JOURNAL OF
Econometrics

Journal of Econometrics 81 (1997) 159-192

Estimation of-stochastic volatility models
with diagnostics

A. Ronald Gallant?, David Hsieh®, George Tauchen®*

A University of North Carolina, NC, USA
®Department of Econcmics, Duke University, Social Science Building, Box 90097,
Durham NC 27708-0097 USA

Abstract

Effictent method of moments (EMM) is used to fit the standard stochastic volatility
model and various extensions to several daily financial time series. EMM matches to the
score of a model determined by data analysis called the score generator. Discrepancies
reveal characteristics of data that stochastic volatility models cannot approximate. The two
score generators employed here are ‘semiparametric ARCH’ and ‘nonlinear nonparametric”’.
With the first, the standard model is rejected, although some extensions are accepted. With
the second, all versions are rejected. The extensions required for an adequate fit are so
elaborate that nonparametric specifications are probably more convenient. © 1997 Elsevier
Science S.A.
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1. Introduction

The stochastic volatility model has been proposed as a description of data
from financial markets by Clark (1973), Tauchen and Pitts (1983), Taylor (1986,
1994), and others. The appeal of the model is that it provides a simple specifica-
tion for speculative price movements that accounts, in qualitative terms, for broad
general features of data from financial markets such as leptokurtosis and persis-
tent volatility. Also, it is related to diffusion processes used in derivatives pric-
ing theory in finance; see Mathieu and Schotman (1994) and references therein.
The standard form as set forth, for instance, in Harvey et al. (1994), Jacquier,
et al. (1994), and Danielsson (1994), takes the form of an autoregression whose
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innovations are scaled by an unobservable volatility process, usually distributed
as a log-normal autoregression.

Estimation of the stochastic volatility model presents intriguing challenges, and
a variety of procedures have been proposed for fitting the model. Extant methods
include method of moments (Duffie and Singleton, 1993; Andersen and Sorensen,
1996), Bayesian methods (Jacquier et al. 1994; Geweke, 1994), simulated likeli-
hood (Danielsson, 1994), and Kalman filtering methods (Harvey et al. 1994; Kim
and Shephard, 1994). Two excellent recent surveys are Ghysels et al. (1995) and
Shephard (1995).

Here, we employ the efficient method of moments (EMM) proposed by Bansal
et al. (1993, 1995) and developed in Gallant and Tauchen (1996) to estimate and
test the stochastic volatility model. EMM is a simulation-based moment match-
ing procedure with certain advantages. The moments that get matched are the
scores of an auxiliary model called the ‘score generator’. If the score generator
approximates the distribution of the data well, then estimates of the parameters
of the stochastic volatility model are as efficient as if maximum likelihood had
been employed (Tauchen, 1997a; Gallant and Long, 1997). Failure to match these
moments can be used as a statistical specification test and, more importantly, can
be used to indicate features of data that the stochastic volatility model cannot
accommodate (Tauchen, 1997a).

The objective is to report and interpret the EMM objective function surface
across a comprehensive set of specifications of the stochastic volatility model. We
start with the standard, and widely used setup., with Gaussian errors and short lag
lengths, and we proceed to more complicated specifications with long lag lengths.
The effort is aimed at generating a comprehensive accounting of how well the
model and its extensions accommodate features of the data. An advantage of
the EMM procedure is that it is computationally tractable enough to permit this
exhaustive specification analysis. Our approach differs from typical practice in
the stochastic volatility literature, which is to fit the standard setup and perhaps a
single extension in one direction. Since various studies use different specifications,
estimation methods, and data sets, it is difficult to reach firm conclusions on the
plausibility of the stochastic volatility model. By using EMM, we can confront
all of the various extensions, individually and jointly, to a judiciously chosen
set of moments determined by a nonparametric specification search for the score
generator. Other estimation methods are incapable of investigating the empirical
plausibility of such an extended set of specifications for stochastic volatility on
the large data sets used here.

We fit the univariate stochastic volatility model to a long time series comprised
of 16,127 daily observations on adjusted movements of the Standard and Poor’s
Composite Price Index, 1928-87. We use such a long series because, among other
things, we are interested in the long-term persistence properties of stock volatility.

For this estimation, we use two score generators based on the speci-
fication analysis of Gallant et al. (1992). The first is an ARCH model with a
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homogeneous innovation distribution that is given a nonparametric representation.
The specific specification is determined by a standard model selection procedure
based on the BIC criterion and specification tests. This model is similar to the
most widely used models in the ARCH family. Its score is termed the ‘semi-
parametric ARCH score’. The second score generator is a fully nonparametric
estimator of the distribution of a nonlinear process. It both nests the first and
relaxes its homogeneity assumption. The specific specification is determined us-
ing the same model selection procedure as above. The corresponding score is
termed the ‘nonlinear nonparametric score’. These two score generators, deter-
mined independently of the stochastic volatility model, are similar to models that
are commonly fit to high-frequency financial data.

We undertake a similar exercise for a trivariate stochastic volatility modet
applied to 4044 daily observations on adjusted movements of the Standard and
Poor’s Composite Price Index, adjusted movements of the $/DM spot exchange
rate, and the adjusted 90-day Euro-Dollar interest rate, 1977-92.

2. The stochastic volatility model

2.1. Setup and notation

Let y, denote the first difference (either simple or logarithmic) over a short
time interval, a day for instance, of the price of a financial asset traded on active
speculative markets. The basic stochastic volatility for y, is

L,

Yi—py = 21 i Ve—j — py) + exp(w; Iryze,
J=

Wy — e = 3 @i(Wij; — ) + 1wz,
=

where u,, {¢ } ivs Py B {4 }’“" \» and r,. are the parameters of the two equations,
called the mean and voIatlllty equations, respectively. The processes {z;} and
{%;} are mutually independent iid random variables with mean zero and unit
variance. Whenever they exist, unconditional expectations are taken with respect
to the joint distribution of the processes {z,} and {Z,}. The first two moments
of the z, and Z; are not separately identified from the other parameters — hence
the restriction to &(z;) =&(Z,)=0 and Var(z,) = Var(Z,;) = 1. Likewise, u,, is not
separately identified; we find numerically the best normalization is simply u,, =0.
A common assumption in the literature is that both z, and Z, are independent
N(0, 1) random variables and that the lag lengths are short. Typically, L, =1
and L, =1, or L, =0. Below, we entertain other distributional assumpt:ons and
search over a broad set of lag lengths. The model implies restrictions on the
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serial covariance properties of |y;|¢, ¢ > 0, which are worked out in exhaustive
detail in Ghysels et al. (1995).

One interpretation of the process w,, which has its origins in Clark (1973)
and is refined in Tauchen and Pitts (1983), is that stochastic volatility reflects
the random and uneven flow of new information to the financial market. Over
the time period ¢ — 1 to ¢, a random number of individual pieces of information
impinge the market. Each piece triggers an independent price movement drawn
from a time-homogeneous parent distribution. If /, = [exp(w,)]? individual pieces
impinge on the market then, conditional on /,, the studentized innovation

Iy — 1.3/ Vs

where
L,
He—1,e =}y + Zl C}'()’!—j — Hy),
Jj=

would follow a parent distribution, typically Gaussian. The process I; is called
the mixing process. It is unobservable and presumable serially correlated, which
motivates the stochastic volatility specification given above.

2.2. Duta generator

The stochastic volatility model defines a strictly stationary and Markov process
{s:}, where s, =(»,w;). The process is Markovian of order L;= max(L,,L,)
with conditionzl density p.(s,|s;—s.,---,8:—1,p) given by the stochastic volatility
model, where

’
p=(”,\’ac|a~-*9CLY.79"'I'9a|9---9aL,,sru')

is a vector that contains the free parameters of the stochastic volatility model.

The process {y,} is observed whereas {w,} is regarded as latent. Write
Pes(Vi—ss.--, ¥ | p) for the implied joint density under the model of a stretch
Vi—J,..., V:. Most integrals appearing in formulas in subsequent sections fail to
admit closed form solutions. In practice, they must be approximated by quadra-
ture or Monte Carlo integration, although likelihoods can sometimes be computed
efficiently using the Kalman filter (Kim and Shephard, 1994). As will be seen, we
need to compute expectations under the model of a variety of nonlinear functions.
Monte Carlo integration is most convenient, and is effected by averaging over
a long realization from the stochastic volatility model. For a general nonlinear
function g(y;—s, Yi—s+1,.--, Vs ), integrals of the form

J
f"'fg(.Vt—J:J’r—J«Ha---sJ’l)py.J(J’t—J,Yr—J+Is---s)’t|p)knod}’i—k

are approximated by
N

1 . . )
N 2 9P Feirre s T
t=J+1
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where {7,}Y_, is a long simulated realization from the stochastic volatility model
given a value p. This is accomplished by simulating {$.}Y |, which is straight-
forward, and retaining the element p, from §; =(y,w:).

Here, computations are based on realizations of length 50,000-100,000, with
the choice having no substantive effect on inferences. To let transients die off,
first the volatility equation (which displays substantial persistence} runs for 10,000
periods; next, both the mean equation (which displays minor persistence) and the
variance equations run together for another 100 periods, which are discarded; then
both equations continue to run together to generate a realization of the desired
length.

3. The EMM estimator

In Sections 4 and 5 below we employ the efficient method of moments (EMM)
methodology as described in Gallant and Tauchen (1996) to estimate and test the
stochastic volatility model. The title of the paper is suggestive, “Which Moments
to Match?’, and the answer is simple and intuitive: Use the score vector of an
auxiliary model that fits the data well to define a GMM criterion function. The
EMM method has some computational advantages relative to indirect inference
(Gourieroux et al. 1993) as it circumvents the need to refit the score generator
tc each simulated realization (compute the binding function) and it bypasses a
Hessian computation. The ideas behind EMM are as follows.

We observe the data {y,}7_,, which is presumed to have been generated by
the stochastic volatility model for some value p® € R C %, where 4, is the length
of pO. The task is to estimate p® and test the specification of the model.

Suppose that a probability model for the stochastic process {y,}<_., defined
by the conditional density

f(ylIyt—La)’r—-L+l’---ayl—-l,0), GGGCSE’",

fits the data {j,}/_, reasonably well. Fits well means that when its parameters
are estimated by quasi-maximum likelihood

- " ot -~ e
Op,=argmax > log[f (¥ |F_rreeesFie1-0)),
€8 =L+

the model does reasonably well on statistical specification tests and the fit appears
sensible from an economic perspective. The functional form of f(y; | x;—1, ) need
not have any direct connection to that of the true conditional distribution of y,
given x,—1 =(Vi—1, Yi—L+15--., Ye—1), Which is

Pt (Vi—ts YVi—ir15---s 0| P°)
Prt—1{Ye—L> YVi—L+15--> Yi—1 | P°)
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it should provide a good approximation, though, for the EMM estimator to be
nearly fully efficient (Tauchen, 1997a; Gallant and Long, 1997).

The EMM estimator brings the information in f(y|x,#,) to bear on the task
of estimating and testing the stochastic volatility model as follows. Define the
criterion

P
m(p,0)=/---/@log[f(y:Iy.'-:.,...,y:_u,O)]R.:.L(y._L,...,y,Ip)

L
x n dyl—ky
k=0

which is the expected score of the f(y|x,0) model under the stochastic volatility
model. Hence, f(y|x,0) is called the ‘score generator’. The induced parameter
that 6, estimates is that value 0° for which m(p® 0) =0 (Gallant, 1987, Chapter
7, Theorem 8). This fact provides the motivation for the EMM estimator. One
expects m(p, 6,) to be near zero for values of p close to p°.

The EMM estimator is

ﬁn - argneliRn m’(p, gﬂ )( :f:x )— ! m(ps 6" )a
p
where

. 1 ox 0 o a ;. P
Ip=— 3 [% iogf(yflx.-n,ﬂn)] [% logf(y,lx,_,,ﬂ,,)] .

n—in

and
~ ~ ~ ~ [;
Xt =i Vrsrs-- 2 T )+

In computing j,, we do not need to impose restrictions that the parameter space
R contains only those p for which the model generates stationary data, as such re-
strictions are automatically enforced on the computation (Tauchen, 1997b). Also,
as noted in Gallant and Tauchen (1996), one should, strictly speaking, use a
weighted covariance estimator of

] n

0
#0=Var [% %1 30 log f (5| .V:—L,J’:—L+1,-.-,y:—|,00)]
t=

rather than %, and formulas are given therein. However, it is unlikely that this
generality will be necessary in practice because the use of a weighted covariance
estimator means that one thinks that the score generator is a poor statistical
approximation to the data generating process. A poor statistical approximation is
uniikely because the score generator is, conceptually, a reduced form model, not
a structural model, and is usually easy to modify by adding a few parameters so
that it fits the data well.
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Under regularity conditions stated in Gallant and Tauchen (1996), which are
standard regularity conditions such that the maximum likelihood estimator of p in
P(»|x, p) is consistent and asymptotic norma! and such that the quast-maximum
likelihood estimator of 8 in f(y|x,0) is asymptotic normal, we have that j, is
consistent and

VB, — p°) 5 N{O,[(MOY (£°) {(M°)] 1},

where M° =M (p°,6°) and M(p,8)=(3/3p")m(p,0). M® can be estimated con-
sistently by M, = M,(p P 0,). The order condition (necessary condition) for iden-
tification is £, </; sufficient conditions are discussed in Gallant and Tauchen
(1996). The better the score generator approximates the conditional distribution
of tie data, then the closer is the asymptotic covariance matrix to that of maxi-
mum likelihood (Tauchen, 1997a; Gallant and Long, 1997). If the score generator
actually nests the true conditional distribution, then full efficiency obtains (Gallant
and Tauchen, 1996).

M, (p, 8) must be computed numerically in order to use the asymptotic distribu-
tion to get standard errors for setting confidence intervals on the elements of p°.
Alternatively, one can avoid computation of M, by using the criterion difference
statistic to set confidence intervals (Gallant, 1987, Chapter 7, Theorem 15). The
latter approach is to be preferred in most time-series applications because it will
exclude values of p that imply an explosive process from the confidence interval
(Tauchen, 1997b).

For specification testing, which is the focus of this paper, we have that

nm’ (B, 0, F0) " "'m(p,, 0,) 5 2(dS)

with df =¢ - ¢, under the null hypothesis that the maintained model p, ,
(Vi—1s-.., V1, P) 18 cOITECE,

When a model fails a diagnostic test, one would like some suggestions as to
what is wrong. Inspection of the quasi-z-ratios

To=S"'/nm(p,,0,),

where S, =[diag(.%,)]"? can suggest reasons for model failure. As seen in
Section 4, different elements of the score vector correspond to different features
of the fit. Large quasi-f-ratios reveal the features of the data that the maintained
model cannot approximate.

The elements of 7}, are biased downward in absolute value because the standard
errors S, are too large due to the fact that

Vam(p,,0,) 5 N{0,.#° - (MO (M®) ()~ (M®)]~ ' (M°)'}.

The downward bias can be corrected by computing M, numerically and _putting
S, = (diag{F, — (M,)[(M,,Y'(£,)~ (M)~ (M,)})"/? in the formula for 7.
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We have not corrected the bias in this paper because we believe the correction
to be unnecessary for two reasons. First, #0—(M)[(M°)Y(£°) "' (M®)]- (MY is
the familiar formula for the variance of GLS residuals and experience with GLS
regressions suggests that the difference between #° — (M®)[(MOY (%)~ 1(M%)]!
(M?) and .#9 is negligible in most applications. Secondly, we do not rely on the
quasi-z-ratios for inference, we only rely on them for suggestions as to how the
stochastic volatility model might be enhanced. When we act upon a suggestion,
we check it with the x? statistic. This methodological approach is similar to
the well-established F-protected ¢-test methodology as employed in the statistical
Analysis of Variance.

4. Univariate empirical results

4.1. Data

The data to which we fit the univariate stochastic volatility model is a long time
series comprised of 16,127 daily observations, {7, ,'__6:‘,'27, on adjusted movements
of the Standard and Poor’s Composite Price Index, 1928—-87. This series is the
univariate stock series used in Gallant et al. (1992, 1993). The raw series is the
Standard and Poor’s Composite Price Index (SP), daily, 1928-87. We use a long
time series, because, among other thirngs, we want to investigate the long-term
properties of stock market volatility. As described in Gallant et al. (1992), the
raw series is converted to a price movements serics, 100[log(SP;) — log(SP;_,)],
and then adjusted for systematic calendar effects in location and scale. Financial
data are known to exhibit calendar effects, that is, systematic shifts in location
and scale due to different trading patterns across days of the week, holidays, and
year-end tax trading. Calendar effects comprise a very small portion of the total
variation in the series, although they should still be accounted for in order not
to adversely affect subsequent analysis. The raw and adjusted data are plotted
in Fig. 1. Though long time series sometimes exhibit structural regime switches,
there is no such shift apparent in the figure.

4.2. Score generators

To implement the EMM estimator we require a score generator f(y|x, ) that
fits these data well. As documented in Gallant et al. (1992, 1993) the semi-
nonparametric (SNP) density proposed by Gallant and Tauchen (1989) does so.
Moreover, when refittied to subperiods, estimates are stable.

The SNP density is a member of a class of parameterized conditional densities

';fK= {fK(ylx')o) : 0———(0],02,...,6/,\-)},

which expands ) C #> C--- as K increases. It has two desirable properties
from the perspective of EMM estimation: (1) The union 3¢ = |Jg°., #% is quite
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Adjusted
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Fig. 1. Time series of unadjusted and adjusted stock price movements. The top panel shows a time
series plot of the daily unadjusted price movement series, 100(log P; — log P,_, ). The data are daily
from 1928 to 1987, 16,127 observations. The bottom panel shows the adjusted price movement
series. The adjustments remove calendar effects and long-term trend on the basis of least squares
regressions. The adjusted series can reasonably be taken as stationary, which is required for use
of the SNP estimator. See Section 1 of Gallant et al. (1992) for a description of the adjustment
procedure.

rich and it is reasonable to assume that the true density p(y|x) of stationary
data from a financial market is contained in 5#. (2) If 0 is estimated by quasi-
maximum likelihood, viz.

~ 1 & -~ ~
0" = arg max_ - Z log[fK(.yflJ’{—L9--01}’1_]90)]?
GER'E N 4[4
and if K grows with sample size n [either adaptively as a random variable K,
or deterministically as a function K(»n)}, then

B0 = fx(¥|%6)

is a consistent (Gallant and Nychka, 1987) and efficient (Fenton and Gallant,
1996a; Gallant and Long, 1997) nonparametric estimator of p(y|x) with desir-
able qualitative features (Fenton and Gallant, 1996b).

A standard method of describing a conditional density f(y|x,8) is to set forth
a location function y, and a scale function R, that reduces the process {3 }=_
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to an innovation process {z,}2___ via the transformation

Zr = '},_,'.(}’1 — Hx,_y )-

The description is completed by setting forth a conditional density %(z | x) for the
innovation process. We follow this recipe in describing fi-(y|x, 0) € #k.
The location function g, is affine in x

ﬂx,__l =b0 + b'x[_].

It is presumed to depend on L, <L lags which is accomplished by putting leading
elements of b to zero as required. Note that were one to put »;. to a constant and
eliminate the dependence of the innovation density on x by writing #(z) instead
of A(z|x) then {y}2_,, would be a vector autoregression (VAR).

The scale function # is affine in the absolute values of x

T, =po + P | X1l

It is presumed to depend on Lg <L lags which is accomplished by putting leading
elements of p to zero as required. Note that were one to eliminate the dependence
of the innovation density on x by writing A(z) instead of A(z|x) then {y, }>2_
would be an ARCH-type process akin to that proposed by Nelson (1991).

For a vector { =({),...,{,) with real elements and a vector A =(4;,..., 4,) with
integer elements, let {* denote the monomial I—[:f:, g of degree |4 = 37_, |4l
and consider

[Px(z,x)P$(2)
S [Px(14,x)P p(u) du

formed from the polynomial

hi(z|x)=

K. K.
Px(z,x)=3_ (IZ auﬁx“) z*

x=0 \_|f|=0

where ¢(z) = (27n)~""2e~="#/2, Px(z,x) is a polynomial of degree K- in z whose co-
efficients are, in turn, polynomials of degree K, in x. The product [Px(z,x)]?¢(z)
is a Hermite polynomial in z with positivity enforced whose coefficients depend
on x. The shape of the innovation density Ak(z, | x,—) varies with x,_; which per-
mits Ag(z, | x,—1) to exhibit general, conditional shape heterogeneity. By putting
selected elements of the matrix 4 =[a,;] to zero, Px(z,x) can be made to de-
pend on only L, <L lags from x. One may note that if K; is put to zero, then the
innovation density Ag(z|x) is Gaussian. If K. > 0 and K, =0, then the density
can assume arbitrary shape but innovations are homogeneous.
The change of variables y, =#,_,z, 4+ u,,_, to obtain the density

{PK['}T_i.(}’r = By )-xr—l]}2¢['f\-,__].(}’1 — #y,_ )]

Jx(ye | x-1,0)= l,_ V72 [[Pxc(ut, X—1 )P (1) due
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completes the description of the SNP density. The vector 0 contains the coeffi-
cients 4 = [a,g] of the Hermite polynomial, the coefficients [bo, ] of the location
function, and the coefficients [pg, p] of the scale function. To achieve identifica-
tion, the coefficient ap o is set to 1. The tuning parameters are L,, L,, L,, K., and
K., which determine the dimension Zx { =£p) of 6.

When data are heavy tailed, as is typical for data from financial markets, nu-
merical stability can be enhanced without affecting theoretical results by forming
the vector of lags x;,_, from a series {y; } consisting of {y,} that have been cen-
tered by subtracting the sample mean, scaled by dividing by the sample standard
error, and u.msformed by the logistic map that takes the intervai (—~o00, o0) into
the interval (- 1,4). That has been done both here and in the results reported
for this series by Gallant et al. (1992, 1993). Note that it is only the lagged-
dependent variables x,_; that are logistic transformed; the contemporaneous y;
is not.

We selected the tuning parameters L,, L., L,, K., and K, following the pro-
tocol that is described in detail in Bansal et al. (1995). Briefly, the model is
expanded sequentially according to the BIC (Schwarz, 1978) model selection
criterion. It is then expanded further if a battery of statistical specification tests
indicate that the BIC specification is inadequate. Following this protocol, we
selected the model L,=2, L,=18, and K. =4 with 26 free parameters, when
innovations are constrained to be homogenous (that is, K, =0, and L, =1 im-
posed). This is a semiparametric density with a parametric part comprised of an
AR(2)-ARCH(18) model with unconstrained lag coefficients and a nooparametric
error density, which is analogous to the model proposed by Engle and Gonzales-
Rivera (1991). We term the score from this fit the ‘semiparametric ARCH score’
in legends for figures and tables. When the homogeneity constraint is dropped,
and we follow the same protocol, we select the model L, =2, L, =18, L,=2,
K.=4, and K, =1 with 36 free parameters; this specification does better under
BIC than the model with homogeneous errors. This fitted model differs in only
minor respects from the preferred SNP specification reported in Gallant et al.
(1992). (The differences are due to minor enhancements to the computer pro-
gram.) We term the score from this fit the ‘nonlinear nonparametric score’.

We emerge from this exercise with two sets of scores with which to confront
the stochastic volatility model. The first, the semiparametric ARCH score, is
defined by a score generator that is very similar to models widely employed in
the ARCH literature, though a bit more flexibly parameterized. The second, the
nonlinear nonparametric score, is defined by a score generator determined via a
complete specification search that accounts for the full complexity of the data.

4.3. Fit to the semiparametric ARCH score

Table 1 shows the optimized values of the EMM objective function scaled
to follow a chi square, as described in Section 3. Table 2 shows the parameter
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Table 1

Univariate price change series: optimized value of the criterion for the semiparametric ARCH score
generator

Score generator (SNP}) SV model Objective funstion

Lu Lr Lp K; K\' /h‘ L_r L\r {p Zz df P-Val
Gaussian

2 18 1 4 o 26 2 I 6 86.432 20 < 0.0001
2 18 1 4 o 26 2 2 7 79.001 19 <0.0001
2 I8 1 4 0 26 2 3 8 72.672 18 <0.000!
2 18 1 4 0 26 2 4 9 69.188 17 <0.0001
2 18 ] 4 0 26 2 5 10 67.823 16 <0.0001
2 18 1 4 0 26 2 6 11 61.093 15 <0.0001
(v), v=10,15,20,25

2 18 1 4 0 26 2 2 8 78.186 18 <0.0001
2 18 1 4 0 26 2 2 8 68.931 18 <0.0001
2 18 1 4 0 26 2 2 8 69.111 18 <0.0001
2 I8 1 4 0 26 2 2 8 69.898 18 <0.0001
Spline

2 18 1 4 o 26 2 1 8 41.920 18 0.0011
2 18 1 4 o 26 2 2 9 41.351 i7 0.0008
2 18 1 4 0 26 p 3 10 37.700 16 0.0016
2 18 1 4 0 26 2 4 i 36.107 15 0.0017
2 18 1 4 0 26 2 4 12 33.768 14 0.0022
2 18 1 4 0 26 2 6 i3 18.638 13 0.1348
Gaussian & long-memory

2 18 1 4 0 26 2 0 6 67.691 20 <0.0001
2 18 1 4 0 26 2 1 7 67.061 19 <0.0001
2 18 | 4 0 26 2 2 8 65.463 18 <0.0001
Spline & long-mcmory

2 18 1 4 0 26 2 0 8 34923 18 0.0097
2 18 \ 4 0 26 2 1 9 26.718 17 0.0623
2 18 1 4 0 26 2 2 10 21.781 16 0.1504

L, is the number of lags in the linear part of the SNP model i . is the number of lags in the ARCH
part; L, the number of lags in the polynomial part, P(z,x). T':e polynomial P(z,x) is of degree K- in
z and K, in x; by convention, L, =1 if K\ = 0. ¢ is the nui.ber of free parameters associated with
the SNP model. L, is the number of lags in the linear conditional mean specification of the stochastic
volatility model, and L, is the number of lags in the volatility specification. /, is the number of
free parameters of the stochastic volatility model. 3? is the EMM objective function scaled to be
distributed »2(df) under the maintained assumption of correct specification of the stochastic volatility
model. Some relevant quantiles are 1(2,99(20) = 37.566, 7.3,,,(!5) = 30.578.
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estimates for the various specifications reported in Table 1. From the top panel of
Table 1, labeled Gaussian, it is seen that the standard stochastic volatility model
fails to approximate the distribution of the data adequately; it is overwhelmingly
rejected. However, as seen from the objective function surface laid out across the
various panels of the table, certain extensions of the standard stochastic volatility
model fit the data better.

We describe these extensions and seek to determine which features of the
data they seem to approximate well and which features poorly. Guided by the
objective function, we inspect the EMM quasi-z-ratios T,. The =lements of 7,
provide suggestive diagnostics, as pointed out in Section 3.

Fig. 2 shows these EMM quasi-s-ratios as a bar chart for the case L, =2,
L,. =2, and Gaussian z’s. This is the standard stochastic volatility specification

V=it = c(vicy — ) 4+ ca(yi—2 — ) + exp(we)nz,,

Wy — py = @1(wWy_1 — e} + a2(wi_2 — ) + 1 Zh

The source of the rejection of this model is failure to match the features de-
fined by the polynomial part of the SNP score. Either exp(w,) is not the correct
transformation of the latent variance process or z, is not Gaussian.

4.3.1. Modified exponential
To explore the first possibility, consider the model

M= (Vo — )+ c2(vi2 — 1) + T(wy )z,
T.(w;) = exp(beo + boiw,) + bezw,2 + b3l (w, )w,z,

wr — py =ai(we— — pty) + a2(we—2 — ) + 1 2o,

where 7.(w) is 1 if w is positive and is 0 otherwise. The idea is to modify the
Taylor expansion of exp(-) by replacing the quadratic term with a differentiable
quadratic spline that has one knot at zero. Inspection of the bar chart (not shown)
indicates failure. The fit is improved by better matching the VAR and ARCH
scores at the expense of further mismatch to the polynomial part of the SNP score.
The exponential transformation appears not to be a problem, so we consider non-
Gaussian densities for z,.

4.3.2. t-Eriors
A natural way to relax the Gaussian assumption is to use r-errors. Consider
the model

Yo — iy = (V- — i) + 2(¥e—2 — ) + exp(w 5T,

wr — e = ai(Wi—y — tty) +a2(wi—2 — ) + Koz,
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T-Ratios of Mean Score, Lw=2
Semiparametric ARCH Score Generator

Intercept
VAR bt
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Fig. 2. EMM quasi-t-ratios for the stochastic volatility model matched to the semiparametric
ARCH score. The semiparametric ARCH score is an »NP speciiication with L, =2, L, =18,
Lp=1, K-=4, I.=0, K.=0, and I =0. The VAR r-ratios and ARCH ¢-ratios shown in the
plot correspond to the equations pc =5, + b'x and ry=p, + p’x of the SNP specification, re-
spectively. The SNP ¢-ratios correspond to the coefficicnts of the polynomial P(z.x) of the
SNP specification where the subscript indicates degree. The stochastic volatility specification is
ye—py=ci(¥—1 — )+ yi-2 — fp) Fexp(we Iz, wr — pto =ajp(we— — pn) +ax(w,—2 — )
+ roér.

where {7,,} is iid Student-r with v degrees of freedom. The objective function
is so flat for values of the degrees of freedom parameter v<(10,20) that the
optimizer gets stuck and makes no progress when it sees v as free parameter
along with the rest. Thus, in the second panel of Table 1 we report the value of
the objective function for v =10, 15,20,25. The specification with ¢ errors helps,
but still the model does not fit the data. Fig. 3 shows the bar chart for the case
v=15; the stochastic volatility model fails to fit the score of the SNP polynomial
for the cubic term, suggesting a failure to generate skewness.



174 A.R. Gallant et al. / Journal of Econometrics 81 (1997) 159-192

T-Ratios of Mean Score, Lw=2, t-Errors
Semiparametric ARCH Score Generator

Intercept
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b2

0

ARCH n
r2

3

4

| — T L} T T L] T T T 1

-
-10 -8 -6 -4 -2 0 2 4 6 8 10

Fig. 3. EMM quasi-t-ratios for the f-innovations stochastic volatility model matched to the semi-
parametric ARCH score. The semiparametric ARCH score is an SNP specification with L, =2,
Lr=18, Lp,=1, K- =4, I-=0, Kc=0, and /. =0. The VAR t-ratios and ARCH ¢-ratios shown
in the plot correspond to the equations u=b, + #'x and rc=p, + p'x of the SNP specifica-
tion, respectively. The SNP -ratios correspond to the coefficients of the polynomial P(z,x) of
the SNP speciiication where the subscript indicates degree. The stochastic volatility specification is
Ve—Hy = (V-1 — YHea( vz —pty )HexXplw: Wy Tys ro We— pte = an (W j — gt )+a2(wy 2 — plie Y+rose.
where 15, follows the r-distribution on 15 degrees freedom.

4.3.3. Spline error transformation
More flexibility than with the ¢ is available from a spline transformation to the
Gaussian innovation. Consider

Ve — uy=c1(¥i—1 — iy) + c2(yi—2 — py) + exp(w, ), (2, ),
T:(2;) = b0 + b1z, + b222 + b3l (2)2},

Wy — My =al(wl——l - yw) + a2(“’l—2 - #w) +n 2!-
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The idea is to allow a deviation from the Gaussian specification by transforming
z, through a differentiable quadratic spline that has one knot at zero. To achieve
identification, the constraints (27)~'/2 [ To(v)exp(—1v?/2)dv=0 and (27)" 12
I 7T2(p)exp(—v%/2)dv=1 are imposed on the b,;. From Table 1 it is seen that
the added flexibility of the spline transform sharply reduces the objective function
value. The EMM quasi-z-ratios for this ‘spline-transform’ fit are shown in Fig. 4.
The transform works; the moments of the polynomial part of the semiparametric
ARCH score are adequately matched.

The effects of the spline are to fatten the tails and introduce an asymmetry as
seen in Fig. 5. The solid line in the upper left panel is a plot of the spiine 7;. This
plot can also be interpreted as a plet of the quantiles of the distribution of the
random variable T:(z,) on the vertical axis against the quantiles of the standard
normal distribution on the horizontal axis. If a distribution is Gaussian, then its
quantile—quantile plot is a 45° line. A comparison with the 45° line in the upper
left panel of Fig. 5 indicates heavy tails, because the solid line plots below the
45° line on the left and above on the right, and an asymmetry, because the solid
line deviates more from the 45° line on the left than on the right. The asymmetry
is also apparent from a conparison with the solid line in the upper right panel of
Fig. 5 which shows a quantile—quantile plot of the six-degrees-of-freedom Student
t-distribution. The asymmetry and heavy tails are features of the data that have
been captured by the semiparametric ARCH score as can be scen in the lower
left panel of Fig. 5. The EMM moment matching procedure has transferred these
characteristics to the spline-transform stochastic volatility model. The asymmetry
and heavy tails are real features of the data, not artifacts of the SNP fit, as
can be seen from the solid line in the lower right panel of Fig. 5 which is a
quantile—quantile plot of a kernel density estimate from ARCH residuals.

4.3.4. Chaotic volatility
Interestingly, one can do as well with a deterministic variance process. EMM
quasi-¢-ratios (not shown) that result when the variance equation of the model
=y =ci(yi-1 — ) + c2(yr-2 — y) + T(w ) I:(z:),
T;t'(wl) = bu'D + bwlwl + bwzwf + bw3l+(wl )w,29
T:(z:) = bzo + b2rzy + bzl + b3l (2,)2,

is a moving average in 40 lags

2 40 — j
Wi= 2 —ag Y

from a chaotic Mackey—Glass sequence

0.20,_5
=v,_ 10.5| ——— - 0.1y,
Uy =U— + (l-!-v,lgs vy l)
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T-Ratios of Mean Score, Lw=2, Spline
Semiparametric ARCH Score Generator
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Fig. 4. EMM quasi-t-ratios for the spline-transform stochastic volatility model matched to the semi-
parametric ARCH score. The semiparametric ARCH score is an SNP specification with L, =2,
L,=18, L,=1, K-=4, I.=0, K. =0, and [, =0. The VAR r-ratios and ARCH ¢-ratios shown
in the plot correspond to the equations pe =b, + b'x and ry=p, + p'x of tt. SNP specifica-
tion, respectively. The SNP r-ratios correspond to the coefficients of the polynomial P(z,x) of
the SNP specification where the subscript indicates degree. The stochastic volatility specification is
= e =c(Vi—1 — i)+ ca(vi—2 — ) Fexp(wn 7220 ). T=(z1) = b0 + b2z + b3z + bali (2, ):,2,
wy — phw =ap(we—) — )+ a(w 2 — fe) + rui.

are similar to those shown in Fig. 4. This Mackey—Glass variant on the spline-
transform stochastic volatility model does slightly better on the SNP scores and
slightly worse on the ARCH scores.

4.3.5. Lony memory

Fig. 4 suggests the standard stochastic volatility model has some trouble match-
ing the scores of the flexibly parameterized ARCH inodel, and somewhat more so
at the longer ARCH lags. Bollerslev and Mikkelsen (1996), Ding et al. (1993),
and Breidt et al. (1994) pres¢nt evidence that long-memory models like those of
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Spline versus Gaussian t versus Gaussian

-1

2 -1 0 1 2 2 -1 0 1 2

SNP versus Gaussian Kernel versus Gaussian

-2 - 0 1 2 2 -1 0 1 2

Fig. 5. Quantile-quantile plots. The solid line in the upper left panet shows the spline transform of
Fig. 4 which can also be interpreted as a plot of the quantiles of the distribution of the random
variable 7-(z;) on the vertical axis against the quantiles of the standard normal distribution on the
horizontal axis. The dashed is a plot of the quantiles of the standard normal against the quantiles
of the standard normal. The solid line in the upper right pancl is a quantile-quantile plot of the five
degree freedom Student s-distribution, The solid line in the lower left panel is a quantile-quantile
plot of the innovation distribution of the semiparametric ARCH score generator. The solid line in the
lower right panel is a quantile-quantile plot of a kemel density estimate from ARCH residuals.

Granger and Joyeux (1980) might be needed to account for the high degree of
persistence in financial volatility. Harvey (1993) contains an extensive discussion
of the properties of long memory in stochastic volatility models. We thus ex-
plore if inclusion of both short- and long-memory helps in fitting the stochastic
volatility model.
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The long-memory stochastic volatility model is

Ve — my=ci{yi—1 — pp) + c2(yi—2 — fy) + exp(w; )n. z,,
W: — Hw =(l - g)—dzwh
L

2y = Z a;zy,—j; + -7
j=1

where {z} and {3} are iid Gaussian, (1 — )™ = 3°2° s (d)L*, and the
coefficients Y, (d) are obtained from the series expansion of f(x)=(1 — x)~ 9,
valid for |d| <1, as described in Sowell (1990). Motivating this specification
is the fact that for |d|<1/2, (1 — .#)v,=¢, {&} iid with finite variance, de-
fines a strictly stationary process whose moving average representation is v, =
(1 - &)y g = Z;ﬁ, Y (d)e—x; the autocovariance function of v, decays arith-
metically to zero, instead of exponentially to zero as in the case of an autore-
gression of finite lag length. For %<d< 1, (1 — #)v, =g, defines a nonstation-
ary process. {w;} is thus obtained by passing the autoregressive process {z,.}
througn the long-memory moving average filter. For d = 0, this generates exactly
the same autoregressive volatility process as earlier, while for 0<|d| <1, it de-
fines a strictly stationary volatility process with both short- and long-memory
components,

Since we need very long realizations for Monte Carlo integration, it is im-
practical to simulate exactly from this model by, say, computing the Cholesky
factorization of the covariance matrix of w, and proceeding in the usual man-
ner. Instead, we follow Bollerslev and Mikkelsen (1996) and use a method that
truncates the moving average filter and lets the process run for a long while
to attenuate the effects of transients. Their calculations suggest that truncation
at 1000 suffices, so we use the moving average filter ,"=° U (d)F*. (Because
of the truncation, this method technically generates a stationary process for all
4] <1.) They trim off the first 7000 realizations; we trim off the first 10,000.
Some would argue that this method does not actually generate realizations from
a long-memory volatility process. The point is well taken but, nonetheless, the
Bollerslev—Mikkelsen approach still defines a volatility process {w;} with ex-
tremely high persistence.

The bottom part of Table 1 shows the optimized objective function when the
long-memory parameter, d, is estimated jointly with the other parameters of the
model subject to a normalization on g, for identification. We only estimate the
long-memory version for L,,=1 and L, =2, since the job of the long-memory
specification is to take care of longer lags. For the block labeled ‘Gaussian &
Long Memory’ the mean equation is

Ve — My =Ci{yi—1 — y) + c2(yi—2 — ) + exp(w; .z,
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T-Ratios of Mean Score, Lw=2, Spline, Long Memo
Semiparametric ARCH écoe'e Generator Y

Intaroept
VAR b1

ARCH

32avaaidn=agl
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Fig. 6. EMM quasi-s-ratios for the spline-transform stochastic volatility model with a long-memory
variance equation matched to the semiparametric ARCH score. The semiparametric ARCH score
is an SNP specification with L,=2. L, =18, L, =1, K: =4, . =0, Kx =0, and /. =0. The VAR
t-ratios and ARCH t-ratios shown in the plot comrespond to the equations pu,=b, + b'x and
rs=po + p'x of the SNP specification, respectively. The SNP r-ratios correspond to the coeffi-
cients of the polynomial P(z,x) of the SNP specification where the subscript indicates degree. The
stochastic volatility specification is v, — py =c;(3r—1 — #y) + c2(yi—2 — p§3) + exp(w; - T=(z; ),

2

Te(z) = b:o + bz + boazf + b3l (2027, Wi — pu = (1 — L) 420p, 201 = Q12061 + @22t —2 + s

while for the block labeled ‘Spline & Long Memory’, the mean equation is
Yo = py=c1(yi—1 — py) + c2(¥e—2 — py) + exp(w; )nTx(z,)

where the two-parameter quadratic spline T:(-) is as defined above.

As seen from Table 1, long memory helps, but the Gaussian stochastic volatility
model cannot accommodate all of the structure implicit in the semiparametric
ARCH model. With the spline transform, it can. Fig. 6 shows the bar chart for
the case L,, =2. The impact on the objective function value of leng memory is
similar to that of introducing two or three extra freely parameterized lags into
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the volatility equation. Overall, long-memory helps about as much as introducing
six free lags into the volatility specification.

4.4. Fit to the nonlinear semiparametric score

Table 3 displays the objective function surface for versions of the stochastic
volatility model against the nonlinear nonparametric score; Table 4 shows the
estimated parameter values. From Table 3, the standard model is overwhelmingly
rejected. The various extensions provide much improvement over the standard
Gaussian model, but nothing comes as close as the spline variants against the
Semiparametric ARCH Score. We now examine the performance of the extensions
in more detail.

The bar chart for the L, =2, L,, = 2, Gaussian stochastic volatility specification
is shown as Fig. 7. The ARCH part of the score is fit poorly, as is the SNP part.
The quasi-t-ratios are not orthogonal, so that failure to fit the SNP scores could
manifest itself as large ARCH quasi-¢-ratios and conversely. The spline-transform
variant (not shown) does just about as poorly.

The full nonlinear nonparametric score embodies various conditional nonlinear-
ities, such as the asymmetric ‘leverage effect’ of Nelson (1991) that are discussed
in Gallant et al. (1992, 1993). We explore the effects of introducing asymme-
try into the stochastic voiatiility model. A common approach in the stochastic
volatility literature (Harvey and Shephard, 1996) is to generate asymmetry by
introducing correlations across innovations in the mean and variance equations:

Yi— iy =y — ) + c2(yi—2 — i) + exp(we )iz,

Wy — e = ai{(wy— — )+ axwi—2 — ) + 1 (G + gz,
where g is a free parameter to be estimated. This variant does better but still
does poorly on the chi-square statistics shown in Table 3. The bar chart (not

shown) shows large SNP quasi-#-ratios, which suggests that the spline-transform
be applied to the asymmetric variant. The model that results is

Vi — My = c(Vim1 — ) + 2(Vi—2 — i) + exp(w ) T:(2),
T.(z;) = bo + b2, + baa(2 )2 + b3l (2, )z, )2,
W, ~ e = al(“’t—l - :“w) -+ aZ(‘Vf—Z - "u') + "w(‘z-t + Yz, )-

The fit improves but is still inadequate, as indicated by the chi-square statistics
shown in Table 3.

Finally, we consider long-memory in the variance equation. We estimate with
the spline transformation:

Yi— e = ci( Vi1 — i) + (V-2 — i) + exp(w; InT.(z),
7:(z:) = boo + bauzy + boa(z) + bl (2 )z ),



Table 3
Univariate price change series: optimized value of the criterion for the nonlinear nonparametric score
generator

Score Generaior (SNP) SV Maodel Objective Function

Lu Lr Lp K: Kx fo Lv Lw 7 P 12 df p-Vill
Gaussian

2 18 2 4 1 36 2 1 6 173.361 30 <0.0001
2 18 2 4 1 36 2 2 7 164.337 29 <0.0001
2 18 2 4 i 36 2 3 8 155.449 28 <0.0001
2 18 2 4 1 36 2 4 9 151.243 27 <0.0001
2 18 2 4 1 36 2 5 10 149.350 26 <0.0001
2 18 2 4 1 36 2 6 11 147.984 25 <0.0001
Spline

2 18 2 4 1 36 2 | 8 151.290 28 < 0.000t
2 18 2 4 1 36 2 2 9 150.765 27 <0.0001
2 T8 2 4 1 36 2 3 10 144.411 26 <0.0001
2 18 2 4 1 36 2 4 11 143.310 25 <0.0001
2 18 2 4 1 36 2 5 12 143.310 24 <0.0001
2 18 2 4 1 36 2 6 13 142.461 23 <0.0001
Gaussian-asymmetric

2 18 2 4 1 36 2 ! 7 111.497 29 <0.000t%
2 18 2 4 1 36 2 2 8 111.487 28 <0.0001
2 18 2 4 1 36 2 3 9 97.536 27 <0.0001
2 18 2 4 1 36 2 4 10 93.969 26 <0.0001
2 18 2 4 1 36 2 5 il 91.075 25 <0.0001
2 18 2 4 1 36 2 6 12 85.711 24 <<0.0001
Spline-asymmetric

2 18 2 4 1 36 2 1 9 78.972 27 <0.0001
2 18 2 4 1 36 2 2 10 78.197 26 <0.0001
2 18 2 4 1 36 2 3 ] 75.483 25 <0.0001
2 18 2 4 1 36 2 4 12 70.109 24 <0.0001
2 18 2 4 1 36 2 5 13 69.881 23 <0.0001
2 18 2 4 1 36 2 6 14 69.645 22 <0.0001
Spline & long memory

2 18 2 4 1 36 2 (] 8 152.654 28 <0.0001
2 18 2 4 1 36 2 1 9 146.479 27 <0.0001
2 18 2 4 1 36 2 2 10 143.477 26 <0.0001
Spline-asymmetric & long memory

2 18 2 4 i 36 2 0 9 94.678 27 <0.0001
2 18 2 4 1 36 2 1 10 72.049 26 <0.0001
2 18 2 4 1 36 2 2 11 71.609 25 <0.0001

L, is the number of lags in the linear part of the SNP model; L, is the number of lags in the ARCH
part; L, the number of lags in the polynomial part, P(z,x). The polynomial P(z,x) is of degree K: in
z and K in x; by convention, L, =1 if X =0. ¢ is the number of free parameters associated with
the SNP model. £, is the number of lags in the linear conditional mean specification of the stochastic
volatility model, and L,. is the number of lags in the volatility specification. ¢, is the number of
free parameters of the stochastic volatility model. 2 is the EMM objective function scaled to be
distributed x2(df) under the maintained assumption of correct specification of the stochastic volatility
model. Some relevant quantiles are 3 oo(30) = 50.892, x2 o(25) = 44.314, 12 99(20) = 37.566.
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T-Ratios of Mean Score, Lw=2
Nonlinear Nonparametric Score Generator
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Fig. 7. EMM quasi-r-ratios for the stochastic volatility model matched to the nonlinear nonparametric
score. The nonlinear nonparametric score is an SNP specification with L, =2, L, =18, L, =2, K: =4,
I-=0, K, =0, and I, =0. The VAR t-ratios and ARCH ¢-ratios shown in the plot correspond to the
equations gy = b, + &x and rc = p, + p’x of the SNP specification, respectively. The SNP ¢-ratios
correspond to the coefficients of the polynomial P(z.x) of the SNP specification. A coefficient such
as a(00,2) corresponds to the monomial z2, one such as a(10.2) to z2x;. a(01,2) to z2x2. and so
on. The stochastic volatility specification is y; — p, =c1(3r—1 — p) + c2(vi—2 — piy) + exp(w, )iz,
wr — py = ay(we—y — fa) + a2(we—3 — ) + e

o —_— —d
w, — i, = (1 — L)z,
L,
Zur = 3 AjZw—j + i
J=t

We also estimate a model with the spline transformation and cross-correlation in
innovations:

Vi — ty = (V-1 — ) + c2(ye—2 — i) + exp(w InT(z,),

L(z) =bo + bz + bz2(zt)2 + b3l (2 Xz, )2,
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* P —d
W, — lw = (1 — 2y “zu,

L.
2wy = E AjZy—j + ra(Ze + g2 ).
Jj=\

As seen from the lower two panels of Table 3 long memory helps, but, as in
fitting to the semiparametric ARCH score, long memory has about the same
impact on the objective function as does introducing a few more free lags into
the volatility specification. Fig. 8 shows the bar chart with long memory for the
case £, =2 and correlaicd errors. Comparing this figure to Fig. 7 shows that
the combined effects of the spline transformation, the asymmetry, and the long
memory improves the fit substantially, but despite all of these added complications
the model fails to fit both the ARCH and SNP scores.

This, we think, is about as far as one can go and stay within the spirit of the
stochastic volatility model. A specification that probably would capture the full
complexity of the data is to let the coefficients of the transformation

7.:.(2!) =b;o + b1z, + b:ZZE + b:31+(zl )zyzs

depend upon lagged z’s and perhaps add a few more unconstrained lag coeffi-
cients. However, this degree of complexity is so close to a nonparametric speci-
fication that we see little point to it. Why not just fit the series nonparametrically
and have done with it?

5. Trivariate estimation

Modern asset pricing theory holds that there is a pricing kernel (or marginal
rate of substitution) that discounts gross returns to unity. Using methods simi-
lar to ours, Andersen and Lund (1997) obtains a good fit of a continuous time
stochastic volatility model to high-frequency Treasury returns. As Treasury returns
reflect pure nominal pricing kernel movements, Andersen and Lund’s findings
taken together with asset pricing theory suggcest that a stochastic volatility model
should be able to account for the co-movements of several assets. As one of the
distinguishing features of the EMM method is its ability to accommodate mul-
tivariate data, we investigate this possibility using several assets over a shorter,
and therefore potentially more homogeneous, time horizon than in the previous
section.

Let y, denote an M x 1 vector containing the first differences (either simple
or logarithmic) over a short time interval, a day for instance, of the prices of
a financial asset traded on active speculative markets. A multivariate stochastic
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T-Ratios of Mean Score, Lw=2, Asymmetric, Spline, Long Memory
Nonlinear Nonparametric Score Generator

r . T
-10 8 6 - 2

T T ¥ T 1

2 4 6 8 10

o«

Fig. 8. EMM Quasi-t-ratios for the asymmetric, spline-transform stochastic volatility model with a
long-memory variance equation matched to the nonlinear nonparametric score. The nonlinear nonpara-
metric score is an SNP specification with L, =2, L, =18, L, =2, K- =4, [. =0, K, =0, and /. =0.
The VAR ¢-ratios and ARCH ¢-ratios shown in the plot correspond to the equations g, = b, +5'x and
re = po + p'x of the SNP specification, respectively. The SNP t-ratios correspond to the coefficients
of the polynomial P(z,x) of the SNP specification. A coefficient such as a(00,2) corresponds to the
monomial z2, one such as a(10,2) to z2x], a(01, 2) to z2x;, and so on. The stochastic volatility spew.
fication is yr — gty = (V=1 — o)+ C2(Ye—2 — py ) Hexp(w] I To(22), To(zr) = bog + b1z + ba2(2 ¥ +
b3l (2t Xzt )2. W,' — =01 - ..‘f)_dz"-;, Tnr = Zf;lajzw,l—j + re(Zr + gzi-1)-

volatility model for y, is

L

Ve — Wy = Ci(yi—; — 1) + diag[exp(w,)IR, z,,

I

i

J
L,

W, — [y = Z Ai(w,—j — pw) + Ry 24,
=1
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where g, is an M x 1 vector, the G; are M x M matrices for j=1,2,...,L,, and
R, is an M x M upper triangular matrix. Similarly, g, is an M x 1 vccior, the 4;
are M x M matrices for j=1,2,...,L,, and R,, is an M xX M upper triangular ma-
trix. The processes {z,} and {Z;} are inutually independent iid random variables
with mean zero and variance /p;. Throughout, exp(-) denotes the elementwise
exponential of' a vector argument, diag(v) with a vector argument denotes the di-
agonal matrix with the elements v,,...,vy down the diagonal, and diag(B) with
a matrix argument denotes the vector (byy,...,0 ) with the diagonal elements
of B as its elements. Thus,

e 0 .- 0

0 e -

diag[exp(w,)] =
: . 0
0 . 0 e

The data to which we fit this stochastic volatility model (M =3) consists of
4044 daily observation on three variables: adjusted inovements of the Standard
and Poor’s Composite Price Index, adjusted movements of the $/DM spot ex-
change rate, and the adjusted 90-day Euro-Dollar interest rate, 1977—-92. In this
case M =3, y,= (¥, Y2, ¥3)'» and the data set is {7,}#4%. The raw series con-
sists of the Standard and Poor’s Composite Index (SP), the $/DM exchange
rate (DM), and the three-month Euro-dollar interest rate (ED). The three series
were collected daily, 4 January 1977-31 December 1992. The stock index and
the exchange rate are converted to raw price movements series, 100[log(SF,) —
log(SP,_,)], and 100[log(DM,) — log(DM,_,)]. The two raw price movement se-
ries and the raw ED series are then each adjusted for systematic calendar effects.
The adjustment procedure is the same as Gallant et al. (1952) except for the use
of a robust regression method instead of ordinary least squares.

The estimation treats the three series as strictly stationary. This seems rea-
sonable for stock returns and exchange rate movements, but requires discussion
for the interest rate. As is well known, short-term interest rates collected at
high frequencies display extreme persistence characteristic of (near) unit-root pro-
cesses. However, recent empirical results of Ait-Sahalia (1996), and confirmed in
Tauchen (1997a), indicate that, although interest rates display little mean revision
in the central part of the data, they display substantial mean reversion at very
low and very high values. Hence, interest rates appear nonstationary, or nearly
so, when considered with linear methodology, when in fact they are stationary
when considered with nonlinear methods.

As in Section 4, to implement the EMM estimator we require a score gener-
ator that approximates these data well. We use the multivariate SNP model as
described in Gallant et al. (1992). It is derived along the same lines as set forth
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in Section 4.2 and has the following functional form:

{P[R.:l(y - oux)’x*]}z(ﬂ[R;!(y — )l

SO0 = @ [P o &

where
iy = bg + Bx",
vech(R;) = po + Plx*|.

vech(R) denotes the elements of the upper triangle of R stored as a column
vector, |x| denotes element-wise absolute value, x* is a vector of lagged values
of y,, and ¢(z) = (2n)~M2e~'2/2 The asterisk indicates that prior to forming lags,
the y, have been centered by subtracting the sample mean, scaled by dividing
elementwise by sample standard errors, and then transformed elementwise by the
logistic map that takes the interval (—oco, o0) into the interval (—4,4). P(z,x*)
is a polynomial of degree K. in z whose coefficients are, in turn, polynomials of
degree K, in x*. u, is a function of the first L, lags in x* which is accommodated
by inserting zeros in B at the appropriate locations; similarly R, is a function
of the first L, lags in x* and P(z,x*) a function of the first L, lags in x*. The
multivariate model has two additional tuning parameters I. and /. that indicate
that higk order interaction in the polynomial P(z,x*) have been put to zero:
I. =0 means that no interactions are suppressed, /. =1 means that the highest
order interactions are suppressed, namely those of degree K. and so on; similarly
for K.. We only allow P|x*| to contribute to the diagonal of R, by inserting
zeroes in the appropriate elements of P.

As in Section 4, if K;:=0. K;=0, L,:>0, and L, >0 then the SNP density
is a form of ARCH model with Gaussian innovations. If K. >0, K, =0, L,>0,
and L, >0 then the SNP density is a form of ARCH model with conditionally
homogeneous, non-Gaussian innovations. The SNP model with K. >0 and K, =0
can accurately approximate any conditionally homogeneous innovation process
by taking K. large enough. If K.>0, K, >0, L,>0, L,>0, and L, >0 then the
SNP model can accurately approximate any Markovian, stationary process by
taking K: and K, large enough, including those that exhibit nonlinearities such
as conditional skewness and kurtosis (Gallant et al. 1991).

We fit the SNP model by quasi maximum likelihood following the protocol that
is describzd in Bansal, Gallant, Hussey, and Tauchen (1995) and is surmmarized
in Section 4. Following this protocol, we select the model L, =4, L, =16, K. =38,
and /; =7 when innovations are constrained to be homogenous (K =0, L, =1).
The score from this fit we term the ‘semiparametric ARCH score’. We also report
results for the model L, =4, L, =16, L,=1, K: =8, .=7, K; =2, and I, =1,
where itte homogeneity constraint is dropped, and term the score from this fit the
‘nonlinear nonparametric score’. We encountered difficulty fitting the stochastic
volatility model to the even larger specification, L, =4, L, =16, L,=1, K: =8,
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Table 5

Trivariate series: optimized value of the criterion

Score generator (SNP) SV model Objective function

Ly L L, K- I K¢ L /% Ly Le 4 72 df p-val

4 16 1 8 7 0 0 101 2 1 44 490.306 57 <0.0001
4 16 1 8 7 0 0 10° 2 2 47 329.603 54 <0.0001
4 16 | 8 7 2 1 25 2 3 47 4168470 204 <0.0001

L, is the number of lags in the linear part of the SNP model; L, is the number of lags in the ARCH
part; L, the number of lags in the polynomial part, P(z,x). The polynomial P(z,x) is of degree K-
in z, with interactions of degree exceeding K: — /- suppressed; likewise, P(z,x) is of degree K in
x, with interactions of degree exceeding & — /v suppressed. By convention, L, =1 if Ky =0. ¢ is
the number of free parameters associated with the SNP model. L, is the number of lags in the linear
conditional mean specification of the stochastic volatility model, and L. is the number of lags in
the volatility specification. ¢, is the number of free parameters of the stochastic volatility model. z2?
is the EMM objective function scaled to be distributed »2(df) under the maintained a2ssumption of
correct specification of the stochastic volatility model.

I.=7, K. =3, and I, =2, dictated by following the protocol and do not report
EMM results for that score. In all cases, the linear VAR model at the core of
the SNP hierarchy is constrained to be zero after lag 2, except for lags of the
interest rate which go out to lag 4, which reflects our prior knowledge that interest
rates display much more complicated patterns of linear persistence than do stock
returns or exchange rate movements.

Following the EMM procedure described in Section 3 we obtain the chi-square
statistics shown in Table 5. As seen from the table, the stochastic volatility model
fails to approximate the distribution of these data adequately; it is overwhelmingly
rejected.

6. Conclusion

The standard stochastic volatility model, which has received substantial atten-
tion in the literature, is an empirically implausible model for stock returms. Our
exhaustive search across many specifications indicates that the model inust be
extended to include (i} an asymmetric thick-tailed distribution for innovations
in the mean equation, (ii) long-term dependsnce in the volatility equation, and
(ii1) cross correlation between innovations in the mean and volatility equations.
When introduced individually, each of these extensions improves the fit some-
what. When introduced together, they produce a stochastic volatility model that
is quite elaborate and can accommodate features of the data best described as
‘semiparametric ARCH’. However, the model still cannot accommodate features
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that could be described as ‘nonlinear nonparametric’. Although not as exhaustive,
our investigation for the trivariate data series on stock returns, interest rates, and
exchange rates leads to a similar result.

These findings thus cast doubt on the statistical reliability of estimated stochas-
tic volatility models that do not include all thrce of the extensions. At a minimum,
estimates of stochastic volatility models should be accompanied by diagnostic
tests in the directions found empirically important here. An even stronger conclu-
sion, which emerges from the failure to fit the nonlinear nonparametric features,
is that the stochastic volatility model cannot be made to fit financial narket data
without losing scientific coatent. The reason is that the conditional heterogeneity
in higher moments exhibited by the stochastic volatility model is imparted sole-
ly by the volatility equation and therefore cannot be decoupled from the voiatility
equation. Without the decoupling, the model is not rich enough to approximate
data from financial markets. With a decoupling, the stochastic- volatility model
becomes akin to a nonparametric specification and there are far more computa-
tionally convenient nonparametric estimators. Our findings stand in contrast to
results of Kim and Shephard (1994), Geweke (1994), and others who find evi-
dence in favor of fairly standard stochastic volatility models. The reason is that
we step outside the narrow confines of stochastic volatility and entertain the pos-
sibility of very general and flexible auxiliary models. These models provide the
diagnosucs discrediting stochastic volatility.

Acknowledgements

This material is based upon work supported by the National Science Foun-
dation. We thank Rob Engle and Jorgen Wolters for helpful remarks at var-
ious stages of this research, and we thank the two referees and the editor,
Helmut Lutkepohl, for thoughtful remarks.

Referencces

Ait-Sahalia, Y., 1996. Testing continuous-time models of the spot intcrest rate. Review of Financial
Studies 9, 385-426.

Andersen, T.G.. Lund, J., 1997, Estimating continuous-time stochastic volatility modcls. Journal of
Econometrics 77, 343-379.

Andersen, T.G., Sorensen, B., 1996. GMM estimation of a stochastic volatility model: a Maonte Carlo
study. Journal of Business and Evonomic Statistics 14, 328-352.

Bansal, R., Gallant, A.R., liussey, R., Tauchen, G., 1993. Computational aspccts of non parametric
simulation estimatio:i. in: Belsley, D.A., (Ed.), Computational Techniques for Econometrics and
Economic Analysis, Kluwer Academic Publishers, Boston, MA, pp. 3-22.

Bansal, R., Gallant, A.R., Hussey. R., Tauchen, G., 1995, Nonparametric estimation of structural
models for high-frequency currency market data, Jounal of Econometrics 66, 251-287.

Bollersslev, T., Mikkelsen, H.O., 1996. Mudelling and pricing long-memory in stock market volatility.
Journal of Econometrics 73, 151-184.



A.R. Gallunt et al | Journal of Econometrics 81 (1997) 159-192 191

Breidt, F.J., Crato, N., de Lima, P., 1994. Modeling long-mecmory stochastic volatility. Manuscript,
lowa State University, Ames, TA.

Clark. P.K., 1973. A subordinated stochastic process model with finite variance for speculative prices.
Econometrica 41, 135-156.

Danielsson. J., 1994, Stochastic volatility in assct prices: cstimation with simulated maximum
likelihood. Journal of Econometrics 61, 375-400.

Ding, Z., Granger. C.W.J.. Engle, R.F., 1593. A long memory property of stock market returns and
a new mo-el. Journal of Empirical Finance 1, 83-108.

Duffie, D., Singleton, K.J., 1993. Simulated moments estimation of Markov models of asset prices.
Econometrica 61, 929-952.

Engle, R.F.. Gonzales-Rivera, G., 1991. Semiparametric ARCH models. Joumal of Business and
Economic Statistics 9, 345 -360.

Fenton, V.M., Gallant, A.R., 1996a. Convergence rates of SNP density estimators. Econometrica 64,
719-727.

Fenton, V.M., Gallant, A.R., 1996b. Qualitative and asymptotic performance of SNP density
estimators, Journal of Econometrics 74, 77-118.

Gallant, A.R., 1987. Nonlinear Statistical Models. Wiley, New York, NY.

Gallant, A.R.. Hsich, D.A.. Tauchen. G.. 1991, On fitting a recalcitrant series: The pound/dollar
exchange rate, 1974-83, In: Bament. W.A., Powell, J., Tauchen, G. (Eds.), Nonparametric and
Semiparametric Methods in Econometrics and Statistics, Procecdings of the 5th International
Symposium in Economic Theory and Econometrics, Cambridge University Press, Cambridge,
pp. 199-240.

Gallant, A.R., Long. J.R., 1997. Estimating stochastic differential cquations efficiently by minimum
chi-square. Biometrika. forthcoming.

Gallant, A.R.. Nychka, L.W., 1987, Seminonparametric maximum likelihood estimation. Econometrica
55, 363-390.

Gallant, A.R., Rossi, P.E.. Tauchen, G., 1992, Stock prices and volume. Review of Financial Studics
5, 199-242,

Gallant, A.R., Rossi, P.E., Tauchen, G., 1993. Nonlincar dynamic structures. Econometrica 61,
871-907.

Gallant, AR., Tauchen, G.. 1989. Secminonparametric estimation of conditionally constrained
heterogencous processes: asset pricing applications. Econometrica 57. 1091-1120.

Gallant, A.R., Tauchen, G.. 1992. A nronparametric approach to nonlinear time series analysis:
Estimation and simulation. In: Parzen, E., Brillinger, D., Roscnblatt, M., Taqqu. M., Geweke,
J.. Gaines, P. (eds.). New Dimensions in Time Series .Analysis, Part II, Springer, New York, NY,
pp. 71-92.

Gallant, A.R., Tauchen, G., 1996. Which moments to match?, Econometric Theory 12, 657-681.

Gewceke, J., 1994, Bayesian comparison of econometric models. Manuscript, Federal Reserve Bank,
Minneapolis, MN.

Ghysels, E., Harvey, A., Renault, E., 1995, Stochastic volatility. In: Maddala, G.S. (Ed.), Handbook
of Statistics, vol. 14, Statistical Methods in Finance. North-Holland, Amsterdam, forthcoming.
Gourieroux, C., Monfort, A., Renault, E., 1993. Indirect infercnce. Journa! of Applied Econometrics

8, S85-S118.

Granger, C.W_, Joycux, R., 1980. An introduction to long-memory time serics models and fractional
differencing. Journal of Time Series Anulysis 1, 15-29.

Harvey, A.C., 1993. Long mcemory and stochastic volatility. Manuscript, London School of Economics,
London.

Harvey. A.C., Shephard, N., 1994. Multivariate stochastic variance models. Review of Economic
Studies 61, 129-158.

Harvey. A.C., Shephard, N., 1996. Estimation of an asymmetric stochastic volatility model for asset
retumns. Journal of Bussiness and Economic Statistics 14, 429-434.



192 A R Gallant ¢t al. | Journal of Econometrics 81 (1997) 159-192

Jacquier, E., Polson, N.G., Rossi, P.E., 1994. Bayesian analysis of stochastic volatility models. Journal
of Bussiness and Economic Statistics 12, 371417.

Kim, S., Shephard, N., 1994. Stochastic volatility: optimal likilihood inference and comparison with
ARCH meodels. Manuscript, Nuffield College, Oxford.

Mathieu, R., Schotman, P., 1994. Stochastic volatility and the distribution of exchange rate news,
Manuscript, University of Limburg, Maastricht, The Netherlands.

Nelson, D., 1991. Conditional heteroskedasticity in asset retuns: a new approach. Econometrica 59,
347-370.

Schwarz, G . 1979 Fstimating the dirrension of 2 model. Annals of Statistics 6, 461--464.

Shephard, N.. 1995. Statistical aspects of ARCH and stochastic volatility. Manuscript Nuffield College,
Oxford.

Sowell, F., 1990. The fractional unit root distribution. Econometrica 58, 495-508.

Taucticn, G., 1997a. New minimum chi-square methods in empirical finance. In: Kreps, D.M., Wailis,
K.F. (eds.), Advances in Economics and Econometrics: Theory and Applications, Seventh World
Congress, Cambridge University Press, Cambridge.

Tauchen, G., 1997b. The objective function of simulation estiinators near the boundary of the unstable
region of the parameter space. Manuscript Duke University, Durham, NC.

Tauchen, G., Pitts, M., 1993. The price variability—volume relationship on speculative markets,
Econometrica 51, 485-505.

Taylor, S.J., 1986. Modeling Financial Time Series, Wiley, New York, MY.

Taylor, S.1., 1994. Modeclling stochastic volatility. Mathematical Finance 4, 183-204.



