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Previous studies indicated that nonlinear properties of Gaussian distributed time series with long-range
correlations, u;, can be detected and quantified by studying the correlations in the magnitude series |u;|, the
“volatility.” However, the origin for this empirical observation still remains unclear and the exact relation
between the correlations in u; and the correlations in |u;| is still unknown. Here we develop analytical relations
between the scaling exponent of linear series u; and its magnitude series |u;|. Moreover, we find that nonlinear
time series exhibit stronger (or the same) correlations in the magnitude time series compared with linear time
series with the same two-point correlations. Based on these results we propose a simple model that generates
multifractal time series by explicitly inserting long range correlations in the magnitude series; the nonlinear
multifractal time series is generated by multiplying a long-range correlated time series (that represents the
magnitude series) with uncorrelated time series [that represents the sign series sgn(u;)]. We apply our tech-
niques on daily deep ocean temperature records from the equatorial Pacific, the region of the EI-Nind phe-
nomenon, and find: (i) long-range correlations from several days to several years with 1/f power spectrum, (ii)
significant nonlinear behavior as expressed by long-range correlations of the volatility series, and (iii) broad

multifractal spectrum.
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I. INTRODUCTION

Natural systems often exhibit irregular and complex be-
havior that at first look erratic but in fact possesses scale
invariant structure (e.g., [1,2]). In many cases this nontrivial
structure points to long-range temporal correlations meaning
that very far events are actually (statistically) correlated with
each other. Long-range correlations are usually characterized
by scaling laws where the scaling exponents quantify the
strength of these correlations. However, it is clear that the
two-point long-range correlations reveal just one aspect of
the complexity of the system under consideration and that
higher order statistics is needed to fully characterize the sta-
tistical properties of the system.

The two-point correlation function is in some cases used
to quantify the scale invariant structure of time series (long-
range correlations), while the g-point correlation function
quantifies also the higher order correlations. In some cases
the g-point correlation function is trivially related to the two-
point correlation function—the scaling exponents of different
moments are linearly dependent on the second moment scal-
ing exponent. Processes with such correlation function are
termed “linear” and “monofractal” since just a single expo-
nent that determines the two-point correlations (and thus the
linear correlations) quantifies the entire spectrum of ¢ order
scaling exponents. In other cases, the relation between the
g-point correlation function has nontrivial relation to the
two-point correlation function, and a (nontrivial) spectrum of
scaling exponents is needed to quantify the statistical prop-
erties of the system; processes that have such nontrivial spec-
trum are called “nonlinear” and “multifractal.” The classifi-
cation into linear and nonlinear processes is important for
understanding the underlying dynamics of natural time series
and for model development. Moreover, the nonlinear proper-
ties of natural time series may have practical diagnosis use

(e.g., [3]).
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Direct methods for measuring the multifractal spectrum
[4-7] are rather complicated, involve advanced mathematical
techniques (like the wavelet transform, see below), and re-
quire long time series. Recently, a simple measure for non-
linearity of time series was suggested [3]. Given a time series
u;, the correlations in the magnitude series (volatility) |u;]
may be related (in some cases) to the nonlinear properties of
the time series; basically, when the magnitude series is cor-
related the time series u; is nonlinear. It was also shown that
the scaling exponent of the magnitude series may be related,
in some cases, to the multifractal spectrum width. However,
these observations are empirical and the reasons underlying
these observations still remain unclear.

Here we develop an analytical relation between the scal-
ing exponent of the original time series u; and the scaling
exponent of the magnitude time series |u;| for linear series.
We first show that when the original time series is nonlinear,
the corresponding scaling exponent of the magnitude series
is larger than (or in some cases equal to) the exponent of
linear series and that the correlations in the magnitude series
increase as the nonlinearity of the original series increases.
These relations may help to identify nonlinear processes and
to quantify their nonlinearity. Then, based on these results
we suggest a generic model for multifractality by multiply-
ing random signs with long-range correlated noise, and show
that the multifractal spectrum width and the volatility expo-
nent increase as these correlations become stronger. There
are thus two objectives for the present study: (i) to provide a
relation between the linearity/nonlinearity of the series under
consideration and the long-range correlations in the magni-
tude series and (ii) to propose a generic model for multifrac-
tality.

The paper is organized as follows: in Sec. Il we present
some background regarding nonlinear processes and magni-
tude (volatility) series correlations. In Sec. IIT we develop an
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analytical relation between the original time series scaling
exponent « and the magnitude series exponent «,; we con-
firm the analytical relation using numerical simulation. We
then study in Sec. IV the relation between volatility correla-
tions and the multifractal spectrum width of several models
with well known multifractal properties. Using both volatil-
ity and multifractal analysis we demonstrate the nonlinearity
of deep ocean temperature time series from the equatorial
Pacific. Finally, we introduce a simple model that generates
multifractal time series by explicitly inserting long range cor-
relations in the magnitude series. A summary of the results is
given in Sec. V.

II. NONLINEARITY AND VOLATILITY CORRELATIONS

A. Two-point correlations

The long range correlations of a time series {u;} (i
=0,1,2,...,N) can be evaluated using the two-point corre-
lation function (uu;) ({-) stands for expectation value); when
u; is long-range correlated and stationary the two-point cor-
relation function is (u;u;) ~ li—jI7Y (0<y<1)[8,9]. It s pos-
sible to estimate the scaling exponent of u; using various
methods, such as the power spectrum, fluctuation analysis
(FA) [10], detrended fluctuation analysis (DFA) [2,10,11],
wavelet transform [4], and others; see [8] for more details.
These different techniques characterize the linear two point
correlations in a time series with a scaling exponent which is
related to the scaling exponent 7.

In this study we use the FA method for the analytical
derivations since this method is relatively simple. In the FA
method the sequence ; is treated as steps of a random walk
(i.e., X,==!_yu;); then the variance of its displacement is
found by averaging over different time windows of length 7.
The scaling exponent « of the series (also referred to as the
Hurst exponent H) can be measured using the relation
var(X,) =(X?)—=(X,)>~1** where var(-) is the variance; the
scaling exponent « is related to the correlation exponent y by
2—vy=2a.

B. High order correlations

A more complete description of the stochastic process {u;}
with a zero mean is given by its multivariate distribution:
P(ug,u;,u,,...). It is equivalent to the knowledge stored in
the correlation functions of different orders [12,13]: (u;),
Quu ), Cwgujug), (i), etc. In many cases it is practical to
use the cumulants of different orders C, which are related to
the g order correlation function by [13]:

C,={u)=0, (1)
G, = <’/‘iuj>’ (2)
Cs = (ujujuy), (3)
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Cy = ujjuany) — () gy — () i) — (i),

(4)

and so on. Note that the first moment (u;) in Egs. (1)—(4) and
throughout the paper is zero, to allow simpler analytical
treatment.

For a linear process (sometimes referred to as “Gaussian”
process), all cumulants above the second are equal to zero
(Wick’s theorem) [13]. Thus, in this case, the two-point cor-
relation fully describes the process [5,14], since all correla-
tion functions (of positive and even order) may be expressed
as products of the two-point correlation function (u;u;).

Processes that are nonlinear (or “multifractal””) have non-
zero high order cumulants. The nonlinearity of these pro-
cesses may be detected by measuring the multifractal spec-
trum [5,6] using advanced techniques, such as the wavelet
transform modulus maxima [4] or the multifractal DFA (MF-
DFA) [7]. In MF-DFA we calculate the g order correlation
function of the profile X,=3!_,u; and the partition function is
Z,(t)=(|X,|%). For time series that obey scaling laws the par-
tition function is Z,(t) ~ 14%4)_ Thus, the “spectrum” of scal-
ing exponents a(g) characterizes the correlation functions of
different orders. For a linear series, the exponents a(g) will
all give a single value « for all ¢ [7].

C. Volatility correlations

A known example for the use of volatility correlations
(defined below) is econometric time series [ 15]. Econometric
time series exhibit irregular behavior such that the changes
(logarithmic increments) in the time series have a white
noise spectrum (uncorrelated). Nonetheless, the magnitudes
of the changes exhibit long-range correlations that reflect the
fact that economic markets experience quiet periods with
clusters of less pronounced price fluctuations (up and down),
followed by more volatile periods with pronounced fluctua-
tions (up and down). This type of correlation is referred to as
“volatility correlations.”

Given a time series u;, the magnitude (volatility) series
may be defined as |Au;|=|u;,,—u,|. The scaling exponent of
the magnitude series is the volatility scaling exponent «,.
Correlations in the magnitude series are observed to be
closely related to nonlinearity and multifractality [3,16,17].

In this paper we refer to “volatility” with two small dif-
ferences. First, we consider the square of the series elements
rather than their absolute values. According to our observa-
tions, this transformation has negligible effect on the scaling
exponent ¢, but it substantially simplifies the analytical
treatment. Second, for simplicity, we also consider the series
itself rather than the increment series. That is: the volatility
series is defined as ul2 rather than |Aw,|. Note that in most
applications the absolute values of the increment series are
considered instead of the absolute values of the series itself,
since the original series is mostly nonstationary (defined be-
low); here we overcome this problem by first considering
stationary series. In the numerical and analytical analysis
presented in this paper we use the time series u; and the
volatility series uiz; nevertheless, we introduce the series Au;,
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FIG. 1. (Color online) Magnitude series scaling exponent «, vs
the two-point correlation exponent a for linear sequences u;. The
solid line represents results for synthesized sequences of length 2'3,
averaged over 15 configurations, for ulz and |u;| (these two coin-
cide). The circles represent the analytical reconstruction taking into
account corrections due to finite size effects and nonstationarity.
Analytical results for N— o are given by the dashed line.

|Auy, and |u,| to enable comparison of the results presented
here to those of previous publications.

D. Stationary and nonstationary time series

Series with correlation exponent 0 << a <1 are stationary,
meaning that their correlation function depends only on the
difference between points i and j, i.e., (uu;)=f(|i-j|), and
their variance is a finite constant that does not increase with
the sequence length. On the other hand, sequences with «
> 1 are nonstationary and have a different form of correla-
tion function that depends also on the absolute indices i and
Jo Cwuy=i2*24 j272—|i— j|**=%; see [8]. Scaling exponents
of nonstationary series (or series with polynomial trends)
may be calculated using methods that can eliminate constant
or polynomial trends from the data [4,10,11].

II1. VOLATILITY CORRELATIONS OF LINEAR TIME
SERIES

We proceed to study the relation between the volatility
correlation exponent «, and the original scaling exponent «
for linear processes, both numerically and analytically.

A. Simulations

We generate artificial long-range correlated linear se-
quences u; with different values of « in the range «
€ (0,1.5] as follows [18]: (i) generate Gaussian white noise
series, (ii) apply Fourier transform on that series, (iii) multi-
ply the power spectrum S(f) by 1/|f|# where B=2a—1 and
f#0, and (iv) apply inverse Fourier transform. The resultant
series is long-range correlated with a scaling exponent . We
measure the volatility scaling exponent «,, i.e., the scaling
exponent of u? (and |u;]), versus the original scaling expo-
nent. The results are plotted in Fig. 1.
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The simulations indicate that the dependence of «, on «
for linear series may be divided into three regions: for «
<3/4 we obtain a,=~1/2, for a>1.25 we obtain a,~ a,
while for 0.75<a<1.25 there is a transition region. These
results were obtained using the DFA method which can
handle nonstationary time series [19].

We note that for @>1.25 the series is highly nonstation-
ary, i.e., it is most of the time either above or below 0, apart
from few crossing points. Thus, the behavior of the series u;
is not very different from the behavior of its absolute value
|u;|, and therefore it is not surprising that a,=a.

B. Analytical treatment

Let us consider a Gaussian distributed linear sequence u;
of length 7 with scaling exponent «. For simplicity, we as-
sume that the sequence is stationary (a<<1) and (u;)=0.
Consider the magnitude series: u;. In order to calculate the
magnitude series scaling exponent «, we will calculate the
variance of the displacement V,=3'_ u?:

var(V) = (V2) = (V)(V)) = 2 3 [udu?) — X)),
i=0 j=0

Because the series u; is linear, the fourth cumulant is C4,=0
(Wick’s theorem), and by using Eq. (4) we get,

<M12”]2> = <u12><u12> + 2<uiuj>2> (5)
and thus,
var(V,) = 22 2 <”iuj>2~
i=0 j=0

Substituting the two-point correlation function for long-
range correlated time series:

o i)l i#
p(l_])=<uiuj>~ .. (6)
1 i=j
we obtain
t
var(V) ~ 1+ 2, |i = j|727 ~ 1+ 7272, (7)

i#]
Since 2—y=2a the above expression becomes
var(V,) ~ t+ 14272 = %, (8)

For a<f—1 the first term, ¢, is dominant and for t—o we
obtain a,=3. Otherwise the second term, #*%~2, is dominating
and thus @, =2a— 1. However, the simulation results (Fig. 1)
deviate from a,~2a—1 as a— 1. This is because as a— 1,
logarithmic and polynomial corrections due to strong finite
size effects and nonstationarity must be taken into account in
our calculations (i.e., the variance of the sequence depends
on its length; see the Appendix). This is done by dividing
var(V,) [Eq. (8)] by the variance of the original sequence

[20]:
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const a<<1
22021 =22 ~AInt  a=1 9)
2o > 1.

1

l-«a

var(u;) =

This modification yields an «, that is very close to the one
obtained from the numerical simulation (in the transition re-
gion 0.75<a<1.25, and also for a>1.25 with a,=a; see
Fig. 1). The relation a,=«a for > 1.25 can now be proved
analytically: It is noticeable that the dominant scaling term of
Var(Vtz) for the nonstationary case is proportional to r**~2
[Eq. (8)]. Dividing by the variance term, %~ [Eq. (9)],
yields 2~ 2% and hence a=q,.

IV. VOLATILITY CORRELATIONS AND THE
MULTIFRACTAL SPECTRUM WIDTH

A. Random multifractal cascades

Following [3,17], we study the relation between the vola-
tility scaling exponent ¢, and the multifractal spectrum
width of nonlinear multifractal time series. We generate arti-
ficial noise with multifractal properties according to the al-
gorithm proposed in [16]; the multifractal properties of these
synthetic time series are known analytically and thus enable
us to study in detail the nonlinear measure of volatility cor-
relations (see also [17]). The algorithm is based on random
cascades on wavelet dyadic trees. The multifractal series is
constructed by building its wavelet coefficients at different
scales recursively, where at each stage the coefficients of the
coarser scale are multiplied by a random variable W in order
to build the coefficients of the finer scale. Note that we now
consider the increments series of these artificial series, hence
the generated time series is stationary. The multifractal spec-
trum f(a) depends on the statistical properties of the random
variable W.

We choose W to follow the log-normal distribution, such
that In|W| is normally distributed, with u and o® being the
mean and variance, respectively. For this case the multifrac-
tal spectrum f(«) is known analytically [16] and by assign-
ing f(a)=0 it is possible to obtain @i, max

V2o
Cpin = = ~— = (10)
AY ln 2 ln 2
-
V20
= 11
max \,1 2 In2 ( )
Thus,  the multifractal width, Aa= a0 — Cmin

=2(y20/\In 2), depends just on o while the scaling expo-
nent «(0) depends on w, i.e., @(0)=—(u/In 2) [16].

Using the above algorithm, we generate multifractal time
series with a fixed multifractal width A« (by fixing o) and
different scaling exponents a(q=2) (by changing w), and
calculate their volatility exponents «, (see Fig. 2) [21]. We
find that the volatility correlation exponent is almost constant
for a<<3/4 indicating that the nonlinear properties of the
series u#; do not change, which is consistent with the fact that
the multifractal spectrum width remains the same (constant
o). We perform the same analysis for the respective surro-
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FIG. 2. (Color online) The magnitude series exponent «, vs the
two-point correlation exponent « for multifractal series. The full
triangles and squares represent sequences generated by the log-
normal random cascade algorithm with ¢=0.1 (triangles) and o
=0.05 (squares); the multifractal spectrum of these examples is
known analytically indicating that as o increases the nonlinearity
strengthens. The respective linear (phase randomized) surrogate
data sequences are represented by empty symbols. The solid line
indicates simulation results for linear sequences as derived in [17],
explained in Sec. III, and shown in Fig. 1. The full diamond repre-
sents the scaling exponent of our multifractal model’s sequences
u;=¢€;n; with @,=0.95, while the empty diamond represents the
respective scaling exponent of the surrogate data. All sequences are
of length 2'% elements, and results were averaged over 15 configu-
rations. Error bars are smaller than symbol size.

gate time series, which are linearized series (after phase ran-
domization) that have the same two-point correlations with
exponent a(g=2) as the original series [22]. We find that the
volatility exponent «,, calculated in Sec. III for the linear
case, is the lower bound for all multifractal sequences (stud-
ied here) with same a(g=2). Nonetheless, for a(g=2)>1,
i.e., for nonstationary series, a,=a(g=2) as in linear series.
It is clearly seen in Fig. 2 that for stationary time series
[a(2) < 1], the volatility correlations increase as the multi-
fractal spectrum width becomes wider (larger o value), or
alternatively, as the nonlinearity of the original series
strengthens.

B. Natural data example: Deep ocean temperature time series

As a simple example for the applicability of volatility
analysis, we analyze deep water (500 m) temperature records
taken from moored ocean buoys in the equatorial Pacific
[23], see example in Fig. 3. The equatorial Pacific is the
region of EI-Nind, a known nonlinear phenomenon that has
an important impact on the climate system. We consider the
deep ocean temperature since it hardly shows seasonal peri-
odicity, so that the scaling techniques we use will not need
any preprocessing.

Using the DFA method to measure the correlation expo-
nent of our series, we find that the temperature series 7; is
strongly correlated: a=1, see Fig. 4. The volatility series
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FIG. 3. (Color online) Deep water (500 m) temperature time
records from the equatorial Pacific, as measured by a moored ocean
buoy located on the equator at 170 °W, during the years 1990-
2004. Data record consists of 5513 points, each point representing
one day.

exponent (i.e., the scaling exponent of the absolute value of
the increments |AT}|) is a,=0.72 indicating that our series is
indeed multifractal, which is consistent with multifractal
analysis using MF-DFA [7] shown in Fig. 5. We obtain simi-
lar results for the several data sets available from the equa-
torial Pacific (5 time series from 500 m depth).

C. A simple model for multifractality

We now propose a simple model for generating multifrac-
tal records, based on the property that multifractal series ex-
hibit long range correlations in the volatility series. Follow-
ing [24], we multiply a long range correlated series 7; (with
a scaling exponent «,,>0.75) with a series of uncorrelated

o561 (a) Temperature T

Fluctuation Function F(n)

Window Scale n (days)

FIG. 4. (Color online) Volatility analysis of deep ocean tempera-
ture records. (a) The fluctuation function F(n)=var(X,) ~n® of the
profile as a function of the window n. Window size is measured in
days. Both the original and surrogate (i.e., phase-randomized) series
are strongly correlated and exhibit the same scaling exponent a
= 1. (b) The magnitude series of the increments of the original data
are correlated (a>1/2) indicating that it is nonlinear, whereas the
magnitude series of the surrogate data [22] are uncorrelated (a
=1/2) hence indicating that it is linear.
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FIG. 5. (Color online) Multifractal analysis of deep ocean tem-
perature records using the MF-DFA method [7]. (a) The exponents
m(g) give the scaling of the different moments: Z,(n)={(X,|%)
~n7(‘1), where n is the window size. In these measurements the
exponents 7(g) were calculated for window scales between 8 days
and 512 days, with DFA order 3 (see [7] for details). The curvature
in 7(q) for the original series (@) reflects the multifractality of the
series. On the other hand, for the surrogate series (O) 7(g) is much
closer to linear [i.e., 7g)=qga] indicating that it is monofractal and
that a single exponent a characterizes all moments. (b) The multi-
fractal spectrum f(«) is much broader for the original data (@)
compared to the surrogate data (O).

random signs €;==1. The resultant series, u;=¢€;7;,, has a
two-point correlation exponent a=1/2 because of the ran-
dom signs €;. The magnitude exponent «, is the same as the
magnitude exponent e, , for 7;, because |u;|=|7,|. Thus, us-
ing our results from Sec. III, if we take «,>0.75 we get a
sequence with @=1/2 and e, ~2a,,—1>1/2 (see Fig. 2, full
diamond symbol for a,=0.95). Note that in Fig. 2 the theo-
retical value of a,=2X0.95-1=0.9 is higher than that of
the numerical estimation «,=0.8, most probably due to finite
size effects.

According to our derivation in Sec. III, this sequence is
nonlinear/multifractal (because linear series with a two-point
correlation exponent a=1/2 should have «,=1/2). Indeed,
one can see from Fig. 6 that the multifractal width for this
model increases as «,, increases beyond 0.75.

Natural processes are often characterized by complex
nonlinear and multifractal properties. However, the underly-
ing mechanisms of these processes are usually not so well
understood. Several prototypes for multifractal processes in-
clude, e.g., (i) the energy cascade model describing turbu-
lence [4,14], (ii) the universal multifractal process usually
used to generally explain geophysical phenomena [25,26],
and (iii) the turbulencelike model for heart rate variability
[27].
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(a) Muttifractal Width
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FIG. 6. (Color online) (a) Multifractal spectrum width and (b)
volatility exponent «, for sequences of the form u,;=¢;7; of length
219 averaged over 15 configurations. The error bars indicate the
mean +1 std. For a,>0.75 both the volatility correlation exponent
and the multifractal spectrum width of the series are increasing with
(17].

The multifractal model described in this section is a
simple model with known properties that may help to gain
better understanding of multifractal processes. The model
consists of two components as follows: (i) a random series
(which can be also any other long-range correlated series)
that may represent fast processes of a natural system, which
as a first approximation may be regarded as a white noise,
interacting with (ii) a long-range correlated process that may
represent a slow modulation of the natural system. This in-
teraction results in episodes with less volatile fluctuations
followed by episodes with more volatile fluctuations. In the
context of heart-rate variability, the fast component may rep-
resent the parasympathetic branch of the autonomic nervous
system while the slow process may represent the sympathetic
and the hormonal activities. In the context of geophysical
phenomena, the fast component may represent the fast atmo-
spheric processes [28] while the slow process may represent
the relatively slow oceanic processes. Our model can also be
used to describe other complex systems like economy and
network dynamics.

V. SUMMARY

We study the behavior of the magnitude series scaling
exponent ¢, versus the original two-point scaling exponent «
for linear and nonlinear (multifractal) series. We find analyti-
cally and by simulations that for linear series the dependence
of «, versus a may be divided into three regions: for «
<<3/4 the volatility exponent is «a,=1/2, for a>1.25 the
volatility exponent is a,=a, while for 0.75<a<1.25 there
is a transition region in which logarithmic corrections due to
finite size effects and nonstationarity are dominant.

The results presented here provide the theory for the re-
lation found previously [3,17] between multifractality and
the scaling exponent of the magnitude of the differences se-
ries (volatility). This relation provides a simple method for
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preliminary detection and quantification of nonlinear time
series, a procedure which usually requires relatively complex
techniques and long experimental records. We also demon-
strate the use of volatility analysis on deep ocean tempera-
ture records (500 m depth in the equatorial Pacific), and
show that they exhibit significant nonlinearity.

We also study the volatility of some known models of
multifractal time series (with analytically known multifractal
properties), and find that their magnitude scaling exponent is
bounded from below by «, of the corresponding phase ran-
domized linear surrogate series; i.e., the volatility scaling
exponent «, is larger than (or equal to) the scaling exponent
of linear series with the same two-point correlations.

Based on the above findings, we propose a simple model
that generates multifractal series by explicitly inserting long
range correlations (a,,>0.75) into the magnitude series. This
model may serve as a generic model for multifractality and
may help to gain preliminary understanding of natural com-
plex phenomena. The model, which involves interaction be-
tween fast and slow components, may represent natural fast
processes that interact with slower processes. In addition, the
simplicity of the model may help to identify these processes
more easily in experimental records.
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APPENDIX: FINITE SIZE EFFECTS AND
NONSTATIONARITY NEAR a=1

A linear time sequence with scaling exponent « can be
generated by filtering Gaussian white noise such that the
power spectrum will be [18]:

0 f=0
S~ 1
il

where B=2a—1. Assume a signal u; of N discrete points
sampled at time intervals Az. The power spectrum consists of
N points in the frequency range (—(1/2A7),1/2A¢] with in-
tervals of Af=1/NAt. Thus, looking only at the positive fre-
quencies, the minimal frequency (without loss of generality)
is Af/2=1/2NAt. The variance of the signal is the total area
under the power spectrum:

f#0 (A1)

1/2A1 1/2At
var(u;) = 2f S(Hdf = 2] sadf- (A2)
1/2NAt 12nar f
Assuming Ar=1, for @=1 the variance is,
var(u;) =2 InN. (A3)

Thus, the variance diverges logarithmically for a=1.
For a# 1 the variance is
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o Simulation
—— Analytical solution (N — o)
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o

FIG. 7. (Color online) Correlation coefficient p(0) [i.e., the vari-
ance (u?)] for linear sequences of N=50 000 points. Circles indicate
the simulation results. Dots represent analytical results for the vari-
ance calculated according to Eq. (A4), which takes into account the
finite size effects. The solid line is the variance for N — . It can be
seen that as a¢— 1 the convergence becomes slower and finite size
effects become more dominant [i.e., the convergence is nonuniform
in the range @ € (0,1)].

var(u;) = ;22“‘2(1 - N?72), (A4)
l-«a

Thus, for a<<1 the variance converges, and for a>1 it di-

verges.

Nonstationarity: For a=1 the variance diverges with the
sequence length N, because of the singularity in the power
spectrum, and the sequence is nonstationary. For a>1 the
divergence is power-law, i.e., var(y;) ~ N2, while at a=1
the divergence is logarithmic.

Finite size effects: For a<<1 the variance converges to a
finite constant so the sequence is stationary, but as & — 1 this
convergence becomes slower. This means that as a—1,
larger and larger sequence lengths N are required so that the
variance will indeed converge to a constant value (see Fig.
7). This argument also holds for other values of the correla-
tion functions p(n), n=0,1,...,%, although in a more mod-
erate way.
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covariance coefficients: length = 50000

1.2 © Simulations: p(0) O
o Simulations: p(1) 0
{ -~ Analytical (finite N) p(0)
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p(n)
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FIG. 8. (Color online) Correlation coefficients p(O):(u?)
(circles) and p(1)=(u;u;,) (squares) for linear sequences of 50 000
points, in the range 0 <<a<<1/2. The dashed line indicates the ana-
lytical results for p(0), taking into account the finite series size
effects, which approximately follows results for N— < (solid line).
p(1) is negative for 0<a<1/2 indicating anticorrelations. The
solid lines are the analytical expressions of Eq. (A5).

The strong finite size effects around 0.75<a<<1.25 and
the nonstationarity at «=1 have to be taken into account
when calculating the magnitude series scaling exponent «,,.
This is done by dividing the volatility fluctuation function
var(V,) by the variance of the sequence given in Eq. (A4)
[20].

For N— the finite size effects disappear and «, con-
verges to its theoretical value (see Fig. 1). This convergence
is extremely slow and becomes weaker as we approach «
~1.

For completeness, we show in Fig. 8 the correlation coef-
ficients p(n=i—j) for «<<1/2. In this regime the sequences
exhibit short range anticorrelations as can be seen in Fig. 8.
The expression of the correlation function for «<<1/2 is ap-
proximately [8]:

aa-1)|i-j**? i#j

AS
2a i=j. (A3)

pli—j)= <uiuj> ~

[1] M. E. Shlesinger, Ann. N.Y. Acad. Sci. 504, 214 (1987).

[2] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger,
Chaos 5, 82 (1995).

[3] Y. Ashkenazy, P. C. Ivanov, S. Havlin, Chung-K. Peng, A. L.
Goldberger, and H. E. Stanley, Phys. Rev. Lett. 86, 1900
(2001).

[4]J. Muzy, E. Bacry, and A. Arneodo, Int. J. Bifurcation Chaos
Appl. Sci. Eng. 4, 245 (1994).

[5] J. Feder, Fractals (Plenum, New York, 1988).

[6] G. Parisi and U. Frisch, in Turbulence and Predictability in
Geophysical Fluid Dynamics, Proc., Int. School E. Fermi, ed-
ited by M. Ghil et al., (North-Holland, Amsterdam, 1985).

[7]1J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S.
Havlin, A. Bunde, and H. E. Stanley, Physica A 316, 87
(2002).

[8] M. S. Taqqu, V. Teverovsky, and W. Willinger, Fractals 3, 785
(1995).

[9] Fractals in Science, Springer, 2nd ed., edited by A. Bunde and
S. Havlin (Springer, Berlin, 1996).

[10] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stan-
ley, and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994).

[11] A. Bunde, S. Havlin, J. W. Kantelhardt, T. Penzel, J. H. Peter,
and K. Voigt, Phys. Rev. Lett. 85, 3736 (2000).

[12] R. Stratonovich, Topics in the Theory of Random Noise (Gor-

011913-7



KALISKY, ASHKENAZY, AND HAVLIN

don and Breach, New York, 1967), Vol. 1.

[13] N. G. Van-Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1981).

[14] U. Frisch, Turbulence (Cambridge University Press, Cam-
bridge, 1995).

[15] Y. H. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C. K. Peng,
and H. E. Stanley, Phys. Rev. E 60, 1390 (1999).

[16] A. Arneodo, E. Bacry, and J. F. Muzy, J. Math. Phys. 39, 4142
(1998).

[17] Y. Ashkenazy, S. Havlin, P. C. h. Ivanov, C.-K. Peng, V.
Schulte-Frohlinde, and H. E. Stanley, Physica A 323, 19
(2003).

[18] H. A. Makse, S. Havlin, M. Schwartz, and H. E. Stanley, Phys.
Rev. E 53, 5445 (1996).

[19] It is important to note that in Fig. 1 we use both |u, and u} to
calculate the volatility scaling exponent. Nevertheless, the
usual method for calculating the volatility scaling exponent is
performed by taking the absolute value of the differences se-
ries, Au;, rather than u; itself [3,17]. The reason for this is that
in many cases the given time series has an exponent in the
range %< a< 1%. By differentiating the sequence we get a new
sequence Au; with an exponent a=a—1< % According to our
analysis, if the sequence is linear, the volatility exponent for
this series will be &U=% (whereas for the original series «,
may be higher than % even for linear data).

[20] FA and DFA actually measure the scaling of the fluctuations
for window sizes ranging from 1 to z. Fluctuations for win-

PHYSICAL REVIEW E 72, 011913 (2005)

dows of size ¢ are given by (X,z), while fluctuations for win-
dows of size 1 are actually the variance of the sequence. Thus,
the scaling exponent is approximated by

[n(XH2 = In(X7)"*)/In t
= [In(X?)"2 = In var(u;)*]/In ¢
=In[(X,)/var(u;)]/2 Int.

Therefore, in cases where the variance is not constant, the
fluctuation function (Vtz) should be normalized by the vari-
ance.

[21] Note that in the DFA notation the expressions for a should be
larger by one than those of [16]; however, since here we con-
sider the increments, the series exponent is reduced back by
one, thus compensating the DFA integration.

[22] T. Schreiber and A. Schmitz, Physica D 142, 346 (2000).

[23] http://www.pmel.noaa.gov/tao/realtime.html.

[24] E. Bacry, J. Delour, and J. F. Muzy, Phys. Rev. E 64, 026103
(2001).

[25] S. Lovejoy and D. Schertzer, Ann. Geophys., Ser. B 4, 401
(1986).

[26] F. Schmitt, S. Lovejoy, and D. Schertzer, Geophys. Res. Lett.
22, 1689 (1995).

[27] D. C. Lin and R. L. Hughson, Phys. Rev. Lett. 86, 1650
(2000).

[28] K. Hasselmann, Tellus 28, 473 (1976).

011913-8



