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We study the statistical properties of volatility, measured by locally averaging over a time wihdine
absolute value of price changes over a short time inteltalWe analyze the S&P 500 stock index for the
13-year period Jan. 1984 to Dec. 1996. We find that the cumulative distribution of the volatility is consistent
with a power-law asymptotic behavior, characterized by an expomer®, similar to what is found for the
distribution of price changes. The volatility distribution retains the same functional form for a range of values
of T. Further, we study the volatility correlations by using the power spectrum analysis. Both methods support
a power law decay of the correlation function and give consistent estimates of the relevant scaling exponents.
Also, both methods show the presence of a crossover at approximately 1.5 days. In addition, we extend these
results to the volatility of individual companies by analyzing a data base comprising all trades for the largest
500 U.S. companies over the two-year period Jan. 1994 to Dec. [99663-651X99)04808-4

PACS numbd(s): 89.90+n

[. INTRODUCTION the local average of the absolute price changes.
Understanding the statistical properties of the volatility
1Physicists are increasingly interested in economic timelso has important practical implications. Volatility is of in-
series analysis for several reasons, among which are the fdierest to traders because it quantifies the fgkand is the
lowing. (i) Economic time series, such as stock market indi-key input of virtually all option pricing models, including the
ces or currency exchange rates, depend on the evolution ofcdassic Black and Scholes model and the Cox, Ross, and
large number of interacting systems, and so is an example dtubinstein binomial models that are based on estimates of
complex evolving systems widely studied in physi@g.The the asset’'s volatility over the remaining life of the option
recent availability of large amounts of data allows the study[34,35. Without an efficient volatility estimate, it would be
of economic time series with a high accuracy on a widedifficult for traders to identify situations in which options
range of time scales varying fror¥1l min up to~1 yr.  appear to be underpriced or overpriced.
Consequently, a large number of methods developed in sta- We focus on two basic statistical properties of the
tistical physics have been applied to characterize the timgolatility—the probability distribution function and the two-
evolution of stock prices and foreign exchange rafiesl9.  point autocorrelation function. The paper is organized as fol-
Previous studie§1—33] show that the stochastic process lows. In Sec. II, we briefly describe the databases used in this
underlying price changes is characterized by several featurestudy, the S&P 500 stock index, and individual company
The distribution of price changes has pronounced tailsstock prices. In Sec. Ill, we discuss the quantification of
[1-7,14-20 in contrast to a Gaussian distribution. The au-volatility. In Sec. 1V, the probability distribution function is
tocorrelation function of price changes decays exponentiallgtudied, and in Sec. V, the volatility correlations are studied.
with a characteristic time of approximately 4 min. However, The appendix briefly describes a recently-developed method,
recent studied20-31 show that the amplitude of price called detrended fluctuation analy$BFA) that we use to
changes, measured by the absolute value or the squamgyantify power-law correlations.
shows power law correlations with long-range persistence up
to several months. These long-range dependencies are better
modeled by defining a “subsidiary proces§20-22, often II. DATA ANALYZED
referred to as th&olatility in economic literature. The vola- )
tility of stock price changes is a measure of how much the A. S&P 500 stock index
market is liable to fluctuate. The first step is to construct an The S&P 500 index from the New York Stock Exchange
estimator for the volatility. Here, we estimate the volatility as (NYSE) consists of 500 companies chosen for their market
size, liquidity, and industry group representation in the U.S.
It is a market-value weighted index, i.e., each stock is
*Electronic address: gopi@bu.edu weighted proportional to its stock price times number of
"Present address: Science & Finance, 109-111, rue Victor Hugghares outstanding. The S&P 500 index, is one of the most
92532 Levallois Cedex, France. widely used benchmarks of U.S. equity performance. We
*Electronic address: hes@bu.edu. Author to whom corresponanalyze the S&P 500 historical data, for the 13-year period
dence should be addressed. Jan. 1984 to Dec. 199fFig. 1(a)] with a recording fre-
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© 13-year period 1984-1996. The highlighted block shows possible
T 10 N “precursors” of the Oct. 1987 crash.

a7 '88 '89 '90 91 ‘ 03 94 95 '96 97 whereAt _is the_sampling time interval. Ir_1 the limit of small
Time [yr] changes irZ(t) is approximately the relative change, defined
by the second equality. We only count time during opening
FIG. 1. () Data analyzed: The S&P 500 indei(t) for the  hours of the stock market, and remove the nights, weekends,
13-year period 3 Jan. 1984-31 Dec. 1996 at sampling intervaland holidays from the data set, i.e., the closing and the next
At=1 min. These data include the data set analyzed by Mantegnapening of the market is considered to be continuous.
and Stanleyf18] and the extension of seven extra years. Note the The absolute value @& (t) describes the amplitude of the
large fluctuations, such as that on 19 Oct. 188¥ack Monday”).  fluctuation, as shown in Fig.(t). In comparison to Fig. (B),
The indexZ(t) has an increasing trend except for some crashesFig. 1(b) does not show visible global trends due to the loga-
such as the crashes in Oct. 1987 and May 1990. For the periodthmic difference. The large values & (t)| correspond to
studied the index can apparently be fit by a straight line on a semithe crashes and big rallies.
log graph, i.e., exponential growth with annual increase rate of \We define the volatility as the average |@.‘(t)| over a
~15%.(b) Amplitude of fluctuationgG(t)| (see text for definition  time windowT=nAt, i.e.,
with At=1 min.

t+n—-1
quency of 15 s intervals. The total number of data points in Vit== X |Gt (2)
this 13-year period exceed 4.5 million, and allows for a de- n o=

tailed statistical analysis. wheren is an integer. The above definition can be general-

ized [31] by replacing|G(t)| with |G(t)|?, where y>1
gives more weight to the large values |&(t)| and 0<<y
We also analyze the trades and quof€4Q) database <1 weights the small values 06(t)|.

which documents every trade for all the securities listed in  There are two parameters in this definition of volatility,
the three major U.S. stock markets—the New York Stockat andn. The parameteAt is the sampling time interval for
Exchange(NYSE), the American Stock Exchand@MEX),  the data and the parameteis the moving average window
and the National Association of Securities Dealers Auto-gjze Note that our definition of the volatility has an intrinsic
mated QuotatioiNASDAQ)—for the two-year period ff.O”? error associated with it. In principle, the larger the choice of
‘;Zt% r%s?[?’:;]t%rljtﬁg ;(?(?[i%e\é\t/i c?rtrlljggntigz Taanr';:é Ziglct)?cljli_n time interval T, the more accurate the volatility estimation.
to the market capitalization on Jan. 1, 1994. The S&P 50 iowever, a large value df also implies poor resolution in
index at anytime is approximately the sum of market capi- Fi'gure 2 shows the calculated volatili(t) for a large
talizations of these 500 compani&8]. The total number of averaging windowT=8190 min (about 1 monthwith At

B. Individual company stocks

data points analyzed exceed 20 million. =30 min. The volatility fluctuates strongly during the crash
of 1987. We also note that periods of high volatility are not
IIl. QUANTIFYING VOLATILITY sparse but tend to “cluster.” This clustering is especially

The term volatility represents a generic measure of thdnarked around the 1987 crgsh. The oscillato_ry patterns be-
magnitude of market fluctuations. Thus, many differentOre the crash could be possible precursmussibly related
quantitative definitions of volatility are use in the literature. {0 the oscillatory patterns postulated|iil,12). Clustering

In this study, we focus on one of these measures by estimaiSC 0CCUrs in other periods, e.g., in the second half of 1990.
ing the volatility as the local average of absolute priceThere are also extended periods where the volatility remains

changes over a suitable time interdlwhich is an adjust- &t @ rather low level, e.g., the years of 1985 and 1993.

able parameter of our estimate.
Figure Xa) shows the S&P 500 indeX(t) from 1984 to V. VOLATILITY DISTRIBUTION
1996 in semi-log scale. We define the price chagdqe) as A. Volatility distribution of the S&P 500 index
the change in the logarithm of the index 1. Center part of the distribution
Z(t+Ay)—Z(t) Figure 3a) shows the probability density functid®(V+)

GH=Inz(t+Ay-Inz(t)= Z(t) - @ of the volatility for several values of with At=30 min.
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& 2. Tail of the distribution
§ Although the log-normal seems to describe well the center
S part of the volatility distribution, Fig. @) suggests that the
E 107 | | ] distribution of the volatility has quite different behavior in
~ . Tc’f;;grr:}ﬁ the tail. Since our time window for estimating volatility is
% . o T=300 min quite large, it is d_ifficult to obiairi significant siatistics for the
“ A T=600 min tail. Recent studies of the distribution for price changes re-
< T=900 min ‘ < port power law asymptotic behavi¢d4,20,33. Since the
volatility is the local average of the absolute price changes, it
y g p g
102 | S , ‘ , FO‘< 4 is possible that a similar power law asymptotic behavior
830 -20 -10 0.0 10 20 3.0 might characterize the distribution of the volatility. Hence
Scaled Volatility we reduce the time windoW and focus on the “tail” of the

FIG. 3. (a) Probability distribution of the volatility on a log-log
scale with different time windows with At=30 min. The center

volatility.

part of the distribution shows a quadratic behavior on the log-log
scale. The asymptotic behavior seems consistent with a power law. 0

(b) Center of the distribution: The volatility distribution for differ-

10

ent window sizesT using the log-normal scaling form/vexp@

+14)P(V;) as a function of In(Vy)—a)/\/wv, wherea and v are
the mean and the width on a logarithmic scale. The scaled distribu-
tions are shown for the region shown by the box(a. By the
scaling, all curves collapse to the log-normal form wétk0 and

v=1, exg—(Inx)?] (solid line).

The central part shows a quadratic behavior on a log-log
scale[Fig. 3@], consistent with a log-normal distribution
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[30]. To test this possibility, the appropriately scaled distri-

bution of the volatility is plotted on a log-log plpFig. 3(b)].

10

The distributions of volatilityV;, for various choices off
(from T=120 min up toT=900 min), collapse onto one

curve and are well fit in the center by a quadratic function on
a log-log scale. Since the central limit theorem holds also fo

We compute the cumulative distribution of the volatility,
Eq. (2) for different time scales, Fig.(&. We find that the

© T=32 min
= T=64 min
< T=128 min
L]
o)
-
S&P 500 index o
1 10 100
Scaled volatility

FIG. 5. (a) The cumulative distribution function of the volatility,
rscaled by the standard deviation, for time scalds

correlated serie$39], with a slower convergence than for _35 64 128 min with sampling time interval=1 min, using

noncorrelated processp$ 15,29, in the limit of large values

nonoverlapping windows for the S&P 500 stock index. Regression

of T, one expects tha& (V) becomes Gaussian. However, alines vyield estimates of the exponent=3.10+0.08 for T
log-normal distribution fits the data better than a Gaussians=32 min,
as is evident in Fig. 4 which compares the best log-normal fifor T=128 min. The fits were performed over the range of scaled

with the best Gaussian fit for the dafta0]. The apparent

p©=3.19+-0.10 for T=64 min, andx=3.30+0.15

volatility greater than 1 standard deviation. Choices\ofrom 16

scaling behavior of volatility distribution could be attributed and 32 min were also studied for the same values athown.

to the long persistence of its autocorrelation functj@s)]

(Sec. V.

Results obtained for these cases and the valugs obtained are

consistent with the present case.
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cumulative distribution of the volatility is consistent with a

power law asymptotic behavior %ﬁ@:@amm o T<10 min
= 107 : Q\@\L n T=20 min
1 L e © T=40 min
P(Vi>Xx)~—. (3) 2 ‘94@ 2 T=80 min
XM S
2 -3
. . . . N@ 10
Regression fits yield estimategt=3.10=0.08 for T 2 L=3.10
=32 min with At=1 min, well outside the stable kg 5 )
range O<u<2. £ 10° Individual C ) 8
For larger time scales the asymptotic behavior is difficult ~ © nevifualTompantes Ny .
to estimate because of poor statistics at the tails. In view of P @ \&\%'vggg;
the power law asymptotic behavior for the volatility distri- 107 ‘ ‘ >
bution, the drop-off ofP (V) for low values of the volatility 10° 10’ 10°
could be regarded as a truncation to the power law behavior, Scaled volatility
as opposed to a log-normal.
10° L 32233,
B. Volatility distribution for individual companies Do 0By © T=10 min
. . . L R e o T=20 min
In this section, we extend the investigation of the nature % Y < T=40 min
of this distribution to the individual companies comprising E 10 N 4 T=80 min
the S&P 500, where the amount of data is much larger, g‘ — g\g
which allows for better sampling of the tails. § 10 | N
From the TAQ data base, we analyze 500 time series = E\%
Si(t), where S is the market capitalization of compary 2 T4u=420 By
(i.e., the stock price multiplied with the number of outstand- 5 yg¢ | Individual companies CH
ing shareg i=1,...,500 is the rank in descending order of & o) Y ‘
the company according to its market capitalization on 1 Jan. Ny o
1994 and the sampling time is 5 min.The basic quantity stud- 10° 5 x -,
ied for individual stocks is the change in logarithm of the 10 10 10
market capitalization for each company, Scaled volatility
S(t+At)—S(t) FIG. 6. (a) The cumulative probability distribution on a log-log
Gi(H)=InS(t+At)—InS(t)= , (4 scale of the normalized volatility for all the 500 individual compa-
Si(t) nies for various averaging window lengths, with a sampling time

o . At=5 min. Power law regression fits yield=3.10+0.11 for T
where theS denotes the market capitalization of stock _ 4 min, u=3.16+0.15 for T=20 min, x=3.28+0.17 for T

=1,...,500 andAt=5 min. N _ _ =40 min, ande=3.38+0.18 forT=80 min. These fits were per-
As before, we estimate the volatility at a given time by formed in the region of scaled volatility between 1 and 30 standard
averaging G;(t)| over a time windowrl =nAt, deviations.(b) The probability density function of the normalized

volatility for single companies. Regression fits yield a slope of 1
i , +u=4.06£0.10 for T=10 min, 1+u=4.15+0.13 for T
VT=VT(t)=ﬁ Z |Gi(t )|- (5 =20 min, 1+wu=4.22+0.15 for T=40 min, and * x=4.38
vt +0.16 for T=80 min. The fits were performed in the region of
scaled volatility between 1 and 50 standard deviations.

t+n—1

A normalized volatility is then defined for each company,
W
WIVE) = (Vp)?

where (- -.) denotes the time average estimated by NONy.. . o toff at small values of the volatility. Regression fits
overlapping windows for different time scalés

Figure Ga) shows the cumulative probability distribution y';')% ;h?egr?:er?natzith} tILrL]; :é?i%a?éloff:grrn-rt;elgum:;rlléltil\?e
of the normalized volatilityv; for all 500 companies with g 9 °

aiff t . indowd. where th ling int | distribution. Both the probability density and the cumulative
nerent averaging windows, where the sampling interva distribution, Figs. 7 and 8, show that the volatility distribu-
At=5 min. We observe a power law behavior

tion for individual companies are consistent with power-law
asymptotic exponentu=~3, in agreement with the
P(vi>x)~ i (7) asymptotic behavior of the volatility distribution for the S&P
G 500 index.

In summary, the asymptotic behavior of the cumulative
Regression fits yieldqu=3.10+0.11 for T=10 min. This volatility distribution is well described by a power law be-
behavior is confirmed by the probability density function havior with exponentu~3 for the S&P 500 index. This
shown in Fig. €b), power law behavior also holds for individual companies with

) ) 1
vi=vi(t) (6) P(vy)~ e ()

T
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0.0 0 100 200 300 (b) Autocorrelation function ofg(t)| in the double log plot, with
) ) sampling time intervaAt=1 min. The autocorrelation function of
Time [min]

g(t) decays exponentially to zero within half an houe(t)
~exp(—t/7) with 7=4.0 min. A power law correlatio€(t)~t~"”
exists in the|g(t)| for more than three decades. Note that both
% phs are truncated at the first zero valu€¢f). The solid line in

FIG. 7. The 1-min interval intraday pattern for absolute price
changes of the S&P 500 stock ind&k084-1996 (shifted and for
the absolute price changes, averaged for the chosen 500 compan is the fit to the function 1/(2-t7) from which we obtainy

(1994-199% The length of the day is 390 minutes. In order to " . L .
avoid the detection of spurious correlations, this daily pattern is_0'3Oi 0.08. The horizontal dashed line indicates the noise level.

removed. Otherwise one finds peaks in the power spectrum at the

frequencies of 1/day and larger. Note that both the curves have \A/here the i_nde>g' runs OYer all the trading day in the
similar pattern with large values within the first 15 min after the L3-year period 1=3309 in our studyandt,, denotes the
market opens. time in the day. In order to avoid the artificial correlation

caused by this daily oscillation, we remove the intraday pat-
similar exponenj.~3 for the cumulative distribution, with a tern from G(t) which we schematically write as
drop-off at low values.

9(t) =G(tgay)/Altgay), (10

for all days. Each data poirg(t), denotes the normalized

absolute price change at timewhich is computed by divid-
Unlike price changes that are correlated only on verying each POINIG(tyqy) at timetg, of the day byA(ty,) for

short time scalep40] (a few minuteg the absolute values of gl days.

price changes show long-range power-law correlations on Three methods—correlation function, power spectrum,

time scales up to a year or mof20-31. Previous works and detrended fluctuation analy$3FA)— are employed to

have shown that understanding the power-law correlationgyuantify the correlation of the volatility. The pros and cons

specifically the values of the exponents, can be helpful fobf each method and the relations between them are described

guiding the selection of models and mechani$g®. There-  in the Appendix.

fore, in this part we focus on theuantificationof power-law

correlations of the volatility. To quantify the correlations, we 2. Correlation quantification

use|G(t)| instead ofV(t), i.e., time windowT is set to 1

min with At=1 min for the best resolution.

V. CORRELATIONS IN THE VOLATILITY

A. Volatility correlations for S&P 500 stock index

Figure 8a) shows the autocorrelation function of the nor-
malized price changes(t), which shows exponential decay
with a characteristic time of the order of 4 min. However, we
find that the autocorrelation function [gf(t)| has power law

It is known that there exist intraday patterns of marketdecay, with long persistence up to several months, K. 8
activity in the NYSE and the S&P 500 ind¢23-25,42. A This result is consistent with previous studies on several eco-
possible explanation is that information gathers during theyomic time serie§20—28,4Q.
time of closure and hence traders are active near the opening More accurate results are obtained by the power spectrum
hours, and many liquidity traders are active near the closingrig. 9a)], which shows that the data fit not one but rather
hours[25]. We find a similar intraday pattern in the absolute two separate power laws: fét>f,. , S(f)~f A1, while for
price change$G(t)| (Fig. 7). In order to quantify the corre- f<f. | S(f)~f P2, where
lations in absolute price changes, it is important to remove

1. Intraday pattern removal

this trend, lest there might be spurious correlations. The in- B,=0.31+0.02, f>f,, (12)
traday patterrA(ty,,), Wherety,, denotes the time in a day,
is defined as the average of the absolute price change at time B>,=0.90+0.04, f<f,, (12)
tyay Of the day for all days:
and
i
121 |G (tday)| 1

Atz =" ©) =g min 13
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107! , : : in good agreement with the estimates of the exponents from
4 (a) the power spectrum. The crossover time is close to the result
. one day obtained from the power spectrum, with
107 174 .

Shuffled data =0

ty~1/f~600 min (17)

-3
10 or approximately 1.5 trading days.

-4

1077 v 1 B. Volatility correlations for individual companies

%0000 The observed correlations in the price changes and the
10° | B,=0.31" ®oeeg | absolute price changes for the S&P 500 index raises the
question if similar correlations are present for individual
companies which comprise the S&P 500 ind&s].

In the absolute price changes of the individual companies,
there is also a strongly marked intraday pattern, similar to
that of the S&P 500 index. We compute the intraday pattern
for single companies in the same sense as before,

Power spectrum S(f)

107

w

sy
o
T

N
J_Zl |G{(tday)|
Ai(tday)E N ) (18)

N

where timetg,, refers to the time in the day, the index
denotes companies, and the indexins over all days—504
days. In Fig. 7 we show the intraday pattern, averaged over
all the 500 companies and contrast it with that of the S&P
500 stock index.

In order to avoid the intra-day pattern in our quantifica-
tion of the correlations, we define a normalized price change
10° for each company,

9i(1)=Gi(tgay/Ai(tgay). (19

FIG. 9. Plot of (a) the power spectrung(f) and (b) the de- . . .

trended fluctuation analysi(t) of the absolute values of detrended The average autocorrefation functlon o () ' !
incrementsg(t) with the sampling time intervaAt=1 min. The  — L2, - - . P00, shows weak correlations up to 10 min, after

lines show the best power law fitR (values are better than 0.99) Which there is no ;tatistical!y significant correlatio.n. The av-
above and below the crossover frequency.of (1/570) mimtin  €rage autocorrelation function for the absolute price changes
() and of the crossover timé, =600 min in (b). The triangles Shows long persistence. We quantify the long-range correla-
show the power spectrum and DFA results for the “control,” tions by two methods—power spectrum and DFA. In Fig.
shuffled datasee text for details 10(a), we show the power spectral density for the absolute
price changes for individual companies and contrast it with
the S&P 500 index for the same two-year period. We also
The DFA method confirms our power spectrum resulteoPserve a similar crossover phenomena as that observed for

[Fig. 9@]. From the behavior of the power spectrum, wethe S&P 500 index. The exponents of the two observed
expect that the DFA method will also predict two distinct POWer laws are
regions of power law behaviol; (t)~t%t for t<t, with

exponenta;=0.66 andF(t)~t“2 for t>t, with a,=0.95,

where the constant time scate=1/f,,, where we have

used the relatiof39],

Fluctuation F(t)

Shuffled data
0=0.50

10° 10
t [min]

wheref is the crossover frequency.

B1=0.20+0.02, f>f,, (20
B,=0.50+0.05, f<f,, (21

where the crossover frequency is

a=(1+p)/2. (14 1
f>< :ﬂ) min~ . (22)
Figure 9b) shows the results of the DFA analysis. We ob-

serve two power law regions, characterized by exponents In Fig. 10b), we confirm the power spectrum results by

the DFA method. We observe two power law regimes with

a;=0.66+0.01, t<t,, (15) -
a;=0.60+0.01, t<t,, (23)

@,=0.93+0.02, t>ty (16) a,=0.74+0.03, t>t, (24)
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t [min]
10° | ® ' T ' ' _ FIG. 11. DFA results of removing top 5% and 10% data points
) of the|g(t)| for the S&P 500 data. The crossover time is approxi-
mately 600, 1000, and 10 000 min for the data removing the top 5%
= 102 and the top 10%, respectively. The DFA exponentfor the short
t time scale does not change, the power law regression fit giyes
S ~0.66 for all three curves. Regression fits for the expomergive
§ 10' 0.91+0.02, 0.910.03, and 1.020.04 for three cases, respec-
‘g tively.
10° C. Additional remarks on power-law volatility correlations
Y Even though several different methods give consistent re-
» sults, the power-law correlation of the volatility needs to be
10 10 Py~ 0 10 10° tested. It is known that the power-law correlation could be

. caused by some artifacts, e.g., anomaly of the data or the
t [min] . TR
peculiar shape of the distribution, etc.
FIG. 10. (a) The power spectrum for the absolute values of the )
normalized price changes for individual companies, with the sam- 1. Data shuffling
pling time intervalAt=5 min. This is obtained by averaging the  since we find the volatility to be power-law distributed at
power spectrung;(f) for all the 500 companies. We contrast this he tajl, to test that the power-law correlation is not a spuri-
with the power spectrum of the S&P 500 for the same two-yeary g grtifact of the long-tailed probability distribution, we
period 1994—-1995. Similar to the S&P 500, we observe two powe%huffled each point of th@(m randomly for the S&P 500

laws separated by a crossover frequency. Power law regression f'&sata. The shuffling operation keeps the distributiorggt)|

3ﬁeld exponents, =0.20 for the .h'gh frequency region anh unchanged, but destroys the correlations in the time series
=0.50 for the low frequency region. The crossover occurs at ap-

proximately 700 min—slightly larger than that found for the S&P totally if there are any. DFA measuremenf[ of this rar]domly
500 index.(b) The average DFA results of 5 min sampledt)| for shuffled data dogs not shovx_/ any correlations and gives ex-
the single companies, averaged over all 500 companies. It is Corp_onenta=0.5(_)(F|_g. 9—confirming that the_obse_rve_d ang-
trasted with the result of the S&P 500 index. There are two regiond@Nge€ correlation is not due to the heavy-tailed distribution of
characterized by power laws with exponentg=0.60 for small ~ the volatility.
time lags andv,=0.74 for large time lags.

2. Outliers removal

with a crossover As an additional test, we study how the outlidisg
event$ of the time seriesg(t)| affect the observed power-
law correlation. We removed the largest 5 and 10 % events

t, ~1/f,~700 min. (25)  of the |g(t)| series and applied the DFA method to them,
respectively, the results are shown in Fig. 11. Removing the
outliers does not change the power-law correlations for the
The exponents characterizing the correlations in the abscn©rt time scale. However, that the outliers do have an effect

lute price changes for individual companies are on averag@” the long time scale correlations, the crossover time is also

smaller than what is observed for the S&P 500 priceaﬁeCted'

changes. This might be due to the cross-dependencies be- _ _

tween price changes of different companies. A systematic 3. Subregion correlation

study of the cross-correlations and dependencies will be the The long range correlation and the crossover behavior ob-

subject of future work41]. served for the S&P 500 index are for the entire 13-year pe-
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APPENDIX: METHODS TO CALCULATE
CORRELATIONS

(b) o, , ,
_____ o 1. Correlation function

The direct method to study the correlation property is the
autocorrelation function

(9(to)g(to+1)) —(g(to))?
0.60 C(t)=

'84 85 '86 87 88 80 90 01 92 '93 94 95 96 07 (9%(to)) —(9(to))?
Time [yr]

0Ly, 0Ly

PR Y

, (A1)

S anesin~

) ) wheret is the time lag. Potential difficulties of the correlation
FIG. 12.(a) The S&P 500 index(t) for the 13-year periodb)  fynction estimation are the followingi) The correlation
Results of dragging a window of size 1 yr down the same data bas¢ynction assumes stationarity of the time series. This crite-
one month at a time, and calculating the best fit exponent g, js not usually satisfied by real-world daté) The cor-
(dashed ling and o, (full line) for the time intervals<t, andt  rojation function is sensitive to the true average value
>, respectively, where, =600 min, (g(te)) of the time series, which is difficult to calculate re-

. .. _liably in many cases. Thus the correlation function can
riod. Next, we study whether the exponents characterizing oo provide only qualitative estimati89]
the power-law correlation are stable, i.e., does it still hold for '

periods smaller than 13 years. We choose a sliding window
(with size 1 yy and calculate both exponents, and «,
within this window as the window is dragged down the data A second widely used method for calculating correlation
set with one month steps. We fiflig. 12b)] that the value properties is the power spectrum analysis. Note that the
of a is very “stable” (independent of the position of the power spectrum analysis can only be applied to linear and
window), fluctuating slightly around the mean value 2/3. stationary(or strictly periodig time series.

However, the variation of, is much greater, showing sud-

den jumps when very volatile periods enter or leave the time 3. Detrended fluctuation analysis

window. Note that the error in estimating, is also large.

2. Power spectrum

The third method we use to quantify the correlation prop-
erties is called detrended fluctuation analy&§A) [43,44).
VI. CONCLUSION The DFA method is based on the idea that a correlated time
series can be mapped to a self-similar process by integration

of the volatility for the S&P 500 index seems to be well fit _[39.’43’44' Thergfore, mgasuring the self-simi!ar feature can
by a log normal distribution in the center part. However thelndwectly tell us information about the correlation properties.
tail of the distribution is better described by a power law, | € advantages of DFA over conventional meth¢eg.,
with exponent ¥ u~4, well outside the stable kg range. spectr_al analysis and Hurst a”"%'ys"’e that it permits the
The power law distribution at the tail is confirmed by the d_etectmn of Ion_g-range correlatl_ons embedc_ied In & nonsta-
study of the volatility distribution of individual companies, tionary time series, and also .‘"‘VO'dS the spunous_detectlon of
for which we find approximately the same exponent. We alsgiPparent !O”Q'far.‘ge correlations that are an artifact of non-
find that the distribution of the volatility scales for a range ofs.tatlonar'ltles. This mgthod has been valldatgd on ;ontrol
time intervals. time series that consist of long-range correlations with the

We use the detrended fluctuation analysis and the pow F[fAerposi;iog r?f a Inonztationary ext?rrllal tre[r;t_k&%gi. Th:
spectrum to quantify correlations in the volatility of the S&P method has also been successiully applie to ‘?teCt
500 index and individual company stocks. We find that thelong-range correlations in h|ghly.complex heart beat time
volatility is long-range correlated. Both the power spectrumse”es[44’4a’ and other physiological signald6].

and the DFA methods show two regions characterized b){) AdescI:rlptlon of the DIFA ati?;g'jnm II:n the cont%l(t of heart
different power law behaviors with a crossover at approxi- eat analysis appears elsewhigt®,44. For our problem, we

mately 1.5 days. Moreover, the correlations show power-la/fi'St integratelg(i)| time series withN total data points

decay, often observed in numerous phenomena that have a v

self-similar or “fractal” origin [47-51]. The scaling prop- "N ;

erty of the volatility distribution, its power-law asymptotic y( )_21 9. (A2)
behavior, and the long-range volatility correlations suggest

that volatility correlations might be one possible explanationFigure 13b) showsy(t’) after subtracting the *“global”
for the observed scaling behavidi8] for the distribution of  trend, computed by performing a linear fit in the entire range
price change$37]. of y(t"). Figures 180),13(c) show the integrated time series

In this study, we find that the probability density function
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(a) Absolute price change

60/
N L

200

(b) After iintegration

i
400

i
600 1000

Time [min]

Time t [min]

FIG. 13. (a) Time series of absolute price changgsi)| sampled at 1-min intervals. Paitis) and (c) show the integrated time series
y(t") after subtracting its “global” trend. The global trend is computed by performing a linear fit in the entire rap@e ofThe time series
y(t") divided into boxes of equal lengthIn each box, a least squares linear fit is made to the data, representing thecloda that box.
Next we detrend the integrated time sernyét’) by subtracting the local trengl(t’) in each box(d) The root-mean-square fluctuatiéit)

as a function of various box sizésdefined in Eq(A3).

y(t') divided into boxes of equal length In each box, a

In summary, we have the following relationships be-

least squares fit to the data is performed, representing tH¥/€en, above three methods.

trend in that box. They coordinate of the straight line seg-

(i) For white noise, where the value at one instant is com-

ments is denoted by,(t’). Next we detrend the integrated pletely uncorrelated with any previous values, the integrated

time seriesy(t’), by subtracting the local treng,(t’), in

value, y(t'), corresponds to a random walk and therefore

each box. The root-mean-square fluctuation of this integrateg = 0-5, as expected from the central limit theorp#i—49.

and detrended time series is calculated

N
> [yt —y(tH12

t'=1

1
F=/§ (A3)

This computation is repeated over all time scalbex
sizeg to provide a relationship betwedn(t), the average
fluctuation, and the box size In our case, the box size
ranged from 10 min to TOmin (the upper bound of is
determined by the actual data lengtiypically, F(t) will
increase with box size[Fig. 13d)]. A linear relationship on

The autocorrelation functio(t) is 0 for anyt (time-lag
not equal to 0. The power spectrum is flat in this case.

(i) Many natural phenomena are characterized by short-
term correlations with a characteristic time scal@nd an
autocorrelation functiol©(t) that decays exponentialfy.e.,

C(t) ~exp(t/7)]. The initial slope of lo§(t) vs log may be
different from 0.5, nonetheless the asymptotic behavior for
large window sizes$ with = 0.5 would be unchanged from
the purely random case. The power spectrum in this case will
show a crossover from fl9 at high frequencies to a constant
value (white) at low frequencies.

(i) An « greater than 0.5 and less than or equal to 1.0
indicates persistent long-range power-law correlations, i.e.,

a double log graph indicates the presence of power law scaz(t)~t~”. The relation between and y is
ing. Under such conditions, the fluctuations can be charac-

terized by a scaling exponeat the slope of the line relating
logF(t) to logt [Fig. 13d)].

y=2—2a. (Ad)
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Note also that the power spectr@f) of the original signal (v) When a>1, correlations exist but cease to be of a
is also of a power-law form, i.eS(f)~ 1/f?. Because the power-law form.
power spectrum density is simply the Fourier transform of The a exponent can also be viewed as an indicator of the
the autocorrelation functio@=1—y=2a—1. The case of ‘“roughness” of the original time series: the larger the value
a=1 is a special one which has long interested physicist®f «, the smoother the time series. In this context, ldise
and biologists—it corresponds tof ioise (3=1). can be interpreted as a compromise or “trade-off” between
(iv) When 0<a<0.5, power-lawanticorrelations are  the complete unpredictability of white noideery rough
present such that large values are more likely to be followedlandscape”) and the much smoother landscape of Brown-

by small values and vice ver$ag]. ian noise[52].
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