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Abstract  

Efficient method of  moments (EMM) is used to fit the standard stochastic volatility 
model and various extensions to several daily financial time series. EMM matches to the 
score of  a model determined by data analysis called the score generator. Discrepancies 
reveal characteristics of data that stochastic volatility models cannot approximate. The two 
score generators employed here are "semiparametric ARCH'  and "nonlinear nonparametric'. 
With the first, the standard model is rejected, although some extensions are accepted. With 
the second, all versions are rejected. The extensions required for an adequate fit are so 
elaborate that nonparametric specifications are probably more convenient. (~) 1997 Elsevier 
Science S.A. 
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1. In t roduct ion  

The stochastic volati l i ty model  has been proposed as a description o f  data 
f rom financial markets  by  Clark  (1973) ,  Tauchen and Pitts (1983) ,  Tay lor  (1986,  
1994), and others. The appeal o f  the model  is that it provides a s imple  specifica- 
tion for speculative price movement s  that accounts,  in quali tat ive terms,  for broad 
general  features o f  data f rom financial markets  such as leptokurtosis and persis- 
tent volatility. Also,  it is related to diffusion processes used in derivatives pric- 
ing theory in finance; see Mathieu and Schotman (1994)  and references therein. 
The standard form as set forth, for instance, in Harvey  et al. (1994) ,  Jacquier,  
et al. (1994) ,  and Danielsson (1994) ,  takes the form o f  an autoregression whose 
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innovations are scaled by an unobservable volatility process, usually distributed 
as a log-normal autoregression. 

Estimation of  the stochastic volatility model presents intriguing challenges, and 
a variety of  procedures have been proposed for fitting the model. Extant methods 
include method o f  moments  (Duffle and Singleton, 1993; Ar, dersen and Sorensen, 
1996), Bayesian methods (Jacquier et al. 1994; Geweke,  1994), simulated likeli- 
hood (Danielsson, 1994), and Kaiman filtering methods (Harvey et al. 1994; Kim 
and Shephard, 1994). Two excellent recent surveys are Ghysels  et al. (1995) and 
Shephard ( 1995 ). 

Here, we employ the efficient method of  moments  ( E M M )  proposed by Bansal 
et ai. (1993, 1995) and developed in Gallant and Tauchen (1996) to estimate and 
test the stochastic volatility model. EMM is a simulation-based moment  match- 
ing procedure with certain advantages. The moments  that get matched are the 
scores of  an auxiliary model called the "score generator ' .  If  the score generator 
approximates the distribution of  the data well, then estimates of  the parameters 
o f  the stochastic volatility model are as efficient as if  maximum likelihood had 
been employed (Tauchen,  1997a; Gallant and Long, 1997). Failure to match these 
moments  can be used as a statistical specification test and, more importantly, can 
be used to indicate features of  data that the stochastic volatility model cannot 
accommodate  (Tauchen,  1997a). 

The objective is to report and interpret the EMM objective function surface 
across a comprehensive set of  specifications o f  the stochastic volatility model. We 
start with the standard, and widely used setup, with Gaussian errors and short lag 
lengths, and we proceed to more complicated specifications with long lag lengths. 
The effort is aimed at generating a comprehensive accounting of  how well the 
model and its extensions accommodate  features of  the data. An advantage of  
the EMM procedure is that it is computationally tractable enough to permit  this 
exhaustive specification analysis. Our  approach differs from typical practice in 
the stochastic volatility literature, which is to fit the standard setup and perhaps a 
single extension in one direction. Since various studies use different specifications, 
estimation methods, and data sets, it is difficult to reach firm conclusions on the 
plausibility of  the stochastic volatility model. By using EMM, we can confront 
all o f  the various extensions, individually and jointly, to a judiciously chosen 
set of  moments  determined by a nonparametric specification search for the score 
generator. Other  estimation methods are incapable of  investigating the empirical 
plausibility of  such an extended set of  specifications for stochastic volatility on 
the large data sets used here. 

We fit the univariate stochastic volatility model to a long time series comprised 
of  16,127 daily observations on adjusted movements  of  the Standard and Poor 's  
Composite Price Index, 1928-87. We use such a long series because, among other 
things, we are interested in the long-term persistence properties of  stock volatility. 

For this estimation, we use two score generators based on the speci- 
fication analysis o f  Gallant et al. (1992). The first is an ARCH model with a 
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homogeneous innovation distribution that is given a nonparametric representation. 
The specific specification is determined by a standard model selection procedure 
based on the BIC criterion and specification tests. This model is similar to the 
most widely used models in the ARCH family. Its score is termed the "semi- 
parametric ARCH score' .  The second score generator is a fully nonparametric 
estimator of  the distribution of  a nonlinear process. It both nests the first and 
relaxes its homogeneity assumption. The specific specification is determined us- 
ing the same model selection procedure as above. The corresponding score is 
termed the "nonlinear nonparametric score' .  These two score generators, deter- 
mined independently o f  the stochastic volatility model, are similar to models that 
are commonly fit to high-frequency financial data. 

We undertake a similar exercise for a trivariate stochastic volatility model 
applied to 4044 daily observations on adjusted movements  o f  the Standard and 
Poor 's  Composite Price Index, adjusted movements  of  the $ /DM spot exchange 
rate, and the adjusted 90-day Euro-Dollar interest rate, 1977-92. 

2. The  s tochast ic  volatility model 

2.1. Setup and notation 

Let Yt denote the first difference (either simple or logarithmic) over a short 
time interval, a day for instance, o f  the price o f  a financial asset traded on active 
speculative markets. The basic stochastic volatility for Yt is 

Lt 
Yt  - I l y  = ~ ,  c 2 ( y t _  j - p y  ) + exp(wt ) ryZt ,  

j = i  

LII 
wt  - -  !~,. = ~ ,  a j ( w t _ j  - p . , )  -t- r..~.t. 

j = !  

where py, {cj }jLL_ I , rv, It,., {aj}jL[i, and r~:. are the parameters o f  the two equations, 
called the mean and volatility equations, respectively. The processes {zt} and 
{-~t} are mutually independent iid random variables with mean zero and unit 
variance. Whenever  they exist, unconditional expectations are taken with respect 
to the joint  distribution o f  the processes {zt} and {S~}. The first two moments  
of  the zt and St are not separately identified from the other parameters - hence 
the restriction to 8 ( z t ) =  8 ( S t ) =  0 mid V a r ( z t ) -  V a t ( S t ) =  1. Likewise, Pw is not 
separately identified; we find numerically the best normalization is simply p , , - - 0 .  
A common assumption in the literature is that both zt and St are independent 
N(0, ! ) random variables and that the lag lengths are short. Typically, L w -  I 
and Ly---- 1, o r  L.v- O. Below, we entertain other distributional assumptions and 
search over a broad set o f  lag lengths. The model implies restrictions on the 
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serial covariance properties o f  ly, I c, c > 0, which are worked out in exhaustive 
detail in Ghysels  et al. (1995).  

One interpretation o f  the process w,, which has its origins in Clark (1973)  
and is refined in Tauchen and Pitts (1983) ,  is that stochastic volatility reflects 
the random and uneven flow o f  new information to the financial market.  Over  
the t ime period t -  1 to t, a random number  o f  individual pieces o f  information 
impinge the market.  Each piece triggers an independent  price movement  drawn 
from a t ime-homogeneous  parent distribution. I f  It----[exp(wt)] 2 individual pieces 
impinge on the market  then, conditional on It, the studentized innovation 

[Yt -- l t t -  I.t ] / x / I t ,  

where 
L, 

IJt--l,t "--liy + ~ c j ( Y t - j  --  l.ty), 
j = !  

would follow a parent distribution, typically Gaussian. The process It is called 
the mixing process. It is unobservable and presumable  serially correlated, which 
motivates  the stochastic volatility specification given above. 

2.2. Da ta  generator  

The stochastic volatility model  defines a strictly stationary and Markov process 
( s t } ,  where s,---= (;,:, w~)'. The process is Markovian o f  order Ls = max(Ly ,  L,v) 
with conditional density ps(s ,  tst_t, . . . . .  , s t - ~ , p )  given by the stochastic volatility 
model ,  where  

p -- (/~y, Cl . . . . .  CL,,~.,al . . . . .  aL,,,rw) t 

is a vector  that contains the free parameters o f  the stochastic volatility model. 
The process {Yt}  is observed whereas {wt}  is regarded as latent. Write 

P ) ' , J ( Y t - - J  . . . . .  Yt t P) for the implied joint  density under  the model  o f  a stretch 
y t - J  . . . . .  yr. Most  integrals appearing in formulas in subsequent  sections fail to 
admit  closed form solutions. In practice, they must  be approximated by quadra- 
ture or Monte  Carlo integration, al though likelihoods can sometimes be computed  
efficiently using the Kaiman filter (Kim and Shephard, 1994). As will be seen, we 
need to compute  expectations under the model  o f  a variety o f  nonlinear functions. 
Monte  Carlo integration is most  convenient ,  and is effected by averaging over  
a long realization from the stochastic volatility model.  For a general  nonlinear 
function g ( Y t - J , Y t - J + l  . . . .  , Y t ) ,  integrals of  the form 

• "" g ( y t - J ,  y t - J + ~  . . . . .  y t ) p y . J ( y t - J ,  y t - J + ~  . . . . .  y t  I P )  r I  d y t - k  
k=O 

are approximated by 

l N 
- -  Z o(Y'~-j,Y'~-j+~, .,Y'~), 
N z- -J+  I 



A.I{ Gallant et al . /Journal o f  Econometrics 81 (1997) 159-192 163 

where - N {Y~}~=l is a long simulated realization from the stochastic volatility model 
given a value p. This is accomplished by simulating ~ N {sr}~=l, which is straight- 
forward, and retaining the element .P~ from is = (3~ r, ~ , ) .  

Here, computations are based on realizations o f  length 5 0 , 0 0 0 - 1 0 0 , 0 0 0 ,  w i t h  

the choice having no substantive effect on inferences. To let transients die off, 
first the volatility equation (which displays substantial persistence) runs for 10,000 
periods; next, both the mean equation (which displays minor persistence) and the 
variance equations run together for another 1 O0 periods, which are discarded; then 
both equations continue to run together to generate a realization o f  the desired 
length. 

3. The E M M  est imator 

In Sections 4 and 5 below we employ the efficient method o f  moments  ( E M M )  
methodology as described in Gallant and Tauchen (1996) to estimate and test the 
stochastic volatility model. The title o f  the paper  is suggestive, "Which Moments  
to Match? ' ,  and the answer  is simple and intuitive: Use the score vector o f  an 
auxiliary model that fits the data well to define a G M M  criterion function. Th¢ 
EMM method has some computational advantages relative to indirect inference 
(Gourieroux et al. 1993) as it circumvents the need to refit the score generator 
t.c, each simulated realization (compute the binding function) and it bypasses a 
Hessian computation. The ideas behind EMM are as follows. 

"., @ 

We observe the data {Yt}t=l, which is presumed to have been generated by 
the stochastic volatility model for some value po E R C ~ ' ,  where lp is the length 
o f  p0. The task is to estimate p0 and test the specification o f  the model. 

Suppose that a probability model for the stochastic process { Y t } ~ = - o o  defined 
by the conditional density 

f ( Y ,  I Y , - ~ ,  Y t - 4 1 , . . . ,  yt -z ,  0), 0 ~ 0 c ~ ' ,  

fits the data {g}7=1 reasonably well. Fits well means that when its parameters 
are estimated by quasi-maximum likelihood 

n 

On----- arg max 
OEO t=L+l 

l °g[f ( .v t  I )3t-L . . . . .  fit-I,  0)], 

the model does reasonably well on statistical specification tests and the fit appears 
sensible from an economic perspective. The functional form of  f ( y t J x t - l ,  O) n e e d  

not have any direct connection to that of  the true conditional distribution o f  yt 
given x t - i  = ( y t - ~ ,  y t - ~ + l  . . . .  , y t - t  ), which is 

Py ,~ (Y , -~  , Y t - L + I ,  . . . , Yt  ]po) 
Py, L--I(Yt--L,  Yt--L+l,  . - - ,  Yt--I i pO)" 
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it should provide a good approximation, though, for the EMM estimator to be 
nearly fully efficient (Tauchen, 1997a; Gallant and Long, 1997). 

The EMM estimator brings the information in f(yJx, 0,,) to bear on the task 
o f  estimating and testing the stochastic volatility model as follows. Define the 
criterion 

m(p,O)-- f ... f O log[f(yt [ 
L 

x l - I  d y t - k  , 
k=O 

y~,-L . . . .  , y , - , ,  O ) ] P , , . L ( y , - L , . . . , y ,  I t ' )  

which is the expected score of  the f (y  ix, 0) model under the stochastic volatility 
model. Hence, f (y  Ix, O) is called the 'score generator'.  The induced parameter 
that ¢Jn estimates is that value 0 ° for which m(p °, 0 ) =  0 (Gallant, 1987, Chapter 
7, Theorem 8). This fact provides the motivation for the EMM estimator. One 
expects re(p, 0,,) to be near zero for values of  p close to p0. 

The EMM estimator is 

/~. -- argmin m'(p,  (1,,)( ,~  ) - I  m(p, O. ), 
pER 

where 

and 

17 t = L +  I 
[~0 l°g f(f i t  I,~,-~ , (J,, )] [ ~---61og f (.f't l -gt-. O. )] 

"~, - ,  = ( Y , - L .  P , - L + I  . . . . .  .~,- l ) ' -  

In computing ~,,, we do not need to impose restrictions that the parameter space 
R contains only those p for which the model generates stationary data, as such re- 
strictions are automatically enforced on the computation (Tauchen, 1997b), Also, 
as noted in Gallant and Tauchen (1996), one should, strictly speaking, use a 
weighted covariance estimator of  

rather than ~ ,  and formulas are given therein. However, it is unlikely that this 
generality will be necessary in practice because the use of  a weighted covariance 
estimator means that one thinks that the score generator is a poor statistical 
approximation to the data generating process. A poor statistical approximation is 
unlikely because the score generator is, conceptually, a reduced form model, not 
a structural model, and is usually easy to modify by adding a few parameters so 
that it fits the data well. 
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Under regularity conditions stated in Gallant and Tauchen (1996), which are 
standard regularity conditions such that the maximum likelihood estimator of  p in 
p ( y l x ,  p)  is consistent and asymptotic normal and such that the quasi-maximum 
likelihood estimator of 0 in f ( y l  x, O) is asymptotic normal, we have that /$,, is 
consistent and 

~/n(pn_ pO) _~ N{0, [ (MO),( jo)- I (MO)]-I  }, 

where M ° = M ( p  °, 0 °) and M(p,  O) = (~/~p')m(p, 0). M ° can be estimated con- 
sistently by ill, = Mn(Pn, 0,,). The order condition (necessary condition) for iden- 
tification is fp~<10; sufficient conditions are discussed in Gallant and Tauchen 
(1996). The better the score generator approximates the conditional distribution 
of the data, then the closer is the asymptotic covariance matrix to that of  maxi- 
mum likelihood (Tauchen, 1997a; Gallant and Long, 1997). If the score generator 
actually nests the true conditional distribution, then full efficiency obtains (Gallant 
and Tauchen, 1996). 

M,(p,  O) must be computed numerically in order to use the asymptotic distribu- 
tion to get standard errors for setting confidence intervals on the elements of  p0. 
Alternatively, one can avoid computation of AT/n by using the criterion difference 
statistic to set confidence intervals (Gallant, 1987, Chapter 7, Theorem 15). The 
latter approach is to be preferred in most time-series applications because it will 
exclude values of  p that imply an explosive process from the confidence interval 
(Tauchen, 1997b). 

For specification testing, which is the focus of  this paper, we have that 

n m , ( ~ , , , O n ) ( ~ ) - I m ( P n , ~ n )  ~" ---+ z2(df)  

with d f = ~  - f p  under the null hypothesis that the maintained model Py.L 
( Y t - - L ,  . . . ,  Y t ,  P )  is correct. 

When a model fails a diagnostic test, one would like some suggestions as to 
what is wrong Inspection of the quasi-t-ratios 

7". --S,~-' Jn m(Pn, On ), 

where S ,=[d iag(J~) ]  !/2 can suggest reasons for model failure. As seen in 
Section 4, different elements of  the score vector correspond to different features 
of the fit. Large quasi-t-ratios reveal the features of  the data that the maintained 
model cannot approximate. 

The elements of ~ are biased downward in absolute value because the standard 
errors S,, are too large due to the fact that 

0 0 t 0 ! 0 I x/nm(/~n./},, ) -~ N{0..~ "(~ - - ( M  )[(M ) ( J  ) - ( M  ) ] - ( M ° ) ' } .  

The downward bias can be corrected by computing At,, numerically and putting 
Sn=(diag{J~--(l~ln)[(A~'ln)'(~)-l(i~ln)]-l(l~I,,) '}) I/2 in the formula for 7".. 
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We have not corrected the bias in this paper because we believe the correction 
to be unnecessary for two reasons. First, J ° - - ( M ° ) [ ( M ° ) ' ( •  ° ) - I  ( M 0 ) ] - I ( M 0 ) ,  is 
the familiar formula for the variance o f  GLS residuals and experience with GLS 
regressions suggests  that the difference between j 0  ( M 0 ) [ ( M 0 f ( j 0 )  - t ( M 0 ) ] - t  
( M ° )  ~ and j 0  is negligible in most  applications. Secondly,  we do not rely on the 
quasi-t-ratios for inference, we only rely on them for suggest ions as to how the 
stochastic volatility model  might  be enhanced. When  we act upon a suggestion, 
we cheek it with the Z 2 statistic. This methodological  approach is similar to 
the well-established F-pro tec ted  t-test methodology  as employed in the statistical 
Analysis o f  Variance. 

4.  U n i v a r i a t e  empir i ca l  results  

4.1. Da ta  

The data to which we fit the univariate stochastic volatility model  is a long time 
r ~ ~ ! 6 . 1 2 7 ,  adjusted movements  series comprised  o f  16,127 daily observations,  ~Ytlt=l on 

o f  the Standard and Poor ' s  Composi te  Price Index, 1928 -87 .  This series is the 
univariate stock series used in Gallant et al. (1992, 1993). The raw series is the 
Standard and Poor ' s  Composi te  Price Index (SP) ,  daily, 1928-87.  We use a long 
time series, because,  among  other things, we want  to investigate the long-term 
properties o f  stock market  volatility. As described in Gallant et al. (1992) ,  the 
raw series is converted to a price movements  series, 1 0 0 [ I o g ( S P t ) -  log(SPt_l  )], 
and then adjusted for systematic calendar effects in location and scale. Financial 
data are known to exhibit  calendar effects, that is, systematic shifts in location 
and scale due to different trading patterns across days o f  the week,  holidays, and 
year-end tax trading. Calendar  effects comprise a very small portion o f  the total 
variation in the series, al though they should still be accounted for in order not 
to adversely affect subsequent  analysis. The raw and adjusted data are plotted 
in Fig. 1. Though  long time series somet imes exhibit  structural regime switches, 
there is no such shift apparent  in the figure. 

4.2. Score  generators  

To implement  the E M M  estimator we require a score generator  f ( y l  x, O) that 
fits these data well. As documented  in Gallant  et al. (1992, 1993) the semi- 
nonparametr ic  ( S N P )  density proposed by Gallant and Tauchen (1989)  does so. 
Moreover,  when refitted to subperiods, est imates are stable. 

The SNP density is a member  o f  a class of  parameter ized conditional densities 

~ x  = { f r ( y l x ,  O) : 0 = ( 0 1 , 0 2  . . . .  ,0tK)}, 

which expands octat c ~ 2  c - - -  as K increases. It has two desirable properties 
= I,.Jr=! :'¢t°x is quite from the perspective o f  E M M  estimation: (1)  The union ~ o~ 
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Unadjusted 

-4 

/~ljusted 

-r-i + r t ~  r - - + -  [+.t .~F.rp._ -~.~ -- . t  r i . . . . p v . l + r  Ig,u+t]qn ~r ~ [~r ~-v l . -  ,..~i +. + ! 

l [ 
t 

- -  

Fig. i. Time series o f  unadjusted and adjusted stock price movements. The top panel shows a t ime 
series plot o f  the daily unadjusted price movement series, 100(iogPt -- I ogP t -n  ). The data are daily 
from 1928 to 1987, 16,127 observations. The bottom panel shows the adjusted price movement 
series. The adjustments remove calendar effects and long-term trend on the basis o f  least squares 
regressions. The adjusted series can reasonably be taken as stationary, which is required for use 
o f  the SNP estimator. See Section I o f  Gallant et al. (1992) for a description of  the adjustment 
procedure. 

rich and it is reasonable to assume that the true density p ( y  I x)  of  stationary 
data from a financial market is contained in 3ft. (2)  If 0 is estimated by quasi- 
maximum likelihood, viz. 

On -- arg max 1_ ~ log[f~(.P,l.P,_,, . . . . .~,_l,  0)], 
OE~/K I1 I~L+I 

and if  K grows with sample size n [either adaptively as a random variable /¢'. 
or deterministically as a function K(n)],  then 

P.(ylx)-- f~(ylx, O.) 

is a consistent (Gallant and Nychka, 1987) and efficient (Fenton and Gallant, 
1996a; Gallant and Long, 1997) nonparametric estimator of  p ( y  Ix) with desir- 
able qualitative features (Fenton and Gallant, 1996b). 

A standard method of  describing a conditional density f ( y l x ,  O) is to set forth 
a location function Px and a scale function Rx that reduces the process {Yt}~-oc 
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to an innovation process { z t } ~ _ ~  via the transformation 

z,  = ,; . ) ,  ( y ,  - m , _ ,  ). 

The description is completed by setting forth a conditional density h(z lx)  for the 
innovation process. We follow this recipe in describing f h - ( y [ x ,  O) E J~K. 

The location function /ax is afline in x 

/~x,_, = b 0  + b ' x t - l .  

It is presumed to depend on Lj, ~<L lags which is accomplished by putt ing leading 
elements  o f  b to zero as required. Note that were one to put rx to a constant and 
eliminate the dependence o f  the innovation density on x by writing h(z )  instead 
o f  h(z Ix)  then { Y t } 7 ~ = - ~  would be a vector autoregression (VAR) .  

The scale function rx is affine in the absolute values o f  x 

rx,_, = p 0  + p '  tX,-l l .  

It is presumed to depend on LR ~ L  lags which is accomplished by putt ing leading 
elements  o f  p to zero as required. Note that were one to el iminate the dependence 
o f  the innovation density on x by writ ing h(z )  instead o f  h(z  Ix)  then { Y t } ~ - ~  
would be an ARCH-type  process akin to that proposed by Nelson (1991).  

For a vector ( = ( ( l , . . . ,  ( / )  with real e lements  and a vector  2 = (21 . . . .  , 2 / )  with 
integer elements,  let ~;- denote the monomial  1-I~=l ~" o f  degree I;-I " -- ~-,i=! 12i1 
and consider 

[ P x ( z , x ) ] 2 4 ~ ( z )  
hu(z Ix)= j . [ p~ : (u , x ) ]Z4~(u )du  

formed from the polynomial  

P~:(z, x)  = ~ ~ a,t~xt~ z ~ 
~=0 I/tl=0 

where ~b(z)- - (2rr ) -1/2e- : ' : /2 .  P x ( z , x )  is a polynomial  o f  degree K_- in z whose co- 
efficients are, in turn, polynomials  o f  degree Kx in x. The product  [PK(z,x)]:'dp(z) 
is a Hermite polynomial  in z with positivity enforced whose  coefficients depend 
on x. The shape o f  the innovation density hx(z t  ] x t -  ! ) varies with x t -  ! which per- 
mits h~c(z, lx,_~ ) t o  exhibit  general,  conditional shape heterogeneity. By putting 
selected elements  of  the matrix A = [a~l~ ] to zero, PK(z , x )  can be made to de- 
pend on only Lp <<,L lags from x. One may note that i f  K: is put to zero, then the 
innovation density hh-(z Ix)  is Gaussian. I f  K= > 0 and Kx = 0 ,  then the density 
can assume arbitrary shape but innovations are homogeneous.  

The change o f  variables Yt = rr,_,zt "a t- ltx,_l to obtain the density 

{ e ~  . - l  2 _ ,  [ ' x ,_ , (Yt - /ux ,_ , ) ,x t - i ]}  q~[r.~,_,(yt -- #x,_, )1 
f r ( Y t  I x t - l ,  0 ) - -  

l,:.,.,_, I '/2 f[PK(u,x,-i )12~(u) du 
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completes the description of the SNP density. The vector 0 contains the coeffi- 
cients A = [a~p] of the Hermite polynomial, the coefficients [b0, b] of  the location 
function, and the coefficients [P0,P] of the scale function. To achieve identifica- 
tion, the coefficient a0.0 is set to 1. The tuning parameters are Lu, L,., Lp, K-_, and 
Kx, which determine the dimension gK ( =  f0) of 0. 

When data are heavy tailed, as is typical for data from financial markets, nu- 
merical stability can be enhanced without affecting theoretical results by forming 
the vector of lags x t - t  from a series {y~} consisting of {Yt} that have been cen- 
tered by subtracting the sample mean, scaled by dividing by the sample standard 
error, and hL,-nsformed by the logistic map that takes the interval ( - o ¢ ,  o¢) into 
the interval ( - ~ , 4 ) .  That has been done both here and in the results reported 
for this series b~ Gallant et al. (1992, 1993). Note that it is only the lagged- 
dependent variabl¢~ xt-~ that are logistic transformed; the contemporaneous yt 
is not. 

We selected the tuning parameters Lu, L,., Lp, K~, and K~ following the pro- 
tocol that is described in detail in Bansal et al. (1995). Briefly, the model is 
expanded sequentially according to the BIC (Schwarz, 1978) model selection 
criterion. It is then expanded further if a battery of  statistical specification tests 
indicate that the BIC specification is inadequate. Following this protocol, we 
selected the model L,, = 2, Lr--18, and K= : 4  with 26 free parameters, when 
innovations are constrained to be homogenous (that is, Kx- :  0, and L p -  I im- 
posed). This is a semiparametric density with a parametric part comprised of  an 
AR(2)-ARCH(18) model with unconstrained lag coefficients and a r:o:~parametric 
error density, which is analogous to the model proposed by Engle and Gonzales- 
Rivera (1991). We term the score from this fit the "semiparametric ARCH score" 
in legends for figures and tables. When the homogeneity constraint is dropped, 
and we follow the same protocol, we select the model L u -  2, Lr = 18, Lp = 2, 
K.-= 4, and Kx = I with 36 free parameters; this specification does better under 
BIC than the model with homogeneous errors. This fitted model differs in only 
minor respects from the preferred SNP specification reported in Gallant et al. 
(1992). (The differences are due to minor enhancements to the computer pro- 
gram.) We term the score from this fit the "nonlinear nonparametric score'. 

We emerge from this exercise with two sets of scores with which to confront 
the stochastic volatility model. The first, the semiparametric ARCH score, is 
defined by a score generator that is very similar to models widely employed in 
the ARCH literature, though a bit more flexibly parameterized. The second, the 
nonlinear nonparametric score, is defined by a score generator determined via a 
complete specificat|on search that accounts for the full complexity of  the data. 

4.3. Fit to the semiparametric  A R C H  score 

Table I shows the optimized values of the EMM objective function scaled 
to follow a chi square, as described in Section 3. Table 2 shows the parameter 
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Table  I 
Univar ia te  price change  series: op t imized  value  o f  the cri terion for the semiparametr ic  A R C H  score  
genera to r  

Score  genera to r  ( S N P )  SV model  Objec t ive  funct ion 

Lu Lr L r K: Kx 6~ Ly L,,. ~, 2". 2 d f  p-val  

Gauss ian  
2 18 I 4 0 26 2 ! 6 86.432 20 <0 .0001  
2 18 i 4 0 26 2 2 7 79.001 19 <0 .0001  
2 18 I 4 0 26 2 3 8 72.672 18 <0 .0001  
2 18 ! 4 0 26 2 4 9 69.188 17 <0 .0001  
2 18 ! 4 0 26 2 5 10 67.823 16 <0 .0001  
2 18 I 4 0 26 2 6 I i  61.093 15 <0 .0001  

t ( v ) , v  = 10 .15 ,20 ,25  
2 18 ! 4 0 26 2 2 8 78.186 18 <0 .0001  
2 18 1 4 0 26 2 2 8 68.931 18 <0 .0001  
2 18 I 4 0 26 2 2 8 69.111 18 <0 .0001  
2 18 1 4 0 26 2 2 8 69.898 18 <0 .0001  

Spline 
2 18 ! 4 0 26 2 I 8 41.920 18 0.0011 
2 18 1 4 0 26 2 2 9 41.351 17 0.0008 
2 18 I 4 0 26 2 3 10 37.700 16 0.0016 
2 18 I 4 0 26 2 4 11 36,107 15 0.0017 
2 18 1 4 0 26 2 4 12 33.768 14 0.0022 
2 18 I 4 0 26 2 6 J3 18.638 13 0.1348 

G a u s s i a n &  l o n g - m e m o r y  
2 18 ! 4 0 26 2 0 6 67.691 20 <0 .0001  
2 18 I 4 0 26 2 1 7 67.061 19 <0 .0001  
2 18 I 4 0 26 2 2 8 65.463 18 <0 .0001  

Spline & l o n g - m c m o r y  
2 18 I 4 0 26 2 0 8 34.923 18 0.0097 
2 18 ! 4 0 26 2 I 9 26.718 17 0.0623 
2 18 I 4 0 26 2 2 10 21.781 16 0.1504 

L,, is the  n u m b e r  o f  lags in the l inear part o f  the SNP model  L- is the n u m b e r  o f  lags in the A R C H  
part; Lp the n u m b e r  o f  lags in the  po lynomia l  part, P(z ,x) .  T' ,e  po lynomia l  P ( z , x )  is o f  degree  K- in 
z and Kx in x; by  convent ion ,  Lp = I i f  Kx = 0. 6t is the n u : , b e r  o f  free parameters  associa ted with 
the  SNP model .  Ly is the  n u m b e r  o f  lags in the l inear condi t ional  m e a n  specif icat ion o f  the stochast ic  
volat i l i ty model ,  and  L,, is the number  o f  lags in the volati l i ty specification. /p is the n u m b e r  o f  
free parameters  o f  the s tochast ic  volat i l i ty model .  Z 2 is the E M M  object ive  funct ion scaled to be 
dis t r ibuted z Z ( d f )  under  the  main ta ined  assumpt ion  o f  correct  specification o f  the stochastic volati l i ty 
model .  S o m e  re levant  quant i les  are  Z02.q~(20) 37.566, ~ 5) = 7.~.~( l = 30.578. 
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estimates for the various specifications reported in Table 1. From the top panel o f  
Table i, labeled Gaussian, it is seen that the standard stochastic volatility model 
fails to approximate the distribution o f  the data adequately; it is overwhelmingly 
rejected. However,  as seen from the objective function surface laid out across the 
various panels o f  the table, certain extensions o f  the standard stochastic volatility 
model fit the data better. 

We describe these extensions and seek to determine which features of  the 
data they seem to approximate well and which features poorly.  Guided by the 
objective function, we inspect the EMM quasi-t-ratios T,. The ~lements of  T,, 
provide suggestive diagnostics, as pointed out in Section 3. 

Fig. 2 shows these EMM quasi-t-ratios as a bar chart for the case L.r- -2 ,  
L,,. = 2, and Gaussian z 's .  This is the standard stochastic volatility specification 

Yt - -  I t y  = c l ( y t - l  - -  l t y )  + c 2 ( y t - - 2  - -  ~Uy) + exp(wt)rvzt, 

w, -- Hw = a l ( w t - i  -- l lw)  + a2(wt-2 -- liw) + rw~'t. 

The source of  the rejection of  this model is failure to match the features de- 
fined by the polynomial part o f  the SNP score. Either exp(wt ) is not the correct 
transformation of  the latent variance process or zt  is not Gaussian. 

4 . 3 . 1 .  M o d i f i e d  e x p o n e n t i a l  
To explore the first possibility, consider the model 

Y t  - -  / l  y = CI ( Y t - -  I - -  ~t.t' ) -Jr- c 2 ( Y t - - 2  - -  JtL.r) -]- Te(  $vt ) r y Z t ,  

T~(wt) = exp(be0 + b~,twt)  + b,,2w2t + b,,31+(wt)w2t,  

wt  - I~,,. = a t ( w t - i  - l~,,.) + a 2 ( w t - 2  -- IL,,.) + r,,.-~t, 

where l + ( w )  is 1 if w is positive and is 0 otherwise. The idea is to modify the 
Taylor expansion of  exp(.)  by replacing the quadratic term with a differentiable 
quadratic spline that has one knot at zero. Inspection of  the bar chart (not shown) 
indicates failure. The fit is improved by better matching the V A R  and ARCH 
scores at the expense o f  further mismatch to the polynomial part o f  the SNP score. 
The exponential transformation appears not to be a problem, so we consider non- 
Gaussian densities for zt .  

4 . 3 . 2 .  t - E r r o r s  

A natural way to relax the Gaussian assumption is to use t-errors. Consider 
the model 

Y~ --  l~y = c l ( y t - - !  --  l t y )  + c 2 ( y t - 2  --  l t y )  + e x p ( w , ) o , Z , , , ,  

w t - -  .ll,,. : O i ( W t - - I  - -  ~ w )  + a 2 ( w t - 2  - -  l l w )  + rwz t ,  
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T-Ratios of Mean Score, Lw=2 
Semiparametric ARCH Score Generator 
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Fig. 2. E M M  quasi - t - ra t ios  for the stochast ic  volat i l i ty model  matched to the semiparamct r ic  
A R C H  score. The semiparamct r ic  A R C H  score  is an :~NP spcuificalion v, ith L u = 2 ,  L r = 1 8 ,  
L p =  !, K: = 4 ,  / :  = 0 ,  K x = O ,  and ! ~ = 0 .  The  V A R  t-ratios and A R C H  t-rat ios shown  in the 
plot co r re spond  to the equations p.~ = bo + b tx  and r.~ = Po + t / x  o f  the S N P  specif icat ion,  re- 
spectively. The S N P  t-rat ios  co r respond  to  the  coeff ic ients  o f  the polynomia l  P ( z , x )  o f  the 
S N P  specification where the subscript indicates degree. The stochast ic  volati l i ty specif icat ion is 

)'t -- 14y = ct ( ) ' t -  t -- l~.r) + c2(Y~-2 -- l~x) + cxp(wt  )ryzt ,  wt -- It,,- = a l ( w t -  t -- # - ' )  + a z ( w t - 2  --/z,,. ) 
+ r,.~.,. 

where {z,.t} is iid Student-t with v degrees o f  freedom. The objective function 
is so flat for values o f  the degrees o f  freedom parameter v E ( 1 0 , 2 0 )  that the 
optimizer gets stuck and makes no progress when it sees v as free parameter 
along with the rest. Thus, in the second panel o f  Table 1 we  report the value o f  
the objective function for v = I 0, 15,20,  25. The specification with t errors helps, 
but still the model  does not fit the data. Fig. 3 shows  the bar chart for the case 
v -  15; the stochastic volatility model  fails to fit the score o f  the SNP polynomial  
for the cubic term, suggesting a failure to generate skewness.  
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T-Ratios of Mean Score, Lw=2, t-Errors 
Semiparametric ARCH Score Generator 
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Fig. 3. EMM quasi-t-ratios for the t - innovat ions stochastic volatility model  matched to the semi- 
parametr ic  ARCH score, l 'he semiparame~rie ARCH score is an SNP specification with Lu = 2 ,  
L r = 1 8 ,  L p = l ,  K_-=4,  /_-=0,  K ~ = O ,  and I x=O.  The V A R  t-ratios and ARCH t-ratios shown 
in the plot correspond to the equations lt~ = h o  + htx and rx =p , ,  + p tx  o f  the SNP specifica- 
tion, respectively.  The  SNP t-ratios correspond to the coefficients o f  the polynomial  P(z , x )  o f  
the SNP specification wherc  the subscript  indicates degree. The  stochastic volatili ty specification is 
yt --f ly = Cl(Yt-- I --lit. )+c2(Yt--2 --tit- )+exp(w,  )~5 tt 5.t. wt--p,,. = al (wt-- 1 --it,. ) + a 2 ( w t -  2--11w )+rw3t. 
where  ~'zs.t fol lows the t-distribution on 15 degrees  freedom. 

4.3 .3 .  S p l i n e  e r r o r  t r a n s J b r m a t i o n  
More  flexibility than with the t is available from a spline transformation to the 

Gaussian innovation. Consider  

Yt -- P y - -  c l ( y , - I  -- lly ) + c 2 ( y , - 2  -- p y )  + exp(wt)rv T_-(zt), 

Tz(zt ) = b:o + bz lz t  + b-2z2t + bz3l+(z,  )z2t. 

w ,  - p,,, = a l ( w , - i  - - / a , . )  + a 2 ( w t - 2  -- l lw)  + r,,r.t. 
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The idea is to allow a deviation from the Gaussian specification by transforming 
zt through a differentiable quadratic spline that has one knot at zero. To achieve 
identification, the constraints (2rc)-m/ZfT~(v)exp(-v2/2)dv=O and (2re) -!/2 
f T2(v)exp(--v2/2)dv= 1 are imposed on the bzj. From Table 1 it is seen that 
the added flexibility of  the spline transform sharply reduces the objective function 
value. The EMM quasi-t-ratios for this 'spline-transform' fit are shown in Fig. 4. 
The transform works; the moments  o f  the polynomial part of  the semiparametrie 
ARCH score are adequately matched. 

The effects of  the spline are to fatten the tails and introduce an asymmetry as 
seen in Fig. 5. The solid line in the upper left panel is a plot of  the spline Tz. This 
plot can also be interpreted as a plot of  the quantiles of  the distribution o f  the 
random variable T_-(zt) on the vertical axis against the quantiles o f  the standard 
normal distribution on the horizontal axis. I f  a distribution is Gaussian, then its 
quanti le-quanti le  plot is a 45 ° line. A comparison with the 45 ° line in the upper 
left panel of  Fig. 5 indicates heavy tails, because the solid line plots below the 
45 ° line on the left and above on the right, and an asymmetry,  because the solid 
line deviates more from the 45 ° line on the left than on the right. The asymmetry  
is also apparent from a co:npadson with the solid line in the upper right panel o f  
Fig. 5 which shows a quantile--quantile plot o f  the six-degrees-of-freedom Student 
t-distribution. The asymmetry and heavy tails are features o f  the data that have 
been captured by the semiparametric ARCH score as can be seen in the lower 
left panel of  Fig. 5. The EMM moment  matching procedure has transferred these 
characteristics to the spline-transform stochastic volatility model. The asymmetry 
and heavy tails are real features o f  the data, not artifacts of  the SNP fit, as 
can be seen from the solid line in the lower right panel of  Fig. 5 which is a 
quanti le-quanti le  plot o f  a kernel density estimate from ARCH residuals. 

4.3.4. Chaotic volatility 
Interestingly, one can do as well with a deterministic variance process. EMM 

quasi-t-ratios (not shown)  that result when the variance equation of  the model 

Yt  --  l t y = C l ( Y t - I  --  ~ y ) - i -  c 2 ( Y t - - 2  - -  l t y )  + T w ( w t ) r y T : ( z t ) ,  

r,,(w,) = + bwt w, + bw2w 2, + b, 3t÷(w, )w2,, 

t-(z,) = b:o + b ,z, + b:2z 2, + b-3t+(z,)F,, 

is a moving average in 40 lags 

40 4 0  - -  j 
Wt = E ~ I)t--J 

j=0 40 

from a chaotic Mackey-Glass sequence 

( 0.2v,_, ) 
v, = v t - t  + 10.5 1 + v~°s O.lv,-I  
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T-Ratios of Mean Score, Lw=2, Spline 
Semiparametric ARCH Score Generator 
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Fig. 4. EMM quasi-t-ratios for the spline-transform stochastic volatility model  matched  to the semi- 
parametr ic  ARCH score. The  semiparametr ic  A R C H  score is an SNP specification with L~, = 2 ,  
L , -=  18, L e = 1, K: = 4 ,  /': = 0 ,  Ks = 0 ,  and IT = 0 .  The  VAR t-ratios and A R C H  t-ratios shown 
in the plot correspond to the equations lt¢ = b , ,  + h %  and rv = po + / I x  o f  tl-,; SNP specifica- 
tion, respectively.  The  SNP t-ratios correspond to the coeflicicnts o f  the polynomial  P ( z , x )  o f  
the SNP specification where  the subscript indicates degree.  The  stochastic volatility specification is 
y t  - -  It.,. = c l ( . r t -  I - 1~.,. ) + c2 ( . v t -  2 -- It,. ) + ¢xp( wt )r.r T: (z,), T_- (zt) = h:0 + h:  t zt  + h-2z2t + b-_3 i+ (z t  )z~,  

Wt --  l tw = a l ( w t - I  - -  l l w )  + a 2 ( w t - 2  --  It,, ") + l%~.z. 

are s imi lar  to those  shown  in Fig. 4. Th i s  M a e k e y - G l a s s  var iant  on the spline- 
t rans form stochast ic  vola t i l i ty  model  does  s l ight ly  bet ter  on the SNP scores  and 
s l ight ly  worse  on the A R C H  scores.  

4. 3. 5. Long memory  
Fig. 4 suggests  the s tandard  s tochast ic  vola t i l i ty  model  has  some t rouble  match-  

ing the scores o f  the flexibly parameterized ARCH model, and somewhat more so 
at the longer ARCH lags. Bollerslev and Mikkelsen (1996),  Ding et ai. (1993),  
and Breidt et al. (1994)  present evidence that long-memory models like those of  
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Fig. 5. Quantile-quantile plots. The solid line in the upper left panet shows the spline transform of 
Fig. 4 which can also be interpreted as a plot of the quantiles of the distribution of  the random 
variable T-(z1) on the vertical axis against the quantiles of the standard normal distribution on the 
horizontal axis. The dashed is a plot of the quantiles of the standard normal against the quantiles 
of the standard normal. The solid line in the upper right panel is a quantile-quantile plot of the five 
degree freedom Student t-distribution. The solid line in the lower left panel is a quantile-quantile 
plot of the innovation distribution of the semiparametric ARCH score generator. The solid line in the 
lower right panel is a quantile-quantile plot of a kernel density estimate from ARCH residuals. 

G r a n g e r  and  J o y e u x  ( 1 9 8 0 )  m i g h t  be  n e e d e d  to a c c o u n t  fo r  the  h igh  d e g r e e  o f  
p e r s i s t e n c e  in f inancia l  vola t i l i ty .  H a r v e y  ( 1 9 9 3 )  c o n t a i n s  a n  e x t e n s i v e  d i s c u s s i o n  
o f  the  p rope r t i e s  o f  l ong  m e m o r y  in s tochas t i c  vo la t i l i t y  mode l s .  W e  thus  e x -  
p lo re  i f  i nc lus ion  o f  bo th  shor t -  a n d  l o n g - m e m o r y  he lps  in f i t t ing the  s tochas t i c  
vo la t i l i ty  m o d e l .  
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The long-memory stocha~,tic volatility model is 

Yt  --  lay = c l ( Y t - I  --  f l y )  + c 2 ( Y t - 2  - -  lay)  + exp(wt  ) ryz t ,  

w~  --  #,,. = ( !  - -  . ~ ) - a z , , , ,  

LII 

z,,.t = ~ a/z,,., t - j  + r,,. $t ,  
j = !  

where {z,} and {-~t} are iid Gaussian, (!  - - . ~ ) - d =  ~x~0~k(d).~/,k ' and the 
coefficients ~bk(d)  are obtained from the series expansion of  f ( x ) = ( l  - - x )  - a ,  

valid for I d l < l ,  as described in Sowell (1990).  Motivating this specification 
is the fact that for I d [ < l / 2 ,  (1 - . ~ ) d v t : e t ,  {~;1} iid with finite variance, de- 
fines a strictly stationary process whose moving average representation is vt = 

( i  - -  . ~ ) - - d e t - - -  ~-~Z=l I[Ik(d)£.t--k, the autocovariance function o f  vt decays arith- 
metically to zero, instead o f  exponentially to zero as in the case of  an autore- 
gression o f  finite lag length. For ½ ~<d< !, (I -- .~q')avt=et,  defines a nonstation- 
ary process. {wT} is thus obtained by passing the autoregressive process {z,,.t} 
through the  long-memory moving average filter. For d = 0, this generates exactly 
the same autoregressive volatility process as earlier, while for O<  jdl < ½, it de- 
fines a strictly stationary volatility process with both short- and long-memory 
components.  

Since we need very long realizations for Monte Carlo integration, it is im- 
practical to simulate exactly from this model by, say, computing the Cholesky 
factorization of  the covariance matrix of  wt  and proceeding in the usual man- 
ner. Instead, we follow Bollerslev and Mikkelsen (1996) and use a method that 
truncates the moving average filter and lets the process run for a long while 
to attenuate the effects of  transients. Their  calculations suggest  that truncation 
at I000 suffices, so we use the moving average filter ~ f ~ = ° ° ~ b k ( d ) . ~ k .  (Because 
o f  the truncation, this method technically generates a stationary process for all 
141 < I .)  They trim off the first 7000 realizations; we trim off the first 10,000. 
Some would argue that this method does not actually generate realizations from 
a long-memory volatility process. The point is well taken but, nonetheless, the 
Boi lers lev-Mikkelsen approach still defines a volatility process {w~} with ex- 
tremely high persistence. 

The bottom part of  Table 1 shows the optimized objective function when the 
long-memory parameter,  d, is estimated jointly with the other parameters of  the 
model subject to a normalization on It,,. for identification. We only estimate the 
long-memory version for L,v = I and Lw = 2, since the job  of  the long-memory 
specification is to take care of  longer la~s. For the block labeled 'Gaussian & 
Long Memory" the mean equation is 

Yt  - -  l~y = c i ( y t - l  - -  l~y)  + c 2 ( y , - 2  --  l t y )  + exp(w~' )rvzt 
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Fig. 6. EMM quasi-t-ratios for the spline-transform stochastic volatility model with a long-memory 
variance equation matched to the semiparametric ARCH score. The semiparametric ARCH score 
is an SNP specification with L , = 2 ,  L r =  18, L p =  !, K. = 4 .  !: = 0 ,  K x = 0 ,  and I x = 0 .  The VAR 
t-ratios and ARCH t-ratios shown in the plot correspond to the equations px = b o  4 - b ' x  and 

rx = p ,  -I- p ' x  of  the SNP specification, respectively. The SNP t-ratios correspond to the coeffi- 
cients o f  the polynomial P ( z , x )  of  the SNP specification where the subscript indicates degree. The 
stochastic volatility specification is .vt -- p y  = c l ( y t - I  -- P y )  + c2(y , -2  -- py )  + exp(w,* ) r x ~ ( z t ) .  
T:(z,) = b:0 + b.-lzl + b_-2zt 2 + b:31+ (..-,):~, w;' --/~,,. = ( I -- - ~ ) - - d z ,  t, z , ,  = a l z , . , t -  l + a2z~..t-2 + r,,.£t. 

while for the block labeled 'Spline & Long Memory',  the mean equation is 

Y t  - -  l l y  = Ci ( y , -  I - -  I~y ) 4-  c 2 ( Y t - 2  - -  I t3 , )  4 -  exp(w~ )ry T~(z,) 

where the two-parameter quadratic spline 7'.-(-) is as defined above. 
As seen from Table 1, long memory helps, but the Gaussian stochastic volatility 

model cannot accommodate all o f  the structure implicit in the semiparametric 
ARCH model. With the spline transform, it can. Fig. 6 shows the bar chart for 
the case L w -  2. The impact on the objective function value o f  long memory is 
similar to that o f  introducing two or three extra freely parameterized lag~ ~-.t~ 
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the volatility equation. Overall, long-memory helps about as much as introducing 
six free lags into the volatility specification. 

4 . 4 .  F i t  t o  t h e  n o n l i n e a r  s e m i p a r a m e t r i c  s c o r e  

Table 3 displays the objective function surface for versions o f  the stochastic 
volatility model against the nonlinear nonparametric score; Table 4 shows the 
estimated parameter  values. From Table 3, the standard model is overwhelmingly 
rejected. The various extensions provide much improvement over the standard 
Gaussian model, but nothing comes as close as the spline variants against the 
Semiparametric ARCH Score. We now examine the performance o f  the extensions 
in more detail. 

The bar chart for the L:. = 2, L,,. = 2, Gaussian stochastic volatility specification 
is shown as Fig. 7. The ARCH part of  the score is fit poorly, as is the SNP part. 
The quasi-t-ratios are not orthogonal, so that failure to fit the SNP scores could 
manifest itself as large ARCH quasi-t-ratios and conversely. The spline-transform 
variant (not shown)  does just  about as poorly. 

The full nonlinear nonparametric score embodies various conditional nonlinear- 
ities, such as the asymmetric  ' leverage effect" of  Nelson (1991)  that are discussed 
in Gallant et al. (1992, 1993). We explore the effects of  introducing asymme- 
try into the stochastic volatility model. A common approach in the stochastic 
volatility literature (Harvey and Shephard, 1996) is to generate asymmetry  by 
introducing correlations across innovations in the mean and variance equations: 

y t  - I~:. = c l ( y t - t  - -  It.v) + c 2 ( y t - 2  - -  It.v) + e x p ( w t ) r . v z t ,  

w t  - !~,. = a l ( w t - i  - -  I t , . )  + a 2 ( w t - 2  - -  it,,.) + r,.(:~t + f l z t - i  ), 

where ~ is a free parameter to be estimated. This variant does better but still 
does poorly on the chi-square statistics shown in Table 3. The bar chart (not 
shown)  shows large SNP quasi-t-ratios, which suggests that the spline-transform 
be applied to the asymmetric variant. The model that results is 

y~ - -  l~v ---- c t ( y t - t  - -  l~.r) + c2(yt-2 - -  lU:.) + e x p ( w t ) r v T : ( z ~ ) ,  

T:(z, ) = b:o + b_.~z, + b_.2(z, )2 + b:31+(z,)(z, )2. 

w ,  - -  ~t,,. = a l ( w t - !  - -  It,,.) + a 2 ( w t - 2  - -  It,,.) + r,, .(~t + t d z , - t  ). 

The fit improves but is still inadequate, as indicated by the chi-square statistics 
shown in Table 3. 

Finally, we consider long-memory in the variance equation. We estimate with 
the spline transformation: 

Y t  - -  Ib" - -  c l ( Y t - I  - -  I t l y ) +  c 2 ( Y t - 2  - -  l~b , )  + e x p ( w t  )t;vT-.(zt) ,  

7~(zt  ) = b:o  + b - t z t  + b - 2 ( z , ) 2  + bz31+(z, )(z, )2, 



Table 3 
Univariate price change  series: opt imized  value o f  the criterion for the nonl inear  nonparametr ic  score 
generator  

Score Generator  (SNP)  SV Model  Object ive Funct ion 

Lu Lr Lp K: Kx /0 Ly L.. t'p X 2 d f  p-val  

Gaussian 
2 18 2 4 I 36 2 I 6 173.361 30 <0 .0001  
2 18 2 4 ! 36 2 2 7 164.337 29 <0 .0001  
2 18 2 4 i 36 2 3 8 155.449 28 <0 .0001  
2 18 2 4 ! 36 2 4 9 151.243 27 <0 .0001  
2 18 2 4 1 36 2 5 10 149.350 26 <0 .0001  
2 18 2 4 ! 36 2 6 ! I 147.984 25 < 0.0001 

Spline 
2 18 2 4 1 36 2 i 8 151.290 28 <0 .0001  
2 ! 8 2 4 1 36 2 2 9 150.765 27 < 0.000 I 
2 [b 2 4 1 36 2 3 10 144.41 ! 26 < 0.0001 
2 18 2 4 1 36 2 4 I I 143.310 25 <0 .0001  
2 18 2 4 I 36 2 5 12 143.310 24 <0 .0001  
2 18 2 4 1 36 2 6 13 142.461 23 <0 .0001  

Gauss ian-asymmetr ic  
2 18 2 4 I 36 2 I 7 ! 11.497 29 <0 .0001 
2 i 8 2 4 i 36 2 2 8 ! 11.487 28 <0 .0001  
2 18 2 4 1 36 2 3 9 97.536 27 <0 .0001  
2 18 2 4 ! 36 2 4 10 93.969 26 <0 .0001  
2 18 2 4 ! 36 2 5 I 1 91.075 25 <0 .0001  
2 18 2 4 I 36 2 6 12 85.711 24 < 0.0001 

Spl ine-asymmetr ic  
2 18 2 4 1 36 2 1 9 78.972 27 <0 .0001  
2 18 2 4 I 36 2 2 10 78.197 26 <0 .0001  
2 18 2 4 I 36 2 3 I ! 75.483 25 <0 .0001  
2 18 2 4 1 36 2 4 12 70.109 24 <0 .0001  
2 18 2 4 1 36 2 5 13 69.881 23 <0 .0001  
2 18 2 4 I 36 2 6 14 69.645 22 <0 .0001  

Spline & long m e m o r y  
2 18 2 4 I 36 2 0 8 152.654 28 <0 .0001  
2 18 2 4 ! 36 2 ! 9 146.479 27 <0 .0001  
2 18 2 4 I 36 2 2 10 143.477 26 <0 .0001  

Spl ine-asymmetr ic  & long m e m o r y  
2 18 2 4 I 36 2 0 9 94.678 27 < 0.0001 
2 18 2 4 I 36 2 1 10 72.049 26 <0 .0001  
2 18 2 4 I 36 2 2 11 71.609 25 <0 .0001  

L,  is the number  o f  lags in the linear part o f  the SNP model ;  Lr is the number  o f  lags in the A R C H  
part; Lp the number  o f  lags in the polynomial  part, P(z,x). The polynomial  P(z,x) is o f  degree K: in 
z and Kg in x; by convent ion,  Lp = I i f  ,V~ = 0. l0 is the number  o f  free parameters  associated with 
the SNP m o d e l . / y  is the number  o f  lags in the linear condit ional  mean  specification o f  the  stochastic 
volatili ty model ,  and Lw is the number  o f  lags in the volatil i ty specification. /p is the number  o f  
free parameters o f  the stochastic volatility model .  Z 2 is the E M M  object ive function scaled to he 
distributed x2 (d f )  under  the mainta ined assumption o f  correct specification o f  the stochastic volatility 
model .  Some relevant quantiles are X02~(30)=  50.892, X ~ . ~ ( 2 5 ) =  44.314, X02~(20) -- 37.566. 
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T-Ratios of Mean Score, Lw=2 
Nonlinear Nonparametric Score Generator 
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Fig. 7. E M M  quasi- t -rat ios  for  the stochastic volat i l i ty  model  matched  to the nonl inear  nonparametr ic  
score. The  nonl inear  nonparametr ic  score is an SNP specificat ion wi th  Lu = 2, Lr = ! 8, Lp = 2, gr  ~ 4, 
I: = 0, K~ = 0, and Ix = 0. The  V A R  t-ratios and A R C H  t-rat ios shown in the plot cor respond to the 
equat ions  /ix = bo + b~x and r~ = po + p~x o f  the SNP specification,  respect ively.  The  SNP t-ratios 
correspond to the coefficients o f  the po lynomia l  P ( z , x )  o f  the SNP specification.  A coefficient  such 
as a ( 0 0 , 2 )  corresponds  to the monomia l  z 2, one such as a ( 1 0 , 2 )  to : 2 x , ,  a ( 0 1 , 2 )  to z2xz, and so 
on. The  stochastic volat i l i ty  specification is y~ -- Ib- = c l ( y t - t  -- lb ' )  + c2(Yt-2  -- l ty )  + exp(wt )rvzt, 

wt -- 1~,,. = a;  (w~_ I -- P , . )  + a z ( w t - z  -- p,,-) + r,.£t. 

w~' - / l , , .  = (I  - ~)-az,,.t, 
L;i 

z,,.t = Y :  a j z , .  , _ j  + r,,.~. 
j = l  

W e  a l s o  e s t imate  a m o d e l  with  the sp l ine  transformat ion  and cross -corre la t ion  in 
innovat ions:  

y t  - -  IJy - -  C l ( Y t - - I  - -  l i y )  + c2(Yt--2 --/ty) + exp(w~' )ryr=(zt), 

T=(zt) = b:o  ,t- b:tzt + bzz(zt) 2 + b:3l+(zt)(z ,)  2, 
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w~" - -  # w  = ( 1  - -  .~q~' ) -azwt ,  

Lw 

z,,., = E a~z,..,_~ + r,,.iz, + 0~.,- ,  ). 
j = |  

As seen from the lower two panels o f  Table 3 long memory  helps, but, as in 
fitting to the semiparametr ic  A R C H  score, long memory  has about the same 
impact on the objective function as does introducing a few more  free lags into 
the volatility specification. Fig. 8 shows the bar  chart  with long memory  for the 
case L , , . -  2 and correlaied errors. Compar ing  this figure to Fig. 7 shows that 
the combined effects o f  the spline transformation,  the asymmetry,  and the long 
memory  improves the fit substantially, but despite all o f  these added complicat ions  
the model fails to fit both the A R C H  and SNP scores. 

This, we think, is about as far as one can go and stay within the spirit o f  the 
stochastic volatility model.  A specification that probably would capture the full 
complexi ty  o f  the data is to let the coefficients o f  the t ransformation 

r..(z,) = ~0 + b=,~, + b=2F + ~3;+(=, ~ 2  

depend upon lagged z ' s  and perhaps add a few more  unconstrained lag coeffi- 
cients. However ,  this degree o f  complexi ty  is so close to a nonparametr ic  speci- 
fication that we see little point to it. Why  not just  fit the series nonparametr ical ly  
and have done with it? 

5. Trivariate est imation 

Modern asset pricing theory holds that there is a pricing kernel (or  marginal  
rate o f  substi tution) that discounts gross returns to unity. Using methods  simi- 
lar to ours, Andersen and Lund (1997)  obtains a good fit o f  a continuous t ime 
stochastic volatility model  to high-frequency Treasury returns. As  Treasury returns 
reflect pure nominal  pricing kernel movements ,  Andersen and L u n d ' s  findings 
taken together with asset pricing theory suggest  that a stochastic volatility model  
should be able to account  for the co-movements  o f  several assets. As one o f  the 
dist inguishing features o f  the EMM method is its ability to accommodate  mul-  
tivariate data, we investigate this possibility using several assets over  a shorter, 
and therefore potentially more  homogeneous ,  t ime horizon than in the previous 
section. 

Let y t  denote an M × 1 vector containing the first differences (ei ther simple 
or logari thmic) over a short t ime interval, a day for instance, o f  the prices o f  
a financial asset traded on active speculative markets.  A multivariate stochastic 
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T-Ratios of Mean Score, Lw=2, Asymmetric, Spline, Long Memory 
Nonlinear Nonparametric Score Generator 
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Fig. 8. EMM Quasi-t-ratios for the asymmetric,  spline-transform stochastic volatility model with a 
long-memory variance equation matched to the nonlinear nonparametric score. The nonlinear nonpara- 
metric score is an SNP specification with L ,  = 2 ,  Lr = 18, Lp = 2 ,  If-_ = 4 ,  !: = 0 ,  Kx = 0, and Ix = 0. 
Thc VAR t-ratios and ARCH t-ratios shown in the plot correspond to the equations lt~ = bo + b~x and 
r~ = po + Pt,r o f  the SNP specification, respectively. The SNP t-ratios correspond to the coefficients 
o f  the polynomial P ( z , x )  o f  the SNP specification. A coefficient such as a (00 ,2 )  corrcsponds to the 
monomial  z 2, one such as a( 10, 2) to zZxi, a (01 ,2)  to z2x2, and so on. The stochastic volatility spe~, 
fication is yt -- Ity = c! (Yt - I -- It:.) + c2 (y t  -2  -- lt.v ) + exp(Wr ° )ry Tz(zt  ), Tz(zt ) = b_-o + b_-i zt + bz2(zt )2 + 

b:3 i+ (zt)(z, )2  w t  _ I~,; = ( I - ~-~)--dz,, ,  z, , ,  = E~"-_ I a~z,,, t - j  + r,,.(~t + ~.lzt- t ). 

v o l a t i l i t y  m o d e l  f o r  Yt is  

Lt 
Yt --/~,, = ~, Cj(yt-: - Ix.,.) + diag[exp(wt)]R,.zt, 

j=l 

L. 
w, - ,,,,. - ~ As(w,-j - ~,,.) + R,,.-~,. 

j=l 
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where /a.v is an M x 1 vector, the Cy are M × M matrices for j = 1, 2 , . . . ,  L w and 
Rv is an M x M upper triangular matrix. Similarly, p,¢ is an M × 1 vector, the Ay 
are M x M matrices for j = I, 2 , . . .  ,Lw, and Rw is an M x M upper triangular ma- 
trix. The processes {zt} and {3t} are mutually independent iid random variables 
with mean zero and variance IM. Throughout, exp(-) denotes the elcmentwise 
exponential o f  a vector argument, diag(v) with a vector argument denotes the di- 
agonal matrix with the elements vl, . . . .  VM down the diagonal, and diag(B) with 
a matrix argument denotes the vector (bt l , . . . , bMM) '  with the diagonal elements 
o f  B as its elements. Thus, 

diag[exp(w,)] = 

" e  w ' '  0 - - -  0 1 

1 

0 e w-" "" " 

. "- "- 0 
0 • • • 0 e w-m 

The data to which we fit this stochastic volatility model (M = 3) consists o f  
4044 daily observation on three variables: adjusted movements o f  the Standard 
and Poor 's  Composite Price Index, adjusted movements  o f  the $ /DM spot ex- 
change rate, and the adjusted 90-day Euro-Dollar interest rate, 1977-92.  In this 
case M = 3 ,  y t=(y l t ,  y2t, y3t)', and the data set is {~t}t__4~. The raw series con- 
sists o f  the Standard and Poor 's  Composite Index (SP),  the $ /DM exchange 
rate (DM),  and the three-month Euro-dollar interest rate (ED).  The three series 
were collected daily, 4 January 1977-31 December 1992. The stock index and 
the exchange rate are converted to raw price movements series, 100 [ Iog (SP t ) -  
log(SPt_ ~)], and l O0[log(DMt)- log(DMt_l )]. The two raw price movement  se- 
ries and the raw ED series are then each adjusted for systematic calendar effects. 
The adjustment procedure is the same as Gallant et al. (1992) except for the use 
o f  a robust regression method instead of  ordinary least squares. 

The estimation treats the three series as strictly stationary. This seems rea- 
sonable for stock returns and exchange rate movements,  but requires discussion 
for the interest rate. As is well known, short-term interest rates collected at 
high frequencies display extreme persistence characteristic o f  (near) unit-root pro- 
cesses. However, recent empirical results o f  ATt-Sahalia (1996), and confirmed in 
Tauchen (1997a), indicate that, although interest rates display little mean revision 
in the central part o f  the data, they display substantial mean reversion at very 
low and very high values. Hence, interest rates appear nonstationary, or nearly 
so, when considered with linear methodology, when in fact they are stationary 
when considered with nonlinear methods. 

As in Section 4, to implement the EMM estimator we require a score gener- 
ator that approximates these data well. We use the multivariate SNP model as 
described in Gallant et al. (1992). It is derived along the same lines as set forth 
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in Section 4.2 and has the following functional form: 

f ( y l x ,  O)= {P[R~- I (Y-  lax)'X*]}2dp[Rxl(Y-- /tx)] 
[det(Rx)J f [P(z ,x*  )]2~b(z) dz ' 

where 

lzx = be + Bx*, 

vech(Rx ) = Po + P[x* I. 

vech(R) denotes the elements o f  the upper triangle of  R stored as a column 
vector, Ixl denotes element-wise absolute value, x* is a vector o f  lagged values 
o f  yt, and ~b(z) = (2rc)-M/2e-=':/2. The asterisk indicates that prior to forming lags, 
the Yt have been centered by subtracting the sample mean, scaled by dividing 
elementwise by sample standard errors, and then transformed elementwise by the 
logistic map that takes the interval (--c~, c~) into the interval ( - -4 ,4) .  P(z,x*)  
is a polynomial o f  degree K~ in z whose coefficients are, in turn, polynomials o f  
degree Kx in x*. p.,- is a function of  the first L,, lags in x* which is accommodated 
by inserting zeros in B at the appropriate locations; similarly Rx is a function 
o f  the first Lr lags in x* and P(z,x*)  a function o f  the first Lp lags in x*. The 
multivariate model has two additional tuning parameters I~- and /x that indicate 
that high order interaction in the polynomial P(z,x*)  have been put to zero: 
I= = 0 means that no interactions are suppressed, /_-= I means that the highest 
order interactions are suppressed, namely those o f  degree K_. and so on; similarly 
for K~. We only allow P[x*[ to contribute to the diagonal o f  Rx by inserting 
zeroes in the appropriate elements o f  P. 

As in Section 4, if  K_-=0. Kx=O, L, ,>0 ,  and Lr>O then the SNP density 
is a form of  ARCH model with Gaussian innovations. If  K= > 0 ,  K~ = 0, L,, > 0 ,  
and L,. > 0  then the SNP density is a form of  ARCH model with conditionally 
homogeneous,  non-Gaussian innovations. The SNP model with Kz > 0  and K., = 0 
can accurately approximate any conditionally homogeneous innovation process 
by taking K: large enough. If  K: > 0 ,  K~ > 0 ,  L,, > 0 ,  Lr > 0 ,  and Lp > 0  then the 
SNP model can accurately approximate any Markovian, stationary process by 
taki:'.7:, K_- and K:~ large enough, including those that exhibit nonlinearities such 
as conditional skewness and kurtosis (Gallant et al. 1991 ). 

We fit the SNP model by quasi maximum likelihood following the protocol that 
is described in Bansal, Gallant, Hussey, and Tauchen (1995) and is summarized 
in Sectior.~ 4. Following this protocol, we select the model Lu = 4, L,-= 16, K= = 8, 
and I=- -7  when innovations are constrained to be homogenous (K~ = 0, Lp = I ). 
The score from this fit we term the 'semiparametric ARCH score' .  We also report 
results for the model L,  = 4, Lr = 16, Lp = 1, K= = 8, ~ = 7, Kx = 2, and /x = I, 
where d~e homogeneity constraint is dropped, and term the score from this fit the 
"nonlinear nonparametric score'. We encountered difficulty fitting the stochastic 
volatilit3 model to the even larger specification, L,, = 4, Lr = 16, L p - "  1, K = - - 8 ,  
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Table 5 
Trivariate series: optimized value of the criterion 

189 

Score generator (SNP) SV model Objective function 

Lu Lr L i, K.- /_- g~ 1~ /0 Ly L,,. /p Z-':' df p-val 

4 16 ! 8 7 0 0 101 2 1 44 490.306 57 <0.0001 
4 16 i 8 7 0 0 10' 2 2 47 329.603 54 <0.0001 

4 16 I 8 7 2 ! 25 ~ 2 3 47 4168.470 204 < 0.0001 

L, is the number of lags in the linear part of the SNP model; Lr is the number of lags in the ARCH 
part; Lp the number of lags in the polynomial part, P(z,x). The polynomial P(z,x)  is of degree K: 
in z, with interactions of degree exceeding K: --1: suppressed; likewise, P(z,x) is of  degree Kx in 
x, with interactions of degree exceeding ~x --/x suppressed. By convention, Lp = 1 i f  Kx : 0. 6~ is 
the number of free parameters associated with the SNP model. Ly is the number of lags in the linear 
c~nditional mean specification of the stochastic volatility model, and L,,, is the number of lags in 
the volatility specification, l v is the number of free parameters of  the stochastic volatility model. Zz 
is the EMM objective function ,scaled to be distributed z2(df) under the maintained assumption of 
correct specification of the stochastic volatility model. 

/ : - - 7 ,  K s - - 3 ,  a n d  /x----2, d i c t a t ed  b y  f o l l o w i n g  the  p ro toco l  a n d  do  no t  r epor t  
E M M  resu l t s  for  that  score.  In a l l  cases ,  the  l i n e a r  V A R  m o d e l  at  the  co re  o f  
the  S N P  h i e r a r c h y  is c o n s t r a i n e d  to be  ze ro  a R e r  l ag  2, e x c e p t  for  l ags  o f  the  
in te res t  rate  w h i c h  go  out  to lag  4,  w h i c h  re f lec t s  o u r  p r io r  k n o w l e d g e  tha t  in te res t  
ra tes  d i s p l a y  m u c h  m o r e  c o m p l i c a t e d  pa t t e rns  o f  l i n e a r  p e r s i s t e n c e  t han  do  s tock  
r e tu rns  or  e x c h a n g e  rate m o v e m e n t s .  

F o l l o w i n g  the  E M M  p r o c e d u r e  d e s c r i b e d  in  Sec t ion  3 w e  o b t a i n  the  c h i - s q u a r e  
s ta t i s t i cs  s h o w n  in T a b l e  5. A s  s een  f r o m  the  tab le ,  the  s tochas t i c  v o l a t i l i t y  m o d e l  
fa i l s  to a p p r o x i m a t e  the  d i s t r i bu t i on  o f  t hese  da ta  a d e q u a t e l y ;  it is o v e r w h e l m i n g l y  
re jec ted .  

6. Conc lus ion  

T h e  s t a n d a r d  s tochas t i c  vo l a t i l i t y  m o d e l ,  w h i c h  h a s  r e c e i v e d  s u b s t a n t i a l  a t ten-  
t ion  in the  l i te ra ture ,  is  an  e m p i r i c a l l y  i m p l a u s i b l e  m o d e l  for  s tock  re turns .  O u r  
e x h a u s t i v e  s e a r c h  ac ross  m a n y  s p e c i f i c a t i o n s  i n d i c a t e s  that  the  m o d e l  m u s t  b e  
e x t e n d e d  to i n c l u d e  ( i )  a n  a s y m m e t r i c  t h i ck - t a i l ed  d i s t r i b u t i o n  for  i n n o v a t i o n s  
in  the  m e a n  e q u a t i o n ,  ( i i )  l o n g - t e r m  d e p e n d e n c e  in  the  v o l a t i l i t y  e q u a t i o n ,  a n d  
( i i i )  c ross  co r r e l a t i on  b e t w e e n  i n n o v a t i o n s  in  the  m e a n  a n d  v o l a t i l i t y  e q u a t i o n s .  
W h e n  i n t r o d u c e d  i n d i v i d u a l l y ,  e a c h  o f  t he se  e x t e n s i o n s  i m p r o v e s  t h e  fit s o m e -  
what .  W h e n  i n t r o d u c e d  toge ther ,  t h e y  p r o d u c e  a s tochas t i c  vo l a t i l i t y  m o d e l  that  
is  qu i te  e l abo ra t e  a n d  can  a c c o m m o d a t e  f ea tu res  o f  the  da t a  bes t  d e s c r i b e d  a s  
' s e m i p a r a m e t r i c  A R C H ' .  H o w e v e r ,  the  m o d e l  s t i l l  c a n n o t  a c c o m m o d a t e  fea tu res  
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that could be described as "nonlinear nonparametric ' .  Although not as exhaustive, 
our investigation for the trivariate data series on stock returns, interest rates, and 
exchange rates leads to a similar result. 

These findings thus cast doubt on the statistical reliability of  estimated stochas- 
tic volatility models that do not include all three o f  the extensions. At a minimum, 
estimates of  stochastic volatility models should be accompanied by dia~-mostic 
tests in the directions found empirically important here. An even stronger conclu- 
sion, which emerges from the failure to fit the nonlinear nonparametric features, 
is that the stochastic volatility model cannot be made to fit financial rrarket data 
without losing scientific content. The reason is that the conditional heterogeneity 
in higher moments  exhibited by the stochastic volatility model is imparted sole- 
ly by the volatility equation and therefore cannot be decoupled from the volatility 
equation. Without the decoupling, the model is not rich enough to approximate 
data from financial markets. With a decoupling, the stochastic, volatility model 
becomes akin to a nonparametric specification and there are far more computa- 
tionally convenient nonparametric estimators. Our findings stand in contrast to 
results of  Kim and Shephard (1994), Geweke (1994), and others who find evi- 
dence in favor of  fairly standard stochastic volatility models. The reason is that 
we step outside the narrow confines of  stochastic volatility and entertain the pos- 
sibility of  very general and flexible auxiliary models. These models provide the 
diagnosucs discrediting stochastic volatility. 
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