our model is estimated and used to produce volatility forecasts at various hori-
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zons for S&P 500 index-futures and three exchange rates, the DM/$, U/$ and

U/DM. The S&P results first of all show that level shifts in S&P 500 volatility

do not account for the long memory feature. The fractional integration parameter

does decline when explicitly modeling the structural break, but remains significantly

different from zero. Second, the day-of-the-week dummies show that volatility is on

average lower on Mondays and Tuesdays and higher on Fridays. This is an inter-

esting contrast with the U-shaped pattern found in daily squared returns, which

also attribute a higher volatility to Mondays and Tuesdays. Third, we find convinc-

ing evidence for the presence of a leverage effect in S&P volatility, in that negative

lagged returns significantly increase volatility whereas positive returns do not affect

volatility at all. Incorporating these nonlinear features is important for out-of-sample

forecasting as well. We find that 1-day-ahead volatility forecasts from the best non-

linear model improve upon those from a linear ARFIMA model on all evaluation

criteria considered. For example, the R2 from a regression of realized volatility on

the volatility forecast increases from 42.1% to 46.1%. For the exchange rates the

leverage effect is less important, as expected, but incorporating nonlinearities still

improves the in-sample fit and out-of-sample forecast performance. For the U/$, for

example, the R2 from a regression of realized volatility on the 1-day-ahead volatility

forecast increases substantially from 36.6% to 55.4%.

In the sequel, we first focus fully on the S&P 500, partly for expositional con-

venience, and partly because the exchange rate data are the same as in Andersen,

Bollerslev, Diebold and Labys (2001) and analysed thoroughly there.4 First, we dis-

cuss the S&P 500 data in Section 2. The nonlinear long-memory model is developed

in Section 3. We discuss estimation and forecasting results for the S&P 500 in Sec-

tions 4 and 5, respectively. Section 6 then summarizes the most important findings

for the exchange rates. Finally, Section 7 concludes.

2 Data

We construct our measure of daily realized volatility for the S&P 500 index using

high-frequency futures data. S&P 500 index futures trade on the Chicago Mercantile

Exchange (CME) on the trading floor from 8:30AM to 3:15PM (Eastern Standard

Time minus 1 hour, EST-1). Since January 3, 1994, these contracts also trade

overnight on GLOBEX, the electronic trading system of the CME, from 3:30PM to

8:00AM (8:15AM from February 26, 1996, onwards). As a result, S&P 500 futures

trade almost round the clock, providing a similar opportunity to construct realized

4We would like to thank Torben Andersen for providing the daily exchange rate returns and
corresponding realized volatility series.
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volatilities as for the 24-hour FX market. Martens (2002) tested various measures

of S&P 500 realized volatility, finding that the sum of squared 30-minute intranight

and 5-minute intraday returns is a more accurate measure of volatility than using

only the intraday returns, or the sum of squared intraday returns and the squared

close-to-open return, showing that it is useful to incorporate overnight trading prices.

Hence, we will use the following measure of daily “realized volatility”,

s2
t =

nN∑

j=1

(
rN
t,j

)2
+

nD∑

j=1

(
rD
t,j

)2
, (1)

where rN
t,j is the intranight (30-minute) return on day t in intranight period j (j =

1, . . . , nN = 33), and rD
t,j is the intraday (five-minute) return on day t for intraday

period j (j = 1, . . . , nD = 91).

Figure 1 shows time series plots for the daily S&P 500 realized volatility, realized

standard deviation, and the log realized volatility for the sample period from Jan-

uary 3, 1994, until December 29, 2000 (1767 daily observations). Table 1 contains

descriptive statistics of these realized volatility measures, as well as for daily returns

rt =
∑nN

j=1 rN
t,j +

∑nD

j=1 rD
t,j, for squared and absolute daily returns, and for daily re-

turns standardized with the realized standard deviation rt/st. A number of interest-

ing features emerge from this table, which closely correspond with the distributional

characteristics for realized exchange rate volatility documented in Andersen, Boller-

slev, Diebold and Labys (2001). First, comparing the daily squared returns with the

realized variance shows that both have almost the same mean (1.217% and 1.194%,

respectively). We would expect this to be the case, as both are unbiased measures

of the true volatility. However, the standard deviation of the realized variance is

at 1.770 much smaller than the standard deviation of the squared returns, which

equals 3.242. It is precisely this characteristic that shows that realized variance is

a much less noisy estimate of true volatility than the daily squared return. Second,

the realized variance and realized standard deviation are heavily skewed and exhibit

excess kurtosis. By contrast, the logarithm of realized volatility, log(s2
t ), is much

more symmetrically distributed and has much lower kurtosis. This is corroborated

by the kernel density estimates shown in Figure 2, from which it is seen that log

realized volatility is approximately normally distributed. It is for this reason that we

will consider time series models for the log realized volatility. Third, the daily S&P

500 returns are skewed and leptokurtic; see also panel (a) of Figure 3, which shows

that the returns distribution is peaked and fat-tailed. By contrast, the standardized

returns rt/st exhibit much less skewness and excess kurtosis and in fact are very

close to being normally distributed, see panel (b) of Figure 3.

- insert Table 1 and Figures 1-3 about here -
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Fourth, Figure 4 shows sample autocorrelation functions for daily squared returns

and absolute returns, and for daily realized variance, realized standard deviation and

log realized variance. The autocorrelations for the realized volatility measures ex-

hibit a slow hyperbolic decay, indicative for the presence of long memory. Note that

the persistence in the autocorrelation functions for the realized volatility measures

is much stronger than for the daily squared and absolute returns.

- insert Figure 4 about here -

Fifth, returning to Figure 1, realized volatility appears to be higher on average

at the end of the sample period than during the first few years. It is difficult to pin

down when exactly this level shift occurred, and it appears that it is most adequately

characterized as a gradual increase of volatility during 1996-1997. An alternative

possibility is that multiple structural breaks have occurred, as suggested by Andreou

and Ghysels (2002).

The scatter plot of log(s2
t ) against rt−1 in Figure 5 reveals a rather pronounced

relationship between current volatility and lagged returns. To examine the possible

presence of a leverage effect, we estimate the “news impact curve” (Engle and Ng,

1993)

log(s2
t ) = β0 + β1|rt−1| + β2I[rt−1 < 0] + β3|rt−1|I[rt−1 < 0], (2)

where I[A] is an indicator function for the event A, being equal to 1 if A occurs,

and 0 otherwise. The fit from this regression is included in Figure 5 as well, along

with the fit from a symmetric version of this news impact curve, obtained by setting

β2 = β3 = 0 in (2). It is clearly seen that the impact of negative lagged returns is

larger than the effect of positive returns of equal magnitude. Also, the parametric

form in (2) appears to be quite reasonable, as can be seen by comparing the fit

from this regression with a nonparametric regression of log realized volatility on the

lagged return, also shown in Figure 5.

- insert Figure 5 about here -

Finally, Table 2 shows the overall mean and the mean on different days-of-the-

week for all return and volatility measures. The common finding based on daily

returns that Mondays and Fridays exhibit higher volatility than other days is con-

firmed by the S&P data. Interestingly, this pattern is quite different for the realized

variance. Thursdays and Fridays exhibit the highest volatility, and Mondays no

longer have an above average volatility. For the log realized variance this is even

more pronounced: its mean is lowest on Mondays and monotonically increases dur-

ing the week. This is most likely due to daily observations using the Friday close to
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Monday close return, whereas with transaction data it is the Friday close to Sunday

evening start of overnight futures trading, which then gradually adjusts to infor-

mation over the weekend. A large (Friday to Monday) return will always result in

a large daily squared return, whereas transaction data distinguish a gradual price

change from a truly volatile day with large swings.

- insert Table 2 about here -

3 Nonlinear Long Memory Models

Following previous studies, we employ Autoregressive Fractionally Integrated Mov-

ing Average (ARFIMA) models to describe the dynamic properties of logarithmic

realized volatility yt = log(s2
t ),

φ(L)(1 − L)d(yt − µt) = εt, (3)

where the order of integration d is allowed to take non-integer values, φ(L) = 1 −
φ1L − . . . − φpL

p is a p-th order lag polynomial assumed to have all roots outside

the unit circle and εt is a white noise process. It is common practice to set the mean

µt equal to a constant, i.e. µt = α0. However, to capture the salient features of the

S&P realized volatility discussed in the previous section, we extend the model to

allow for gradual level shifts, day-of-the-week effects, and nonlinear effects of lagged

returns by setting

µt = α0 + P (t) + β1|rt−1| + β2I[rt−1 < 0] + β3|rt−1|I[rt−1 < 0]

+ δ1D
∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t (4)

where D∗
s,t ≡ Ds,t − D3,t Ds,t, s = 1, 2, 4, 5 are “centered” daily dummy variables,

with Ds,t = 1 when time t corresponds with day s (1=Monday, 2=Tuesday, etc.)

and Ds,t = 0 otherwise, and where P (t) is a fifth-order polynomial in t to capture

gradual level shifts in volatility,

P (t) = α1t + α2t
2 + α3t

3 + α4t
4 + α5t

5, (5)

We also considered an alternative approach by replacing P (t) by α1G(t; γ, τ) where

G(t; γ, τ) is the logistic function that changes monotonically from 0 to 1 as t in-

creases5. Although the latter approach yields similar results, it can be too restrictive

since it only allows for a single structural change in the level of yt. The above ARFI

5For further details about the logistic function see the discussion below.
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model with Structural Change (SC), Dummies (D), lagged Return (R) and Leverage

effects (L) will be denoted ARFI-SCDRL.

We also estimate an alternative model, where (cf. Ebens, 1999) terms involving

the lagged returns are not included in the conditional mean µt, but as “exogenous

regressors” (X), leading to the model (denoted ARFI-SCDXRL)

φ(L)(1 − L)d(yt − µt) = β̃1|rt−1| + β̃2I[rt−1 < 0] + β̃3|rt−1|I[rt−1 < 0] + εt, (6)

where now

µt = α0 + P (t) + δ1D
∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t. (7)

Finally, we examine whether the persistence of shocks depends on the level of

volatility (cf. Longin, 1997) by allowing for regime switching behavior in the short-

run dynamics of realized volatility. Specifically, we estimate a long-memory smooth

transition autoregressive model (denoted STARFI-SCDXRL),

(φ1(L)(1 − G(st; γ, c)) + φ2(L)G(st; γ, c))(1 − L)d(yt − µt) = (8)

β̃1|rt−1| + β̃2I[rt−1 < 0] + β̃3|rt−1|I[rt−1 < 0] + εt

where φ1(L) = 1−φ1,1L− . . .−φ1,pL
p and φ2(L) = 1−φ2,1L− . . .−φ2,pL

p are p-th

order lag polynomials. G(st; γ, c) is the logistic function

G(st; γ, c) =
1

1 + exp{−γ(st − c)/σst
} with γ > 0 (9)

where st is the transition variable and σst
is the standard deviation of st. As st

increases, the logistic function changes monotonically from 0 to 1, with the change

being symmetric around the location parameter c, as G(c − z; γ, c) = 1 − G(c +

z; γ, c) for all z. The slope parameter γ determines the smoothness of the change in

the value of the logistic function. As γ → ∞, G(st; γ, c) approaches the indicator

function I[st > c] and, consequently, the change of G(st; γ, c) from 0 to 1 becomes

instantaneous at st = c. When γ → 0, G(st; γ, c) → 0.5 for all values of st. In that

case there is no regime-switching behavior in the autoregressive parameters and (8)

then reduces to (6). Given our objective to allow for different persistence in periods

of high and low volatility, we use the one-period lagged volatility in deviation from

the estimated polynomial as the transition variable in (8), i.e. st = yt−1 − P (t − 1)

with P (t) given by (5).

To gauge the relative importance of the different nonlinear features of realized

volatility, we also estimate several restricted versions of the full models. In particular,

we consider (i) a model without the leverage effect but including the lagged absolute

return (β2 = β3 = 0 in (4) or β̃2 = β̃3 = 0 in (6); ARFI-SCD(X)R), (ii) a model

without any effect of lagged returns at all (β1 = β2 = β3 = 0 in (4) or β̃1 = β̃2 =

7



β̃3 = 0 in (6); ARFI-SCD), and (iii) a model without any effect of lagged returns

and without day-of-the-week effects (imposing in addition δ1 = δ2 = δ4 = δ5 = 0

in (4) or (7); ARFI-SC). Finally, we also estimate all models without allowing for a

structural change, by imposing αi = 0 for i = 1, . . . , 5 in (5).

For estimation of the parameters in the ARFI models we use Beran’s (1995)

approximate maximum likelihood (AML) estimator for invertible and possibly non-

stationary ARFIMA models (i.e. for d > −0.5), which amounts to minimizing the

sum of squared residuals

Qn(θ) =
T∑

t=1

e2
t (θ), (10)

where θ = (d, γ, τ, α, β, δ, φ), T is the sample size and the residuals et(θ) are com-

puted as

et(θ) = (yt − µt) −
t+p−1∑

j=1

πj(yt−j − µt−j) (11)

where the πj are the autoregressive coefficients in the infinite order AR representation

of the ARFI models

π(L)(yt − µt) = εt, (12)

that is π(L) = 1 − π1L − π2L
2 − . . . ≡ φ(L)(1 − L)d, and the πj can be computed

by using the binomial expansion of the fractional differencing operator (1 − L)d,

(1 − L)d = 1 − dL +
d(d − 1)L2

2!
− d(d − 1)(d − 2)L3

3!
+ · · · . (13)

The AML estimator is asymptotically efficient if the errors εt are normally dis-

tributed. Under less restrictive regularity conditions, it is
√

n consistent and asymp-

totically normal. To estimate the smooth transition ARFI model we modify Beran’s

estimator such that the πj in (11) are now the autoregressive coefficients in the infi-

nite order STAR representation of the model in (8) (see van Dijk, Franses and Paap,

2002, for further details).

We employ the Akaike Information Criterion (AIC) in the full ARFI-SCDXRL

to select the appropriate autoregressive order p. The selected lag order p = 2 is

subsequently imposed in the nested models, to facilitate comparison of the parameter

estimates.

4 Estimation Results

All results discussed in this section are based on estimating models over the period

from January 3, 1994 until December 31, 1997 (1011 observations). The remainder

of the sample period will be used to evaluate the out-of-sample forecast performance
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of the various models. Detailed full-sample estimation results are available upon re-

quest. Table 3 contains estimation results for the different ARFI models in equations

(4)-(7) which do not allow for structural change in µt (α1 = . . . = α5 = 0). Table

4 shows results for the corresponding models which do allow for such level shifts in

realized volatility. Several conclusions can be drawn from these tables. First, the

order of integration d ranges between 0.3 and 0.5, which is in line with estimates

reported in previous studies. For some models the point estimate of d is very close

to 0.5, suggesting that log realized volatility may be non-stationary. Note however,

that in all models, the autoregressive parameters φ1 and φ2 are negative, such that

the model can be considered stationary for practical purposes such as forecasting

at relatively short horizons. Comparing the estimates of d in Table 3 with those

in Table 4 makes clear that allowing for structural change in µt lowers the order of

integration, confirming that neglecting level shifts may spuriously suggest fractional

integration, cf. Diebold and Inoue (2001). In the ARFI-DRL model, for example,

d is estimated at 0.495, compared with 0.413 in the ARFI-SCDRL model. Note,

however, that the point estimates of d are still significantly different from zero in the

models with structural change. Hence, the level shift cannot fully account for the

long memory feature in realized volatility. Also note that the order of integration is

affected by the way the lagged returns are treated: if these are included as exogenous

regressors, the estimate of d is substantially lower than if these are included in µt.

- insert Tables 3 and 4 about here -

Second, Figure 6 shows that the polynomial P (t) captures the structural break

at the end of 1996 quite accurately. The figure also shows that including a higher

order polynomial is a more flexible approach compared to modeling the structural

break using a logistic function.

- insert Figure 6 about here -

Third, the estimates of the seasonal dummy parameters δ1, . . . , δ5 confirm the

descriptive statistics in Table 2, in that on average realized volatility is significantly

lower on Mondays and Tuesdays and higher on Fridays.

Fourth, the models that include lagged returns indicate a significant relationship

between log(s2
t ) and rt−1. We also find convincing evidence for the presence of a

leverage effect. The point estimates of β1 and β3 in ARFI-(SC)D(X)RL models in

fact suggest that only negative lagged returns affect current realized volatility, as β̂1

is not significantly different from zero.

Fifth, comparing the residual standard deviation, AIC and BIC across different

columns shows that incorporating the different nonlinear features in the model en-

hances the in-sample fit. Allowing for a leverage effect appears to be most important

9



in this respect, where the models which include the terms involving lagged returns as

exogenous regressors (cf. Ebens, 1999) are preferred over models which include these

terms in the conditional mean µt (cf. Oomen, 2002). Note that the AIC values for

ARFI and ARFI-SC models do not differ substantially, suggesting that accounting

for the level shift in realized volatility does not lead to much improvement of the

model.

Finally, the results for the smooth transition model in Table 5 show that a large

negative shock to volatility causes volatility to move to the lower regime (G(st; γ, c) =

0) where persistence is higher when compared to the upper regime (G(st; γ, c) = 1).

In the infinite order STAR representation of the model π̂1 equals d̂ + φ̂2,1 = 0.117 in

the high regime and d̂ + φ̂1,1 = 0.247 in the low regime. The transition between the

regimes occurs gradually, as shown by the point estimate of 2.845 for γ. We do not

report standard errors for γ̂ for reasons discussed extensively in Teräsvirta (1994,

1998) in the context of smooth transition (auto)regressions. Figure 7 shows the

transition function against the transition variable and over time. It is evident that

volatility is in the lower regime most of the time, but occasionally it moves towards

the upper regime (For 5.9% of the observations the value of the transition function

G(st; γ, c) is larger than 0.5). Judging from the values for AIC and BIC, allowing

for regime switching behaviour does not lead to an improvement in the in-sample

fit.

- insert Table 5 and Figure 7 about here -

5 Forecasting Volatility

The period from January 2, 1998 through December 29, 2000 (756 observations)

is used to judge the relevance of modeling the nonlinearities in S&P 500 realized

volatility for out-of-sample forecasting purposes. All models are estimated recur-

sively, using an expanding window of data. Volatility forecasts for 1- to 20-days

ahead are constructed by means of Monte Carlo simulation, where we use the in-

finite order AR-representation of the ARFI models given in (12), truncated after

200 lags.6 In addition to forecasts for logarithmic realized volatility, which is the

6The truncated infinite order AR representation in (12) can be rewritten as yt = µ̂t +∑p∗

j=1 πj(yt−j − µ̂t−j) + et, where p∗ = 200. The 1-step ahead forecast yt+1|t is obtained by

sampling B independent random draws z
(i)
t+1, i = 1, . . . , B from a standard normal distribution,

which are multiplied by the residual standard deviation σ̂e. The resulting shocks e
(i)
t+1 = z

(i)
t+1σ̂e are

fed into the model to obtain a realization y
(i)
t+1|t = µ̂t+1 +

∑p∗

j=1 πj(yt+1−j − µ̂t+1−j)+e
(i)
t+1. Finally,

the 1-step ahead forecast yt+1|t is the mean across all B realizations, yt+1|t = 1
B

∑B

i=1 y
(i)
t+1|t. For
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dependent variable in the ARFI models, we also construct forecasts for the realized

variance and realized standard deviation, where we ensure that these forecasts are

unbiased.7 In the forecast evaluation below, we concentrate on forecasts for the stan-

dard deviation. Results for forecasts of the (logarithmic) variance are qualitatively

similar and are available upon request. Furthermore, h-days ahead forecasts refer to

realized standard deviations over the next h days, i.e. ŝt+h|t =
√∑h

j=1 ŝ2
t+j|t (instead

of daily realized standard deviation h-days ahead).

For comparison purposes, forecasts were also produced for a number of popular

models that only use daily returns and treat volatility as a latent variable. First,

Riskmetrics uses historical volatility with exponentially declining weights,

σ2
t = λσ2

t−1 + (1 − λ)r2
t−1, (14)

with λ = 0.94.

Second, Glosten, Jagannathan and Runkle (GJR; 1993) incorporated leverage

effects into the popular Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) model. Also including day-of-week dummies, the GJR-GARCH(1,1)-D

model is specified as

rt = µ + εt (15)

εt|Ψt−1 ∼ N(0, σ2
t ) (16)

σ2
t = ω + δ1D

∗
1,t + δ2D

∗
2,t + δ4D

∗
4,t + δ5D

∗
5,t + αε2

t−1 + γε2
t−1I[εt−1 < 0] + βσ2

t−1,

(17)

where Ψt−1 is the information set containing all daily information up to day t, and

the error terms ut are assumed to follow a conditional normal distribution with mean

zero and variance σ2
t . Restricting γ = 0 results in the GARCH(1,1)-D model, and

further imposing δ1 = δ2 = δ4 = δ5 = 0 renders the standard GARCH(1,1) model.

For the three GARCH models and Riskmetrics’ approach forecasts are produced to

compare with the ARFI models.

A number of out-of-sample forecast performance measures are used to evaluate

and compare the various models. First, the quality of individual forecasts is assessed

by regressing the observed h-day realized standard deviation on the corresponding

multiple step ahead forecasts from models which include lagged returns in µt, these returns are
simulated as well, by multiplying the standard deviation in the i-th path by another draw vt from

a standard normal distribution, e.g. r
(i)
t+1 =

√
exp(y

(i)
t+1|t)vt.

7This is achieved by applying the appropriate transformation to all simulated paths of log
realized volatility individually, and then averaging. For example, the 1-step ahead forecast of the

realized standard deviation is computed as st+1|t = 1
B

∑B

i=1

√
exp(y

(i)
t+1|t).

11



forecast,

st+h|t+1 =

√√√√
h∑

j=1

s2
t+j = b0 + b1ŝt+h|t + νt, (18)

where b0 and b1 should be equal to 0 and 1, respectively, for the forecast to be

unbiased and efficient.

Forecasts from two different models are compared directly by means of the en-

compassing regression

st+h|t+1 =

√√√√
h∑

j=1

s2
t+j = b0 + b1ŝt+h|t,(1) + b2ŝt+h|t,(2) + νt, (19)

where ŝt+h|t,(i) is the forecast of model i = 1, 2 for the volatility from t + 1 to

t + h, made at the end of day t. Forecast encompassing is also tested by means of

the statistics developed in Harvey, Leybourne and Newbold (1998). In addition a

number of popular error metrics are computed, namely the Mean Squared Prediction

Error (MSPE; MSPE = 1
R

∑R

i=1(st+h|t+1 − ŝt+h|t)
2 where R denotes the number of

forecasts), the Mean Absolute Error (MAE; MAE = 1
R

∑R

i=1 |st+h|t+1 − ŝt+h|t|), and

the Heteroskedasticity-adjusted MSPE (HMSPE; HMSPE = 1
R

∑R

i=1(1−
ŝt+h|t

st+h|t+1
)2).

We employ Diebold-Mariano (1995) tests of equal forecast accuracy to assess whether

differences in the error metrics of two competing models are significant. Finally, we

also report the Mean Error (ME; ME = 1
R

∑R

i=1 st+h|t+1 − ŝt+h|t).
8

Results for the one-day ahead forecasts from the GARCH models and ARFI

models which do not allow for structural change are presented in Table 6. We

confirm the findings of earlier work, in that the ARFI models produce volatility

forecasts that are superior to popular volatility models based on daily data. For

example, the regression R2 of the “basic” ARFI model is 42.1% compared to 31.0%

for Riskmetrics’ approach and 33.1% for the GARCH model. Including the leverage

effect and day-of-the-week dummies, resulting in the GJR-GARCH(1,1)-D model,

increases the regression R2 to 39.8%, but this is still short of the R2 of even the

simplest ARFI model. The top panels in Figures 8 and 9 show the daily realized

standard deviations for the out-of-sample period along with the one-day-ahead fore-

casts from the GARCH(1,1) model and the ARFI-DXRL model, respectively. It

is seen that the GARCH(1,1) forecasts track the general pattern, or low-frequency

movements in volatility quite well. The main advantage of the long memory model

is that, in addition, it captures a much larger part of the high-frequency movements

in volatility.

8See Andersen, Bollerslev and Meddahi (2003, 2004) for recent discussions on issues involved in
evaluating realized volatility forecasts.
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- insert Table 6 and Figures 8 and 9 about here -

The best forecast performance is attained by the ARFI-DXRL model, with a re-

gression R2 of 46.1%. The Diebold-Mariano statistics reported in the table compare

the forecasts from this model with those of all other models (on a one-to-one basis).

The statistics show that the MAE and HMSPE are significantly reduced from 0.264

to 0.248 and from 0.074 to 0.066, respectively, when comparing the nonlinear ARFI-

DXRL model with the linear ARFI model. Including the leverage effect exogenously

slightly improves over including the leverage effect in µt, the latter resulting in a

regression R2 of 45.2%. In general it is the leverage effect that contributes most of

all nonlinearities to the improvement in forecast performance over the linear ARFI

model. The encompassing regression results at the bottom of Table 6 show that

the null that the forecasts from the ARFI-DXRL model encompass the forecasts

from the Riskmetrics and GARCH models is rejected at conventional significance

levels. Hence, the volatility forecasts from these models do have some incremental

information not already contained in the nonlinear ARFI model. For example, the

resulting regression R2 of optimally (with hindsight) combining the GJR-GARCH

model with the nonlinear ARFI model is 48.4%.

Table 7 summarizes the performance of the ARFI models which allow for struc-

tural change and level-dependent volatility persistence for one-day ahead forecasts.

Comparing these results with the corresponding ones in Table 6, it is seen that mod-

eling the apparent level shift in realized volatility does improve the out-of-sample

forecast performance of the long memory models when judged by R2. However,

MSPE, MAE and HMSPE are somewhat larger, while only the ME is closer to

0 for the models with structural change. Allowing for different volatility regimes

(STARFI-SCDXRL) does not lead to better out-of-sample forecasts.

- insert Table 7 about here -

The results for 5-day, 10-day and 20-day ahead forecasts of realized standard

deviation are summarized in Table 8. As expected the benefits of modelling the

nonlinearities explicitly become less for longer horizons. Comparing the ARFI and

ARFI-DXRL models, the regression R2 increases from 52.8% to 54.4% for the 5-day

horizon, from 49.0% to 50.2% for the 10-day horizon, and even drops slightly from

37.8% to 37.7% for the 20-day horizon.

- insert Table 8 about here -

As an alternative method for evaluating the forecasts for the different models

from a more economic point of view, we consider Value-at-Risk (VaR) estimates

13



which are constructed using the volatility forecasts from the different models, see

also Giot and Laurent (2004). Under the 1998 Market Risk Amendment (MRA) to

the Basle Capital Accord, commercial banks are required to reserve capital to cover

their market risk exposure. The required market risk capital for time t+1 (MRCt+1)

is determined by a bank’s 99% VaR estimate calculated for a 10-day holding period

(V aR10
t ) and is defined as the higher of the previous day’s VaR estimate or the

average of the estimates over the last sixty business days times a multiplication

term9

MRCt+1 = max

(
V aR10

t , St ×
1

60

59∑

i=0

V aR10
t−i

)
, (20)

using the one-step ahead volatility forecasts from the different models.

Under the MRA, the accuracy of a bank’s VaR estimates is judged by the accu-

racy of the 1-day ahead 99% VaR estimates10. We evaluate the accuracy of these

estimates using the interval forecast evaluation techniques proposed by Christof-

fersen (1998) and the method set forth by Lopez (1999) which uses regulatory loss

functions. The Christoffersen method is a test for conditional coverage, jointly test-

ing the hypothesis that the percentage of times that the actual loss on a portfolio

exceeds the VaR estimate (denoted by a VaR ‘exception’) equals one minus the sig-

nificance level used in the VaR calculation (unconditional coverage) together with

the hypothesis of serial independence for these VaR exceptions (independence).

Defining the indicator variable It+1 as

It+1 =

{
1 if rt+1 < V aR1

t

0 if rt+1 ≥ V aR1
t ,

(21)

where rt+1 is the return over day t+1 and V aR1
t is the 100(1-α)% VaR estimate for

day t+1 made on day t, a VaR exception corresponds with It+1 = 1. The likelihood

of observing x exceptions in a series of length R under the null hypothesis of accurate

unconditional coverage is given by L0 = αx(1−α)R−x. The corresponding likelihood

under the alternative is L1 = α̂x(1− α̂)R−x, where α̂ is the “observed” probability of

an exception, α̂ = x/R. The null hypothesis of correct unconditional coverage can

now be tested by means of the standard likelihood ratio statistic

LRuc = 2[log(L1) − log(L0)], (22)

9The value of the multiplication factor St is determined by the number of times that the actual
losses on a portfolio exceed the 1-day 99% VaR estimates (so called VaR-exceptions). Three
zones for an increasing number of exceptions are distinguished and the value of St increases from
a minimum value of 3 to a possible maximum value of 4 across the different zones, see the Basle
Committee on Banking Supervision (1996) for more details. In the evaluation of the VaR estimates
we, however, fix St to the value 3. Note further that under the conditions of the MRA the VaR
estimates are evaluated in dollar terms whereas we will consider the VaR in percentage terms.

10It is suggested by the Basle committee to use an evaluation period of at least 250 business
days. Here we use the entire forecast evaluation sample.
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which has an asymptotic χ2(1) distribution.

The test statistic for the test of independence is also χ2(1) distributed and is

given by

LRind = 2[log(L2) − log(L1)], (23)

where L1 is the likelihood function under independence as given above, and L2 is

the likelihood function under the alternative of first-order Markov dependence. The

latter is given by L2 = (1 − π01)
R00πR01

01 (1 − π11)
R10πR11

11 where Rij is the number of

observations with value i followed by value j.

Testing correct conditional coverage boils down to testing correct unconditional

coverage and independence simultaneously. The likelihood functions under the null

and alternative are given by L0 and L2, respectively and, hence, the likelihood

ratio statistic for correct conditional coverage is simply the sum of the two previous

statistics,

LRcc = LRuc + LRind, (24)

which is asymptotically χ2(2) distributed.

The alternative method proposed by Lopez (1999) for evaluating VaR forecasts is

based on the use of loss functions that are more closely related to the regulatory VaR

requirements. By choosing a specific loss function, one can assign a numerical score

to each individual VaR estimate that reflects specific concerns that one may have.

For example, it seems natural to not only consider the number of VaR exceptions but

also the magnitude of exceptions since the latter can be quite substantial. Therefore,

we consider the loss function11

Ct+1 =

{
1 + (rt+1 − V aR1

t )
2 if rt+1 < V aR1

t

0 if rt+1 ≥ V aR1
t ,

(25)

which includes the squared magnitude of the VaR exception (rt+1−V aR1
t )

2. Given a

sample of R VaR estimates the total loss for the sample is given by C =
∑R

i=1 Ct+1.

To assess the relative performance of each volatility forecasting model, we com-

pute for each model the average and standard deviation of the capital requirement

MRCt+1 over the forecast evaluation period. Furthermore, we determine the uncon-

ditional coverage α̂ together with the interval evaluation test statistics. Finally, we

compute the total loss C for the sample of R one-day VaR estimates as well as the

average score (defined as the total score divided by the number of exceptions) and

the maximum daily score. The results are presented in Table 9.

11Lopez (1999) discusses several possible loss functions one of which is the binomial loss function
given in (21). The loss function given in the main text is in line with the guidelines by the Basle
Committee which states that both the number as well the magnitude of exceptions are a matter of
concern to regulators.
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- insert Table 9 about here -

We first of all observe that the average capital requirement is comparable across

the different models. However, the long memory models typically have considerable

less fluctuation in the required level of capital. This is confirmed graphically by

Figure 10, showing how the capital requirement evolves over time for the Riskmetrics,

GJR-GARCH(1,1)-D and ARFI-DXRL models.

- insert Figure 10 about here -

All models have a higher unconditional coverage than expected, as judged from

the estimated α̂, leading to strong rejections of the null of correct unconditional

coverage in all cases. This might be due to our use of the normal distribution

for the standardized shocks ε/σt. Giot and Laurent (2004) obtain more accurate

unconditional coverage using a (skewed) Student t distribution, both for GARCH

and for realized volatility models. By contrast, the null of independence is not

rejected for any models under consideration. Based on the quadratic magnitude loss

function, the ARFI type models again perform well when compared to the GARCH

type models. Among the latter class of models the GJR-GARCH(1,1)-D performs

best, although still slightly worse than the ARFI-DXRL model. The 1-day VaR

estimates from these two models actually are quite different, as shown in Figure 11.

- insert Figure 11 about here -

6 Foreign exchange rates

To check the robustness of the conclusions for the S&P 500, and to test the adequacy

of the proposed nonlinear model for other realized volatility series, we also consider

the DM/$, U/$ and U/DM exchange rates. Realized volatilities are constructed

by summing 288 5-minute squared returns, with the sample period running from

December 1, 1986 until June 30, 1999. The characteristics of these data are de-

scribed in detail in Andersen, Bollerslev, Diebold and Labys (2001). All models are

estimated for an in-sample period from December 1, 1986 until November 30, 1996

(2449 observations), and out-of-sample forecasts are produced for the remaining 596

observations. No significant level shifts were detected in the exchange rate volatil-

ities. To save space, we only summarize the in-sample fit and the out-of-sample

forecast performance in Table 10.12

- insert Table 10 about here -

12Model estimates and graphs in the spirit of the S&P 500 results are available upon request.
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The in-sample results for the ARFI models for the three exchange rates show

a pattern similar to the S&P 500. In all cases the in-sample fit is in general im-

proved when accounting for the various nonlinearities present in the data, despite

the penalties for adding additional parameters.

Even more so than for the S&P 500, the out-of-sample forecast performance of

the ARFI models is found to be superior to that of standard models based on daily

returns only. For the U/$, for example, the R2 for the regression of the daily realized

volatility on its one-day ahead forecast increases from 25.6% for the GARCH(1,1)

model to 36.6% for the ARFI model.13 Adding daily dummies (ARFI-D) increases

the R2 to 40.3%, while the best way to incorporate the lagged return effects is by

including them as exogeneous variables. Adding the lagged absolute return (ARFI-

DXR) increases the R2 to 49.0%, and even to 55.5% when also including the leverage

effect (ARFI-DXRL). For all exchange rates the introduction of different AR param-

eters as a function of the level of the volatility does not improve the out-of-sample

forecast performance, but it also does not worsen it.

7 Concluding Remarks

In this paper we propose a nonlinear long-memory time series model for realized

volatility that incorporates all well-known stylized facts from the (GARCH) volatil-

ity literature, in particular level shifts, day-of-the-week effects, leverage effects and

volatility level effects. The model, as well as several restricted versions, are estimated

for the S&P 500 index and three exchange rates.

The in-sample results show that all nonlinearities are highly significant and im-

prove the description of the data. The out-of-sample results show that for shorter

horizons, up to 10 days, accounting for these nonlinearities significantly improves the

forecast performance compared to a linear ARFI model. Such short-term volatility

forecasts are especially useful for short-term risk management, including Value-at-

Risk. For longer horizons no benefit is obtained from incorporating nonlinearities.

The most important nonlinearities are the leverage effect for the S&P 500 index,

and the leverage effect as well as the day-of-the-week effects for the exchange rates.

The best way to incorporate the effects of lagged daily returns is to include them

as exogenous regressors, i.e. outside the long memory filter. Not important for the

forecast performance is allowing the persistence of shocks to depend on the level of

volatility, and modeling the level shifts for the S&P 500 index.

13For the same data and out-of-sample period but using realized volatilities based on 30-minute
returns (instead of 5-minute returns), Andersen, Bollerslev, Diebold and Labys (2003) find an R2

of 32.9%.
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Table 1: Descriptive Statistics for Daily S&P 500 Return and Realized Volatility

Mean Med Min Max Std.dev. Skew Kurt

Returns 0.043 0.066 −7.811 5.671 1.102 −0.365 8.175
Squared returns 1.217 0.320 0 61.005 3.242 9.835 145.260
Absolute returns 0.978 0.709 0 9.789 0.977 2.583 15.142
Standardized returns 0.124 0.083 −2.623 3.025 1.000 0.104 2.762

Realized variance 1.194 0.729 0.065 32.996 1.770 7.250 89.405
Realized std. deviation 0.962 0.853 0.256 5.744 0.516 2.356 13.642
Log realized variance −0.308 −0.316 −2.727 3.496 0.937 0.295 3.025

Notes: The table contains summary statistics for daily S&P 500 return and realized volatility measures.
The sample period covers January 3, 1994 until December 29, 2000 (1767 observations). Absolute
returns are multiplied with

√
π/2. Standardized returns are obtained by dividing the raw returns by

the realized standard deviation.

Table 2: Day-of-the-Week Effects in S&P 500 Return and Realized Volatility

Overall MON TUE WED THU FRI

Returns 0.043 0.081 0.085 −0.018 −0.021 0.093
Squared returns 1.217 1.298 1.362 0.865 1.219 1.348
Absolute returns 0.978 0.954 1.025 0.869 1.004 1.040
Standardized returns 0.124 0.181 0.129 0.064 0.079 0.173

Realized variance 1.191 1.073 1.158 1.093 1.306 1.324
Realized std. deviation 0.962 0.907 0.942 0.951 0.986 1.020
Log realized variance −0.308 −0.430 −0.352 −0.295 −0.278 −0.191

Notes: The table contains daily means for S&P 500 returns and realized volatility measures.
The sample period covers January 3, 1994 until December 29, 2000 (1767 observations).
Absolute returns are multiplied with

√
π/2. Standardized returns are obtained by dividing

the raw returns by the realized standard deviation.
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Table 3: Estimated ARFI models for daily S&P 500 realized volatility, January
1994-December 1997

ARFI ARFI-D ARFI-DR ARFI-DRL ARFI-DXR ARFI-DXRL

d̂ 0.471 0.477 0.471 0.495 0.363 0.386
(0.046) (0.047) (0.046) (0.045) (0.036) (0.037)

α̂0 −0.785 −0.791 −0.876 −0.877 −1.652 −1.539
(0.311) (0.320) (0.299) (0.316) (0.214) (0.264)

β̂1 − − 0.149 0.006 0.185 0.016
(0.038) (0.044) (0.037) (0.039)

β̂2 − − − −0.053 − −0.033
(0.046) (0.045)

β̂3 − − − 0.319 − 0.357
(0.053) (0.050)

δ̂1 − −0.136 −0.142 −0.141 −0.141 −0.140
(0.033) (0.033) (0.032) (0.034) (0.032)

δ̂2 − −0.065 −0.070 −0.072 −0.071 −0.074
(0.031) (0.030) (0.030) (0.030) (0.030)

δ̂4 − −0.001 0.013 0.014 0.013 0.016
(0.031) (0.031) (0.030) (0.031) (0.030)

δ̂5 − 0.171 0.173 0.158 0.176 0.158
(0.033) (0.033) (0.033) (0.033) (0.033)

φ̂1 −0.104 −0.089 −0.149 −0.249 −0.058 −0.157
(0.053) (0.054) (0.056) (0.057) (0.049) (0.048)

φ̂2 −0.088 −0.089 −0.076 −0.086 −0.044 −0.046
(0.041) (0.041) (0.042) (0.044) (0.039) (0.039)

σ̂ε 0.581 0.568 0.562 0.548 0.558 0.540
AIC −1.078 −1.114 −1.133 −1.179 −1.149 −1.209
BIC −1.058 −1.075 −1.089 −1.126 −1.105 −1.155

LMSC(1) 0.121 0.007 0.147 0.350 2.40 11.53
(0.73) (0.93) (0.71) (0.55) (0.12) (7.1E−4)

LMSC(5) 0.768 0.821 0.630 0.914 0.716 3.27
(0.57) (0.53) (0.68) (0.47) (0.61) (6.2E−3)

LMSC(10) 0.883 0.494 0.414 0.524 0.673 2.43
(0.55) (0.89) (0.94) (0.87) (0.75) (7.3E−3)

Notes: The table presents parameter estimates, diagnostic measures and misspecification tests
for estimated ARFI models for daily S&P 500 realized volatility, over the period January 3, 1994-
December 31, 1997 (1011 observations). The column ARFI-D(X)RL contains estimates of the
model including daily dummies and leverage effects as part of µt (as exogenous variables), the
column ARFI-D(X)R contains estimates of the model including daily dummies and symmetric
effects of the lagged absolute return as part of µt (as exogenous variable) (β2 = β3 = 0), the
column ARFI-D estimates for a model with daily dummies but without the lagged absolute return
(β1 = β2 = β3 = 0), and the column ARFI shows estimates for a model without daily dummies
and without lagged absolute returns (β1 = β2 = β3 = 0 and δ1 = . . . = δ5 = 0). σ̂ε is the residual
standard deviation. LMSC(q) denotes the (F variant of the) LM test of no serial correlation in the
residuals up to and including order q. The numbers in parentheses below parameter estimates
and test statistics are heteroskedasticity-consistent standard errors and p-values, respectively.
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Table 4: Estimated ARFI models for daily S&P 500 realized volatility, January
1994-December 1997

ARFI-SC ARFI-SCD ARFI-SCDR ARFI-SCDRL ARFI-SCDXR ARFI-SCDXRL

d̂ 0.377 0.384 0.378 0.413 0.323 0.344
(0.052) (0.053) (0.053) (0.050) (0.048) (0.044)

α̂0 −1.318 −1.328 −1.386 −1.426 −1.443 −1.391
(0.473) (0.482) (0.448) (0.454) (0.381) (0.375)

β̂1 − − 0.151 0.007 0.183 0.003
(0.039) (0.044) (0.039) (0.042)

β̂2 − − − −0.053 − −0.044
(0.046) (0.049)

β̂3 − − − 0.318 − 0.367
(0.053) (0.053)

δ̂1 − −0.136 −0.142 −0.141 −0.141 −0.141
(0.033) (0.034) (0.033) (0.034) (0.032)

δ̂2 − −0.064 −0.070 −0.072 −0.071 −0.073
(0.031) (0.030) (0.030) (0.030) (0.030)

δ̂4 − −0.001 0.013 0.014 0.013 0.016
(0.031) (0.031) (0.030) (0.031) (0.030)

δ̂5 − 0.171 0.173 0.158 0.176 0.158
(0.033) (0.033) (0.033) (0.033) (0.033)

φ̂1 −0.023 −0.007 −0.068 −0.178 −0.022 −0.118
(0.059) (0.059) (0.060) (0.060) (0.056) (0.053)

φ̂2 −0.049 −0.051 −0.035 −0.046 −0.026 −0.023
(0.042) (0.042) (0.043) (0.045) (0.041) (0.041)

σ̂ε 0.578 0.566 0.559 0.546 0.557 0.539
AIC −1.078 −1.114 −1.134 −1.179 −1.143 −1.203
BIC −1.034 −1.051 −1.065 −1.101 −1.074 −1.125

LMSC(1) 0.355 0.708 0.339 0.141 2.847 11.620
(0.552) (0.400) (0.560) (0.707) (0.092) (6.7E−4)

LMSC(5) 1.155 1.170 0.842 1.215 0.838 3.497
(0.323) (0.322) (0.520) (0.300) (0.523) (3.9E−3)

LMSC(10) 1.190 0.882 0.691 0.766 0.857 2.658
(0.294) (0.550) (0.733) (0.662) (0.573) (3.3E−3)

Notes: The table presents parameter estimates, diagnostic measures and misspecification tests
for estimated ARFI models for daily S&P 500 realized volatility, over the period January 3,
1994-December 31, 1997 (1011 observations). The column ARFI-SCD(X)RL contains estimates
of the full model including structural change, daily dummies and leverage effects as part of µt

(as exogenous variables), the column ARFI-SCD(X)R contains estimates of the model including
structural change, daily dummies and symmetric effects of the lagged absolute return as part of
µt (as exogenous variable) only (β2 = β3 = 0), the column ARFI-SCD estimates for a model
with structural change and daily dummies (β1 = β2 = β3 = 0), and the column ARFI-SC shows
estimates for a model with structural change but without daily dummies and without lagged
absolute returns (β1 = β2 = β3 = 0 and δ1 = . . . = δ5 = 0). σ̂ε is the residual standard deviation.
LMSC(q) denotes the (F variant of the) LM test of no serial correlation in the residuals up to and
including order q. The numbers in parentheses below parameter estimates and test statistics are
heteroskedasticity-consistent standard errors and p-values, respectively.
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Table 5: Estimated Smooth Transition ARFI models for daily
S&P 500 realized volatility, January 1994-December 1997

STARFI-SCDXRL

d̂ 0.324
(0.043)

γ̂ 2.845
-

ĉ 0.016
(0.533)

α̂0 -1.517
(0.336)

β̂1 -0.028
(0.043)

β̂2 -0.078
(0.049)

β̂3 0.415
(0.055)

δ̂1 -0.137
(0.032)

δ̂2 -0.078
(0.030)

δ̂4 0.021
(0.029)

δ̂5 0.156
(0.033)

φ̂1,1 -0.077
(0.059)

φ̂1,2 -0.057
(0.054)

φ̂2,1 -0.207
(0.108)

φ̂2,2 0.272
(0.200)

σ̂ε 0.538
AIC -1.202
BIC -1.104

LMSC(1) 5.515
(0.019)

LMSC(5) 1.729
(0.125)

LMSC(10) 1.825
(0.052)

Notes: The table presents parameter estimates, diagnostic measures and mis-
specification tests for a Smooth Transition ARFI model for daily S&P 500
realized volatility, over the period January 3, 1994-December 31, 1997 (1011
observations). The column STARFI-SCDXRL contains estimates of the full
model including regime-dependent volatility persistence, structural change
and daily dummies as part of µt and leverage effects as exogenous variables.
See Table 4 for further details.
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Table 6: Out-of-Sample Forecast Evaluation, January 1998-December 2000 - standard devi-
ation, one-day ahead

b0 b1 b2 R2 ME MSPE MAE HMSPE

Riskmetrics 0.267 0.750 0.310 −0.051 0.216 0.328 0.131
(0.069) (0.060) (0.017) [−4.78] [−9.26] [−8.44]

GARCH(1,1) 0.323 0.711 0.331 −0.044 0.215 0.312 0.121
(0.060) (0.053) (0.017) [−4.02] [−6.83] [−6.79]

GARCH-D(1,1) 0.339 0.705 0.328 −0.032 0.215 0.309 0.121
(0.059) (0.052) (0.017) [−3.98] [−6.50] [−6.41]

GJR-G-D(1,1) 0.353 0.721 0.398 0.017 0.195 0.284 0.091
(0.049) (0.045) (0.016) [−2.41] [−3.91] [−4.80]

ARFI −0.037 1.059 0.421 0.033 0.172 0.264 0.074
(0.082) (0.076) (0.015) [−1.21] [−2.88] [−2.47]

ARFI-D 0.006 1.021 0.417 0.032 0.173 0.264 0.073
(0.084) (0.078) (0.015) [−1.37] [−3.08] [−2.50]

ARFI-DR 0.066 0.970 0.411 0.030 0.174 0.264 0.077
(0.090) (0.082) (0.015) [−1.15] [−2.82] [−2.66]

ARFI-DRL 0.133 0.911 0.452 0.026 0.163 0.251 0.069
(0.072) (0.065) (0.015) [−0.01] [−1.30] [−2.33]

ARFI-DXR 0.094 0.942 0.405 0.024 0.176 0.265 0.079
(0.090) (0.081) (0.015) [−1.25] [−2.94] [−2.90]

ARFI-DXRL 0.196 0.848 0.461 0.012 0.163 0.248 0.066
(0.078) (0.069) (0.015)

ARFI-DXRL +
Riskmetrics 0.088 0.707 0.219 0.475

(0.068) (0.076) (0.072) [2.30]

GARCH(1,1) 0.120 0.696 0.206 0.474
(0.064) (0.084) (0.065) [2.48]

GARCH-D(1,1) 0.126 0.700 0.198 0.473
(0.064) (0.085) (0.064) [2.46]

GJR-G-D(1,1) 0.152 0.603 0.283 0.484
(0.063) (0.091) (0.066) [3.33]

Notes: The table presents estimates of regressions of realized standard deviation for the S&P 500
on a constant and one-day ahead forecasts from different models. The regression is st+1 = b0 +
b1ŝt+1|t,(1) [ + b2ŝt+1|t,(2) ] + ut, where ŝt+1|t,(i) is the one-day ahead forecast of the realized standard devi-
ation from model i. The forecast evaluation period covers January 2, 1998-December 29, 2000 (R = 756).
ARFI-D(X)RL refers to the full model including daily dummies and leverage effects as part of µt (as exoge-
nous variables), ARFI-DR refers to the model including daily dummies and symmetric effects of the lagged
absolute return as part of µt (as exogenous variables) (β2 = β3 = 0), ARFI-D to the model with daily
dummies but without the lagged absolute return (β1 = β2 = β3 = 0), and ARFI to the model without daily
dummies and without lagged absolute returns (β1 = β2 = β3 = 0 and δ1 = . . . = δ5 = 0). Figures in brackets
below bj , j = 0, 1, 2 and ME are heteroskedasticity and autocorrelation-consistent standard errors. Figures
in straight brackets below MSPE, MAE and HMSPE are Diebold-Mariano statistics of equal forecast accu-
racy, comparing the relevant model with the ARFI-DXRL model, where negative values indicate that the
ARFI-DXRL model is more accurate. Figures in straight brackets below the R2 in the encompassing regres-
sions are Diebold-Mariano type forecasting encompassing tests, testing the null that the forecasts from the
ARFI-DXRL model encompass the forecasts from the alternative model that is included in the regression.
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Table 7: Out-of-Sample Forecast Evaluation, January 1998-December 2000 - standard de-
viation, one-day ahead

b0 b1 b2 R2 ME MSPE MAE HMSPE

ARFI-SC 0.117 0.896 0.416 −0.012 0.174 0.276 0.087
(0.077) (0.069) (0.015) [−1.14] [−4.35] [−4.97]

ARFI-SCD 0.147 0.871 0.412 −0.013 0.176 0.276 0.086
(0.079) (0.071) (0.015) [−1.32] [−4.69] [−4.68]

ARFI-SCDR 0.192 0.833 0.407 −0.015 0.179 0.275 0.090
(0.088) (0.077) (0.015) [−1.21] [−4.18] [−3.89]

ARFI-SCDRL 0.227 0.803 0.454 −0.018 0.169 0.263 0.080
(0.062) (0.055) (0.015) [−1.13] [−5.26] [−6.49]

ARFI-SCDXR 0.226 0.827 0.407 0.017 0.180 0.270 0.083
(0.082) (0.074) (0.015) [−1.32] [−3.28] [−2.90]

ARFI-SCDXRL 0.272 0.782 0.466 0.006 0.168 0.253 0.069
(0.066) (0.059) (0.015) [−1.46] [−2.87] [−2.49]

STARFI-SCDXRL 0.311 0.740 0.455 −0.010 0.177 0.259 0.075
(0.084) (0.073) (0.015) [−1.33] [−3.03] [−3.69]

Notes: The table presents estimates of regressions of realized standard deviation for the S&P 500 on a
constant and one-day ahead forecasts from different models. The regression is st+1 = b0 + b1ŝt+1|t,(1) + ut,
where ŝt+1|t,(1) is the one-day ahead forecast of the realized standard deviation from model i. The forecast
evaluation period covers January 2, 1998-December 29, 2000 (R = 756). [ST]ARFI-SCD(X)RL refers to
the full model including [regime-dependent volatility persistence], structural change, daily dummies and
leverage effects as part of µt (as exogenous variables), ARFI-SCDR refers to the model including structural
change, daily dummies and symmetric effects of the lagged absolute return as part of µt (as exogenous
variables) (β2 = β3 = 0), ARFI-SCD to the model with structural change, daily dummies but without the
lagged absolute return (β1 = β2 = β3 = 0), and ARFI-SC to the model with structural change but without
daily dummies and without lagged absolute returns (β1 = β2 = β3 = 0 and δ1 = . . . = δ5 = 0). Figures in
brackets below bj , j = 0, 1 and ME are heteroskedasticity and autocorrelation-consistent standard errors.
Figures in straight brackets below MSPE, MAE and HMSPE are Diebold-Mariano statistics of equal forecast
accuracy, comparing the relevant model with the ARFI-DXRL model, where negative values indicate that
the ARFI-DXRL model is more accurate.
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Table 8: Out-of-Sample Forecast Evaluation, January 1998-December 2000 - standard deviation, five, ten and twenty-days ahead

5-days ahead 10-days ahead 20-days ahead
b0 b1 b2 R2 MSPE b0 b1 b2 R2 MSPE b0 b1 b2 R2 MSPE

Riskmetrics 0.327 0.733 0.408 0.137 0.390 0.693 0.410 0.126 0.490 0.623 0.381 0.124
(0.089) (0.075) [−4.13] (0.105) (0.089) [−2.70] (0.125) (0.105) [−1.30]

GARCH(1,1) 0.387 0.691 0.416 0.141 0.428 0.668 0.420 0.128 0.471 0.646 0.413 0.117
(0.070) (0.060) [−3.82] (0.090) (0.077) [−2.63] (0.104) (0.083) [−0.94]

GARCH-D(1,1) 0.401 0.687 0.408 0.144 0.439 0.669 0.410 0.130 0.472 0.656 0.403 0.118
(0.068) (0.059) [−3.71] (0.089) (0.077) [−2.71] (0.107) (0.086) [−1.02]

GJR-G-D(1,1) 0.453 0.675 0.434 0.146 0.502 0.651 0.401 0.142 0.521 0.658 0.376 0.135
(0.063) (0.056) [−3.23] (0.089) (0.079) [−2.38] (0.117) (0.104) [−1.46]

ARFI −0.107 1.133 0.528 0.105 −0.094 1.133 0.490 0.102 0.015 1.068 0.378 0.111
(0.101) (0.091) [−1.81] (0.140) (0.125) [−1.16] (0.218) (0.197) [−0.61]

ARFI-D −0.099 1.125 0.531 0.104 −0.089 1.129 0.494 0.100 0.018 1.065 0.382 0.110
(0.099) (0.088) [−1.68] (0.137) (0.123) [−1.05] (0.215) (0.195) [−0.55]

ARFI-DR −0.084 1.113 0.527 0.104 −0.080 1.123 0.489 0.101 0.030 1.056 0.373 0.112
(0.101) (0.090) [−2.07] (0.142) (0.128) [−1.18] (0.222) (0.202) [−0.67]

ARFI-DRL −0.037 1.064 0.533 0.101 −0.030 1.072 0.491 0.099 0.084 1.000 0.374 0.109
(0.091) (0.081) [−1.27] (0.139) (0.124) [−1.12] (0.221) (0.199) [−0.63]

ARFI-DXR −0.039 1.065 0.515 0.105 −0.015 1.055 0.475 0.101 0.139 0.946 0.352 0.112
(0.099) (0.083) [−2.86] (0.139) (0.122) [−1.77] (0.214) (0.189) [−1.03]

ARFI-DXRL 0.049 0.973 0.544 0.097 0.057 0.975 0.502 0.094 0.196 0.873 0.377 0.105
(0.077) (0.065) (0.108) (0.092) (0.176) (0.152)

ARFI-DXRL+
Riskmetrics 0.044 0.896 0.08 0.545 0.069 0.857 0.106 0.504 0.300 0.444 0.342 0.401

(0.077) (0.107) (0.088) [0.91] (0.104) (0.126) (0.114) [0.70] (0.145) (0.200) (0.177) [0.89]

GARCH(1,1) 0.052 0.882 0.087 0.546 0.083 0.787 0.165 0.508 0.300 0.349 0.436 0.430
(0.079) (0.129) (0.089) [0.93] (0.112) (0.142) (0.082) [1.88] (0.138) (0.168) (0.118) [1.92]

GARCH-D(1,1) 0.052 0.899 0.072 0.545 0.079 0.810 0.148 0.507 0.280 0.392 0.417 0.426
(0.08) (0.132) (0.092) [0.71] (0.113) (0.146) (0.083) [1.74] (0.141) (0.172) (0.118) [2.01]

GJR-G-D(1,1) 0.07 0.823 0.139 0.549 0.088 0.789 0.170 0.511 0.244 0.494 0.367 0.423
(0.087) (0.146) (0.098) [1.02] (0.117) (0.183) (0.115) [0.90] (0.146) (0.208) (0.153) [1.23]

Notes: The table presents estimates of regressions of realized standard deviation for the S&P 500 on a constant and either five, ten or twenty-days ahead forecasts
from different models. The regression is st+h|t+1 = b0 + b1ŝt+h|t,(1) [ + b2ŝt+h|t,(2) ] + ut, where ŝt+h|t,(i) is the forecast of h-days realized standard deviation with
h ∈ {5, 10, 20} from model i. The forecast evaluation period covers January 2, 1998-December 29, 2000 (R = 756). See Table 6 for further details.
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Table 9: Value-at-Risk evaluation for the out-of-sample period January 1998-December 2000

MRC-µ MRC-σ α̂ LRuc LRind LRcc C C max(Ct)

Riskmetrics 26.128 7.273 2.513 12.315 0.981 13.296 55.569 2.925 16.837
(0.000) (0.322) (0.001)

GARCH(1,1) 25.893 6.715 2.381 10.496 0.879 11.376 53.822 2.990 13.608
(0.001) (0.348) (0.003)

GARCH-D(1,1) 25.529 6.456 2.381 10.496 0.879 11.376 53.891 2.994 12.967
(0.001) (0.348) (0.003)

GJR-G-D(1,1) 24.113 5.773 2.249 8.791 0.783 9.574 46.883 2.758 8.740
(0.003) (0.376) (0.008)

ARFI 24.646 4.498 1.984 5.750 0.608 6.358 41.627 2.775 11.871
(0.016) (0.435) (0.042)

ARFI-D 24.673 4.531 2.249 8.791 0.783 9.574 45.087 2.652 14.225
(0.003) (0.376) (0.008)

ARFI-DR 24.646 4.507 2.381 10.496 0.879 11.376 51.123 2.840 18.516
(0.001) (0.348) (0.003)

ARFI-DRL 24.855 4.759 2.513 12.315 0.981 13.296 53.002 2.790 20.693
(0.000) (0.322) (0.001)

ARFI-DXR 25.008 4.789 2.381 10.496 0.879 11.376 50.397 2.800 17.695
(0.001) (0.348) (0.003)

ARFI-DXRL 25.563 5.201 2.381 10.496 0.879 11.376 46.216 2.568 16.897
(0.001) (0.348) (0.003)

Notes: The table presents evaluation results for VaR estimates generated under the conditions of the Basle
Committee MRA for the forecast evaluation period January 2, 1998-December 29, 2000 (R = 756). The first
two columns show the average and standard deviation of the required capital to cover market risk exposure
(in percentage terms). Column 3 shows the average percentage number of exceptions defined as α̂ = 100x/R
where x is the number of exceptions. Columns 4-6 show the interval forecast evaluation test statistics of correct
unconditional coverage (uc), independence (ind) and correct conditional coverage (cc) (p-values are between
brackets). Columns 7-9 give the total score C based on (25), the average score, C = C/x and the maximum
individual score (all in percentage terms).
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Table 10: In-Sample Fit and Out-of-Sample Forecast Evaluation for daily DM/$, U/$ and
U/DM realized volatility. The in-sample period is December 1, 1986-November 30, 1996
(2449 observations). The out-of-sample period is December 1, 1996-June 30, 1999 (596
observations)

In-Sample Fit Out-of-Sample Forecast Evaluation
1-day 5-days 10-days 20-days

AIC BIC R2 MSPE R2 MSPE R2 MSPE R2 MSPE

DM/$

Riskmetrics 0.107 0.030 0.084 0.024 0.054 0.022 0.044 0.021
GARCH(1,1) 0.101 0.027 0.078 0.018 0.048 0.015 0.036 0.012
GARCH-D(1,1) 0.094 0.027 0.076 0.018 0.047 0.015 0.034 0.012
GJR-G-D(1,1) 0.096 0.027 0.077 0.018 0.048 0.016 0.036 0.013

ARFI -1.405 -1.394 0.326 0.020 0.278 0.014 0.229 0.012 0.158 0.011
ARFI-D -1.482 -1.461 0.365 0.019 0.289 0.013 0.239 0.012 0.167 0.010
ARFI-DR -1.504 -1.480 0.380 0.018 0.296 0.013 0.250 0.012 0.175 0.010
ARFI-DXR -1.498 -1.474 0.379 0.018 0.290 0.013 0.230 0.011 0.150 0.010
ARFI-DRL -1.502 -1.474 0.380 0.018 0.296 0.013 0.250 0.012 0.175 0.011
ARFI-DXRL -1.500 -1.472 0.376 0.018 0.289 0.013 0.232 0.011 0.154 0.010

STARFI-DR -1.504 -1.480 0.381 0.018 0.298 0.014 0.249 0.012 0.173 0.011

U/$

Riskmetrics 0.238 0.116 0.235 0.091 0.224 0.084 0.245 0.073
GARCH(1,1) 0.256 0.122 0.240 0.099 0.221 0.093 0.249 0.086
GARCH-D(1,1) 0.245 0.124 0.225 0.102 0.208 0.096 0.233 0.089
GJR-G-D(1,1) 0.243 0.125 0.224 0.102 0.206 0.096 0.232 0.089

ARFI -1.353 -1.345 0.366 0.093 0.319 0.073 0.272 0.067 0.254 0.058
ARFI-D -1.404 -1.388 0.403 0.088 0.324 0.072 0.274 0.066 0.255 0.058
ARFI-DR -1.437 -1.418 0.465 0.079 0.331 0.071 0.274 0.066 0.252 0.057
ARFI-DXR -1.438 -1.419 0.490 0.078 0.347 0.074 0.286 0.073 0.260 0.072
ARFI-DRL -1.439 -1.415 0.503 0.073 0.342 0.070 0.280 0.065 0.252 0.057
ARFI-DXRL -1.447 -1.423 0.555 0.066 0.370 0.069 0.297 0.067 0.265 0.063

STARFI-DXRL -1.449 -1.420 0.554 0.067 0.367 0.068 0.297 0.065 0.266 0.059

U/DM

Riskmetrics 0.241 0.099 0.268 0.081 0.285 0.075 0.341 0.068
GARCH(1,1) 0.245 0.101 0.261 0.084 0.272 0.079 0.333 0.073
GARCH-D(1,1) 0.243 0.101 0.259 0.084 0.270 0.079 0.329 0.072
GJR-G-D(1,1) 0.247 0.101 0.260 0.085 0.269 0.080 0.327 0.074

ARFI -1.875 -1.863 0.351 0.068 0.302 0.053 0.269 0.048 0.269 0.041
ARFI-D -1.954 -1.933 0.393 0.064 0.309 0.053 0.274 0.047 0.269 0.041
ARFI-DR -1.971 -1.947 0.433 0.060 0.312 0.052 0.272 0.047 0.261 0.041
ARFI-DRL -1.971 -1.942 0.469 0.057 0.320 0.051 0.276 0.047 0.266 0.041
ARFI-DXR -1.970 -1.946 0.452 0.059 0.326 0.053 0.285 0.050 0.277 0.046
ARFI-DXRL -1.975 -1.946 0.518 0.052 0.343 0.050 0.290 0.047 0.272 0.041

STARFI-DXRL -1.980 -1.951 0.513 0.053 0.341 0.050 0.288 0.046 0.269 0.039

Notes: The table presents the in-sample fit and out-of-sample forecast evaluation for daily DM/$, U/$ and
U/DM realized volatility. The first column shows the different models that were used for estimation and
forecasting. The GARCH type models were only used for forecasting. The second and third column give the
Akaike (AIC) and Schwarz (BIC) Information Criteria. Columns 4-11 show the evaluation of 1, 5, 10 and
20-day ahead forecasts of the realized standard deviation by means of the R2 in the regression of the true
realized standard deviation on a constant and the h-day ahead forecast for each of the models, and by means
of the mean squared prediction error (MSPE).
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Figure 1: Realized S&P Volatility

(a) Realized variance

(b) Realized standard deviation

(c) Log realized variance

Notes : Daily realized volatility measures for S&P 500 returns, for the period from
January 3, 1994, until December 29, 2000 (1767 observations).
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Figure 2: Realized Volatility Distributions

(a) Realized variance

(b) Realized standard deviation

(c) Log realized variance

Notes : Kernel density estimates of daily realized volatility measures for S&P 500
returns, based on observations for the period from January 3, 1994, until December
29, 2000 (1767 observations). The solid line is the estimated density of the realized
volatility measure (standardized to have zero mean and unit variance). The dashed
line is a standard normal density.
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Figure 3: Return Distributions

(a) Returns

(b) Standardized returns

Notes : Kernel density estimates of daily S&P 500 returns rt and standardized returns
rt/st (normalized to have zero mean and unit variance), based on observations for
the period from January 3, 1994, until December 29, 2000 (1767 observations). The
solid line is the estimated density of the returns (standardized to have zero mean
and unit variance). The dashed line is a standard normal density.
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Figure 4: Autocorrelation Functions for Returns and Realized Volatilities

(a) Returns

(b) Realized volatilities

Notes : Panel (a) shows autocorrelation functions of daily squared returns (circles)
and absolute returns (triangles), based on observations for the period from January 3,
1994, until December 29, 2000 (1767 observations). Panel (a) shows autocorrelation
functions of daily realized variance (circles), realized standard deviation (triangles)
and log realized variance (diamonds) for the same sample period. The dashed lines
are Bartlett 95% confidence bounds, computed as ±2/

√
T , where T denotes the

number of observations.
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Figure 5: Leverage Effects in Realized Volatility

Notes : Scatter plot of daily log realized variance and lagged returns and realized
volatility measures, based on observations for the period from January 3, 1994, until
December 29, 2000 (1767 observations). The solid line is the fit of the news impact
curve (2), where log realized volatility is regressed on a constant, the lagged absolute
return, a dummy for negative returns and an interaction term of this dummy with
the lagged absolute return. The dashed line is the fit of a symmetric news impact
curve, i.e. (2) with β2 = β3 = 0. The dot-dashed line is the fit from a nonparametric
regression of log realized volatility on the lagged return.
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Figure 6: Modeling the structural break

Notes : Plot of the daily log realized variance and the fit in the ARFI-SC model of
α0 + P (t) (solid line) and α0 + α1G(t; γ, τ) (dotted line) with P (t) and G(t; γ, τ)
being the polynomial and logistic function respectively, for the in-sample period
from January 3, 1994 until December 31, 1997.
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Figure 7: Transition function

(a) Transition function versus the transition variable st

(b) Transition function over time

Notes : Transition function in STARFI-SCDXRL model against the transition vari-
able and over time. The model was estimated for the in-sample period from January
3, 1994 until December 31, 1997.
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Figure 8: GARCH(1,1) Volatility Forecasts

(a) 1-day

(b) 5-days

(c) 20-days

Notes : Out-of-sample forecasts ŝt+h|t of 1-day, 5-day and 20-day standard deviation
obtained from a GARCH(1,1) model (solid lines) and realizations st+h|t+1 (dashed
lines) for the period from January 2, 1998, until December 29, 2000 (756 observations
for one-day ahead forecasts).
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Figure 9: ARFI-DXRL Realized Volatility Forecasts

(a) 1-day

(b) 5-days

(c) 20-days

Notes : Out-of-sample forecasts ŝt+h|t of 1-day, 5-day and 20-day standard deviation
obtained from the ARFI-DXRL model (solid lines) and realizations st+h|t+1 (dashed
lines) for the period from January 2, 1998, until December 29, 2000 (756 observations
for one-day ahead forecasts).
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Figure 10: Market Risk Capital

Notes : The graph shows the required capital (in percentage terms) to cover market
risk exposure which is calculated as MRCt+1 = max(V aR10

t , St × 1
60

∑59
i=0 V aR10

t−i)
based on volatility forecasts from the Riskmetrics , GJR-GARCH(1,1)-D and ARFI-
DXRL models from January 2, 1998, until December 29, 2000 (756 observations).
V aR10

t is the 99% VaR estimate for 10-day holding period. The first sixty 1-day VaR
estimates were used to construct the initial history needed to calculate MRCt+1

which is the reason why the series starts at observation 60 of the out-of-sample
period.
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Figure 11: Value-at-Risk estimates

(a) Riskmetrics

(b) GJR-GARCH(1,1)-D

(c) ARFI-DXRL

Notes : Realized returns (solid line) and 1-day 99% Value-at-Risk estimates based
on volatility forecasts for the Riskmetrics, GJR-GARCH(1,1)-D and ARFI-DXRL
models (dotted lines) for the period from January 2, 1998, until December 29, 2000
(756 observations). Black dots indicate the VaR exceptions.40
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