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Abstract 

Long memory is defined as a series having a slowly declining correlogram or, equiva- 
lently, an infinite spectrum at zero frequency. Fractional integrated processes have such 
properties but here it is pointed out that a number of other processes can also be long 
memory, including generalized fractionally integrated models arising from aggregation, 
time-changing coefficient models, and possibly nonlinear models. It seems that there are 
many classes of processes that deserve further study. The relevance of long memory is 
illustrated using absolute returns from a daily stock market index. 
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1. The concept of long memory 

The correlogram, the plot of the estimated autocorrelation between x, and 
X,-k against k, is a useful device for describing some of the linear properties of 
a single series in most cases. If the plot either declines exponentially or, alterna- 
tively, declines very slowly, Box and Jenkins (1970) suggested certain models as 
possible candidates for the generating mechanism of the series, either stationary 
ARMA or integrated ARIMA. However, not all correlogram plots have exactly 
these shapes and so new classes of models have to be derived as possible 
generating mechanisms. Sometimes the correiogram declines steadily but not 
exponentially, or it may start with/)t  = 0.4, say, and then declines only slowly 
from this values. Amongst the models that have been suggested to generate 
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series having such properties are the fractionally integrated l(d) models which 
are discussed below, together with some generalizations. It is important to 
remember that because a model produee~ series having a certain property P and 
one finds that the data also has P, then it is not correct to conclude that the 
model corresponds to the actual generating mechanism of the data. The model is 
a candidate for this generating mechanism, but other models may also produce 
series having P. This problem is enhanced by the fact that we never see the actual 
autocorrelations but only their estimates, and generally several shapes can fall 
within the confidence bands around these estimates. 

In this paper a property called 'long memeiy'  is defined, and then a variety of 
processes having this property will be disct ssed, including generalizations of 
fractionally integrated processes. 

Let h i, j = 0, 1 . . . . .  be an infinite sequence of constants and define a time- 
changing sequence of filters 

hr(B) = ~ hjB~ (1.1) 
j=O 

where B is the backward operator. A series x, can be generated by 

x, = h,(B)e,, (1.2) 

where the input series is assumed to have the form 

e, = m + ~.,, (1.3) 

where ~, is a zero mean, constant variance white noise, so that corr(e,,, e~) = 0, 
t ~ s, and with var(e) = a 2. Denote re(t) = mh,(l), 

2 ~.. h~, (1.4) v(t) = ~ 
j =o  

s, = ~. h:~,_~, (1.5) 
/ = o  

and 

.fstto) = E [ N  -1 ,=~ s,e 't" z ] .  (1.6) 

if f (to) = iimNf,~(to) exists for all 0 ~< to, f(to) will be called the (power) spectrum 
of xr. 

If hdl) is monotonically increasing, re(t) and v(t) will be the (deterministic) 
'trends' in mean and variance of xt respectively, although these quantities 
may tend to constants. The properties of these trends are discussed in Granger 
(1988). 
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If t is large, so that ft(to) is a close approximation to f(co) for almost all to's, 
the series xt has been called 'long memory' if its spectrum has the following 
properties: 

(i) 

and 

(ii) 

f(to) tends to infinity as to ~ 0 

f(to) is bounded above for all but, at most, a finite number of other 
to values. 

A necessary condition for (i) is that bj is a divergent sequence. Examples of series 
having these properties are discussed in the following sections. If h~ = A~- 1, the 
series generated is (effectively) the l(d) process discussed by Granger and Joyeux 
(1980) and Hosking (1981). This process has spectrum which is proportional to 
to- 2d for to small. If d is not an integer, one has a fractionally integrated process. 
It is called 'long memory' because a shock e, at time t continues to influence 
future X,+k for a longer horizon k than would be the case for the standard 
stationary ARMA process for which h~ declines exponentially as 0 j with 
101 < 1. 

There are few practical implications of a series having the long-memory 
property except that quantities such as the sample mean converge slowly for 
d < 1/2 and are not consistent for d/> 1/2. 

An alternative definition, which attempts to capture a more general feature 
of data, may be called 'extended memory'. Let gs,.(ln) = IExn+hlxn-j, j >1 0] be 
the optimum least-squares forecast of x.+,  based on the information set 
l.:x._~, j >10. If, for all n, g,..(l.) does not tend to a constant as h be,-:omes large, 
then x, is said to have extended memory. The definition has more impact if 
deterministic processes such as chaotic and series with limit cycles are excluded 
from consideration. The two definitions are rather different, as long memory 
considers just the linear properties of the series, whereas extended ~emory  can 
include optimum nonlinear forecasts. Some properties of extended memory 
process are considered in Granger (1995). 

2. An example using stock market data 

As an empirical example, let us look at the long memory property of S&P 
daily 500 stock market returns as discussed in Ding, Granger, and Engle (1993). 
In that paper, they found that although the returns themselves contain little 
serial correlation, the absolute value of returns has significantly positive serial 
correlation up to 2,700 lags which is more than 10 years! To illustrate this more 
clearly, Figs. 1 and 2 give the plot of stock market return rt and absolute return 
Ir, I from January 4, 1928 to August 30, 1990, with 17,054 daily observations, it is 
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seen that large absolute returns are more likely than small absolute returns to be 
followed by a large absolute return. The largest absolute return comes at the 
Black Monday stock market crash in 1987 which is more than 20%. 

Fig. 3 gives the plot of ph(rt) = corr(r,, r,-k) and Pk(Ir, I) = corr(Ir, I, Irt-kl) up 
to lag 2,500. The dotted lines are 95% confidence interval for the autocorrela- 
tions of an i.i.d, process. It is seen that except for the first two lags pk(rt) are very 
small, and most of them stay within the 95% confidence interval. But the 
autocorrelation structure for [hi is totally different. Not only are the autocorre- 
lations of Ir, I all significantly different from zero, but also they are all positive. 
Pk(]r,I) decreases very fast for the first 40 lags or so, and then decreases very 
slowly, which suggests that an exponentially decreasing autocorrelation func- 
tion like that of an ARMA model cannot produce the empirical autocorrelation 
pattern here. The dashed line in Fig. 3 is the curve fitting using such a autocorre- 
lation function Pk = aft a. It is readily seen that the fitted curve decreases too 
slowly at the beginning, and then too fast at the end. 

The discussion in this paper suggests that the autocorrelation structure of 
the fractionally integrated model might be able to give a good approximation 
to the sample autocorrelation found here. Fig.4 again plots pk(Ir, I) for 
k = 1 . . . . .  2,500, and then the fitted autocorrelation function (dotted line) of 
a fractionally integrated series 

F ( l - d )  F ( T + d )  

# '= r(d) r(~ + l - d ) '  

where d = 0.474 is as estimated below. Comparing Fig. 3 and Fig. 4, it is seen 
that the shape of the autocorrelation function of a fractionally integrated model 
better fits the sample autocorrelations, although it has been scaled up for the 
reason mentioned below. 

To estimate d, we assume Ir, I is generated by the Fractionally Integrated 
ARCH model as in Granger and Ding (1996): 

rt = #,e,, e, ,,, i.i.d. (0, 1), 

1 v~ ® d F ( j -  d) r, Jl, ~ r ' = ( 1 - ( l  - B)d)lrtl =-g j~=l F(1 d) F(j  + D - -  

where It = Ele, I and 0 < d < I/2. 
For this model one has c o r r ( r , r , _ k ) = 0  for all k > 0  but 

cor r ( I r ,  I, Ir ,-~l)  -- { [ r ( l  - to/r(d)} {r(k + d)/r(k + 1 - d)} which  is the  same  
as the correlation function of a fractionally integrated series. This can also be 
seen by rewriting the conditional standard deviation equation in the form 

( 1  - B)dlr, I -.= ~ , ( l e ,  I - i t )  = ~,, 

where e, = a,(161 - /~)  is a mean zero process with coy(e,, e,-h) = 0 for k > 0. 
For a more general class of models and a detailed discussion, see Ding (1994) 
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and Ding and Granger (1996). The spectral density function of et is denoted by 
f~(2) which is assumed to be finite, bounded away from zero and continuous on 
the interval [ -  n, n]. The spectral density function of Ir, I is then 

~2 
f(),) = ~ {4 sinZ(2/2)} -df~(2). (2.5) 

For simplicity, we used the estimation method of Geweke and Porter-Hudak 
(1983) (hereafter GPH)  which is based on the simple linear regression of the log 
periodogram on a deterministic regressor since from (2.5) one has 

ln{f(2)} = ln{a2f~(0)/2n} - dln{4sin2(2/2)} + In {f~(2)/f~(0)}. (2.6) 

Suppose ihat a sample of Ir, I of size T is available. Let 2i, r = 2 7 t j / T  
( j  = 1 . . . .  , T - 1) denote the harmonic ordinates and l(2i.r  ) denote the peri- 
odogram at these ordinates, evaluate (2.6) at g~, r, and rearrange to obtain 

In {l(A~. r) } = In {trZf~(0)/27t} - d In {4 sin2(2i, T/2)} 

+ In{f~(2j.r)/f~(O)} + ln { l (2 j . r ) / f ( 2 j . r ) } .  

Geweke and Porter-Hudak (1983) show that, when attention is confined to 
frequencies near zero, ln{f~(2~.r)/f~(0)} can be ignored and the differencing 
parameter d can be consistently estime.ted from the least squares regression 

ln{l(Ai.r) } = c - d in{4s inZ(; t j . r /2)}  + p~, j = 1 . . . . .  n, (2.7) 

where n = g( T ) ~ T .  
If the least squares estimator d is significantly different from zero, then Ir, I is 

fractionally integrated. In our estimation, we use n = g ( T ) =  x / T  and the 
Schuster periodogram which is defined as follows (see Granger and Newbold, 
19~6): 

l()~j,r) = (Ir, i - Irl)cos(2j.rt)[  
t 

Here T = 17,054, so that n = ~ = 130. The estimated result for Ir, I is as 
follows: 

ln{l(A~.r)} = - 21.505 - 0.4741n{4sinZ(A~.r/2)} +/~i, R z = 0.34. (2.8) 
( - 4 4 . 8 5 )  ( - 8 . 1 5 )  

The estimated d is 0.474 with a t-statistic of 8.15. It seems reasonable to say at 
this point that Ir, I is a stationary long-memory process. 
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As mentioned earlier, when we use this estimated d to fit the sample autocor- 
relation, the fitted autocorrelation is much bigger than the actual one. This can 
occur if the GPH method overestimates the fractional integration parameter 
d since the autocorrelation function is an increasing function of d. If instead d is 

~2soor ( ' r ' "  estimated directly by minimizing 2.,~-1 LP, I , I J -  p,]2, one gets d =  0.358 
which gives an autocorrelation function as in Fig. 5 (dotted line). Comparing 
Fig. 5 with Figs. 3 and 4 it is seen that this model gives a much better approxi- 
mation than those two models in terms of autocorrelation curve fitting. The 
major difference between Pz and the sample autocorrelation occurs at the first 20 
lags, which suggests some short-run effect is missing if use is only made of 
a fractionally integrated model. 

The series Irtl is seen to have long memory in that corr(lr~l, Irt,kl) remains 
positive and significant for many values of k. It is shown in a companion paper, 
Granger and Ding (1996), that if one defines 

pd0)  = corr(Ir ,  I °, Ir,-~l°), 

then for a wide range of 0 values the series Ir, I ° is long memory, but 

p~(O) < pk(1), all k, 

for 0 both less than or greater than one, a result we call the Taylor effect. 
The evident 'long-memory' property of daily absolute returns from a 

stock index might be explained as an I(d), with d a fraction near but just 
below 0.5, as seen here. Results to be presented elsewhere suggest that 
absolute returns from other speculative markets have a similar property. What 
the remaining sections of this paper will emphasize is that the I(d) model is not 
the only one available that produces the long-memory properties, and so it 
should not be accepted too readily. We will just discuss alternative specifica- 
tions. As the estimation and choice of some of these alternative models needs 
elaboration, we do not try to fit them to the data used in this section, which 
should be viewed merely as an illustration of the existence of the long-memory 
property. 

3. Generalized fractionally integrated processes 

It is convenient to start with two definitions. If f~(to) and f,(to) are spectra 
corresponding to a pair of long-memory series, then xlt is said to 'dominate' 
xzf if 

lim fl(to) 
-~  ~ "  (3.1) . - o  A(to) 
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Secondly, a positive measurable function L(x) is 'slowly varying' (denoted sv) if 
for any k # 0, 

L(kx) 
lim = 1. 
, , ~  L(x) 

These functions are discussed in Seneta (1976), examples being [logx] a' and 
I:llogllogx[ t] ~2. 

Consider a process generated by 

x, = (1 - B)-d[L((1 - B)- i)] -~t,, (3.2) 

where L(x) is sv and t, is a zero mean white noise. For ease of exposition only 
a particular example will be considered. 

xt = (1 - B)-d[ log(l -- B)- ~]-qet, (3.3) 

with d > 0, q > 0. This will be called a generalized integrated model of order d, q, 
denoted x, ~ Gl(d, q). If L(x) = 1, all x, or if q = 0, one has an integrated 
process of order d, xt "-, l(d). Provided d > 0 or if d = 0 but q > 0, the process 
will have the long-memory property. In all cases, the function of B in (3.2) or (3.3) 
should be considered as being truncated after t terms, and t is assumed large so 
that the truncated power series provides a good approximation to the function. 
From the properties of sv functions it is found that a series that is l(d + ~) 
dominates one t.hat is Gl(d, q) which dominates one that is l ( d -  ¢5) for any 
c~ > 0. The Gl(d, q) series has spectrum 

[ 1 - z [ -  za[ log(1 - z ) -  t [ -  2qo.~, z = e i°'. (3 .4)  

For small co the spectrum is proportional to to-2d(Iogco) 2q. GI processes are 
discussed in Granger (1987, 1988), and their properties explored in Lin (1991) 
who directs particular attention to the case d = 0, q > 0, which is denoted 
GI(0+). From the dominance property, it is clear that the variance v(t) of 
Gl(d, q) tends to a finite constant if d < ½. Lin (1991) proves that if ~n is the 
sample mean from an GI(0 +) series, then (n/logn)l/z(Ycn- la) tends asymp- 
totically to a normal distribution with mean zero, for some/~, and a finite 
constant variance. 

No specific formula is avaiJable for the autocorrelation sequence of a GI 
series, but a GI(0 +) has aulocorrelations close to being proportional to the 
inverse of the lag, for large lags. In general the properties will not be greatly 
different from those of l(d) processet, as discussed in Granger and Joyeux (1980) 
and Hosking (1981), and the generalizatiov discussed by Gray, Zhang, and 
Woodword (1989). 

If in (3.3) the inputs have a constant, nonzero mean m, the series generated will 
have a trend component mh(t), where 

h(t) = tZJ(log t) zq 
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as well as the GI(d, q) component previously discussed, as shown in Granger 
(1988). Thus, in these cases, a long-memory process with a specific low-frequency 
shape will correspond to a particular trend in mean if m is a nonzero constant. 
Clearly, if m changes with time, this simple relationship is lost. For a sequence 
h~ the trend and spectrum were defined in the previous section. However, it is not 
possible to go from any trend to a long-memory process. If the trend is mh(t), 
then ht is well approximated by dh(t)/dt. Consider the trend h(t) = exp(at), so 
that ht = a exp(at), then some algebra shows that fN(to) defined by (1.6) does not 
converge for any to as N increases, so that the spectrum does not obey the 
second condition for a long-memory process. It is worth noting that e -  2°NfN(to) 
does converge for to = 0. 

It is noted in Granger (1988) that if the further requirement is made that h i is 
decreasing with j, so that less weight is given to the distant past than to recent 
shocks, this limits trends to those dominated by the linear trend. 

4. Aggregation results 

It is shown in Granger (1980) that ifyit is AR(1) with autoregressive parameter 
at~ and if x, is the sum of independent y / s  over a large number of components 
with the ~tfs drawn from a particular Beta distribution on (0, 1), then asymp- 
totically xz-~ l(d), with d < ½. Thus, aggregation of stationary series with 
autoregression parameters up to, but less than one, can lead to a fractionally 
integrated series. Lin (1991) shows that similarly if the ~tj are drawn from the 
probability density function cx(1 - x2), x in [0, 1], then asymptotically the sum 
is GI(0+). 

One can also aggregate l(d) series. Lin (1991) shows that ifyj, ~ l(d i) with the 
d r drawn from the p.d.f, c(1 - x)- t/2, x in [0, d], then the sum of a large number 
of independent components will be GI(d). S(to), the spectrum of the sum, xf, will 
be the sum of the components spectra, so that if dj is drawn from the p.d.f, g(x), 
at low frequencies one has 

S(to) = N ~ to-  2Xg(x)dx. (4.1) 

Writing the integral as ~ e x p ( x l o g t o - 2 ) g ( x ) d x ,  then if M(O is the moment 
generating function of the p.d.f, g(x), so that 

M(z) = ~ exp(zx), g(x) dx, (4.2) 

one gets 

S(to) = N M  (log to - 2 ), (4.3) 

for to small. It seems that a variety of spectral shapes can be generated in this 
fashion just by selecting g(x) and looking up the corresponding M(z) in tables, as 
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in Lukacs (1970). For example, if g(x )  is the normal N(p, a 2) distribution, then 
one gets 

S(o~) = N¢o ~ - 2 u  + 2a': l*g ¢o1. (4.4) 

If a 2 > 0, a process having this spectrum will dominate any I(d) process. As 
a further example, Lukacs (1970, p. 251) refers to Levy (1937) who proves that 
if P(x) is a real polynomial with all coefficients positive, then M ( z ) =  

exp(P(e:) - P(l)) is a moment generating function, which gives a spectrum 

S(¢o) = Nexp flj(o~ - z j  - 11 , all I7i > 0. (4.5) 
J 

For example, if P = l, 

S(to)  = N c e x p ( f l t o -  2), (4.6) 

which corresponds to a long-memory process. This moment genera ting function 
corresponds to a Poisson variable with parameter fl, so that if y~, ~ l(d~) with 
dj drawn from a Po(.B) distribution, then the large-sample sum will have spec- 
trum (4.6). Such a series will also dominate an l(d) series, for any d, and may be 
thought of as l(o~). 

It is interesting to note that not all moment generating functions lead to the 
spectrum of a long-memory process; examples include tile Laplace distribution, 
for which M ( r ) = ( !  _ ~ 2 ) - t ,  and the Gamma distribution, for which 
M(~) = (1 - z/0)- ~, 0, 2 > 0. However, for these examples ~ is bounded above, 
and so t4.3) cannot be used for small to. 

5. Time-changing coefficient models 

There is plenty of evidence throughout economics of structural changes, 
time-varying parameters, or regime switches, and so it is interesting to ask if 
such changes occur with long-memory models and what are the effects. To 
ilustrate the possiblity, we reconsidered the example of Section 2. 

Sixty-four years with 17,054 daily observations is a rather long time period, 
and it is very possible there is structural change over time. To investigate this, we 
divided the whole sample period to ten equal subperiods (the last four observa- 
tions were deleted here) and still use the GPH estimation procedure. The 
estimated d's and their standard errors and t-statistics are shown in Table 1. 
Fig. 6 also plots a for ten different sample periods and their one standard 
deviation lines. 

There is slrong evidence from the estimated result that d is changing over 
time. a reaches its smallest value of 0.156 at period 5, which is approximately 
from 1954 to 1960. After that a increases towards its maximum value of 0.714 at 
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Table 1 
Estimated d for ten subperiods 

73 

Period Time d Std. err. t-star, d - a d + 

I 1928-1934 0.358 O. 133 2.70 0.225 0.419 
2 1934 - 1940 0.405 O. 131 3.08 0.274 0.536 
3 1941 1947 0.438 0.097 4.52 0.341 0.535 
4 1947 1953 0.336 O. 144 2.33 0.192 0.480 
5 1954 1960 0.156 0.106 1.47 0.050 0.262 
6 i 960- 1966 0.445 0. ! 13 3.93 0.332 0.558 
7 ! 967-1973 0.518 0.088 5.89 0.430 0.606 
8 1973 1979 0.714 0.105 6.79 0.608 0.818 
9 1980 - 1986 0.436 0. I 10 3.98 0.326 0.546 

10 1986 1991 0.352 0.070 5.00 0.282 0.422 

period 8, which is approximately from 1973 to 1979. Two out often estimated d's 
are in the nonstationary range (>/0.5). Since the estimated standard deviation 
for period 8 is 0.105 and a is 0.714, we can say with high confidence that Ir, I 
during the time period 1973-1979 is nonstationary. 

Although we do not plan to produce a model that exactly reproduces these 
results, in this section a va~ iety of time-varying parameter models are discussed. 
The obvious model wo~;id just have d in l(d) replaced by d, = d(z,), where z~ is 
some exogenous, observed variable, such as the start of the business cycle. 
However, if such a driving variable is not available, the following model may be 
of interest. A stochastic fractional differencing model can be defined as 

x, = e x p [ -  d, log(1 - B)]E, (s.D 

where ~:, is zero mean white noise and d, is a stochastic process, for example, 

(d, - d )  = ~ ( d , _  ~ - d )  + u, ,  (5.2) 

where ut is zero mean i.i.d., so that d~ is AR(1) with mean d. If the variance ofut is 
small, xr will appear to be GI(d). However, note that dt is now being generated 
with a temporal structure compared to how GI(d) processes were being gener- 
ated by aggregation in the previous section. 

A rather different situation is when dt switches between two regimes. Suppose 
that the two processes x l t  and x2, are generated from the same input, so that 

x l ,  = a l (B) t t ,  xzt = az(B)e, .  

The filters a~(B), j = 1, 2, may be such that xl, is l(dt) and xzt is l(d2), say, 
di # d2. Let At be a Markov switching process taking either the value 0 or 1 with 

Pij = prob(~t = i, 2~ + t = J), i, j = O, I, 
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and define 

y, = A, xl, + (1 - 2,)x2,. 

Let 

F Poo 
P = LPio  

and denote 

Fp(~) 
p r  = I - ° °  
- Lp~, 

Po 11, 
P~lJ  

75 

P'o '1 

so that P~)  = prob(A, = i, A,+K = j ) ,  i , j  = 0, 1. It is easy to see that 

E[y,+~y,]  = P~rl)E[xl . ,+rxl . ,  ] + (r, Pol  E[Xl.t+rXE.t] 

(r) + P~t~)E[x2 ,+rx t  ,]. + Poe E[x2.,+rx2.,] , . (5.3) 

Denote by Po, Pl(  = 1 - Po) the marginal probabilities that ),t = 0, 1, respec- 
tively. Then, for K large, p~K) = r l ,  r 0 0 "  ~'(a) = /~0, and -lo°(r) _- p~o~) __ 0. Further, 
denoting Poe = P and P! 1 = q it is easily shown that 

Po = (1 - q)/0, P, = (1 - p)/0, 

where 0 = (2 - p - q). Thus, i fp = q, it follows that Po = Pt = ½. Convergence 
= --- P(~) -- P~trl ) is 0.565 for of p(r)oo is fairly rapid; for example, if p q 0.8, then -oo  

K = 4 and 0.523 for K = 6. From this analysis it is seen that the autocovariance 
of Yt, which experiences regime switching, is just a weighted average of the 
autocovariance of the series in the two regimes. Clearly, a variety of correlogram 
shapes can arise, producing different long-memory processes. 

6. Nonl inear  models  

Long memory, defined by properties of the correlogram and spectrum, is 
concerned essentially with linear properties of a process. Thele has been very 
little work considering these properties for processes generated by nonlinear 
models. An indication that new forms of long-memory process may be produced 
nonlinearly comes from results on the imtantaneous transformation of random 
walks, as discussed by Granger and HaUman (1991) and Ermini and Granger 
(1993). Ifxt is generated by x, = x,_ ~ + c~, where tt is i.i.d. N(0, 1), let Yz = G(xt) 
for some function G. Provided G(~) is monotonic nondecreasing, then Yt will 
have the extended-memory property discussed in the first section. However, if 
G(x) is G ( x ) =  (1 + e x p ( - x ) )  -1, the autocorrelations of y, do decline, but 
slowly, suggesting that a long-memory model may provide a reasonable linear 
approximation. 
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The general topic of long- or extended-memory series generated by nonlinear 
models has been little explored and could be an interesting area of research in 
the future. As an illustration of the possibilities, consider a fractional differenced 
process xt ~ l(d), generated by 

x, = ~ cj(d)t,_ i, 
j=O 

where 

c~(d) = F( j  + d) / (F(d)r( j  + 1))  = A f -  t. 

Now consider a series xt generated by a Volterra series expansion of the form 

+ A ~ ( j  + k)a-lEt-j£t-k etc. 

It will clearly be long memory, but of a complicated type. In theory, there is no 
reason to stay with just linear and quadratic terms. 

7. Conclusions 

The property of'long memory' as defined in the time series literature relates to 
a series havin 8 a finite spectrum at (essentially) all frequencies, but infinite at the 
zero frequency. The fractionally integrated processes have that property, but in 
this paper it is pointed out that many other generating mechanism can produce 
such processes, at least in theory. These new classes will often be of more 
theoretical interest than of practical relevance, but we have shown that on some 
occasions at least time-varying parameter models arc worth consideration. 

Our data in economics and elsewhere have interesting and complicated 
properties, and one task of statisticians and econometricians is to produce 
models that have these properties. On some occasions it is difficult to find any 
simple model that has all of the properties and that makes an interesting 
challenge. Some economic series appear to contain a property that looks like 
'long memory', at least through the eyes of statistical tools that we use to view 
the series. For example, if a monthly macro series has fitted to it an l(d) model, 
then d may well be significantly different from zero or one, and lie in that 
region, say, but that is because its true generating mechanism is something 
quite different and is not being considered within the class of models being 
estimated. We believe that it is correct to search over a specific set of simple 
parsimonious models, but that one should realize that the model so achieved is, 
at best, an approximation to the truth. The models fitted may be on slightly 
better looting if they are suggested by some convincing theory, using realistic 
assumptions, but this does not seem to be the case for fractionally integration 
models, so far. 
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In the future, we believe the emphasis will turn to groups of properties, such as 
long memory and the marginal distribution of a stationary l(d) series (which 
should not be assumed to be normal) or the fractional integrated relatedness 
between the mean and variance of a process. It may well be found that the choice 
of appropriate models becomes more difficult as more properties arc added, but 
this also makes the task more interesting. 
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