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This paper examines the relation between stock returns and stock market volatility. We find
evidence that the expected market risk premium (the expected return on a stock portfolio minus
the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is
also evidence that unexpected stock market returns are negatively related to the unexpected
change in the volatility of stock returns. This negative relation provides indirect evidence of a
positive relation between expected risk premiums and volatility.

1. Introduction

Many studies document cross-sectional relations between risk and expected
returns on common stocks. These studies generally measure a stock’s risk as
the covariance between its return and one or more variables. For example, the
expected return on a stock is found to be related to covariances between its
return and (i) the return on a market portfolio [Black, Jensen and Scholes
(1972), Fama and MacBeth (1973)], (ii) factors extracted from a multivariate
time series of returns [Roll and Ross (1980)], (iii) macroeconomic variables,
such as industrial production and changes in interest rates [Chen, Roll and
Ross (1986)], and (iv) aggregate consumption [Breeden, Gibbons and
Litzenberger (1986)].

We examine the intertemporal relation between risk and expected returns.
In particular, we ask whether the expected market risk premium, defined as
the expected return on a stock market portfolio minus the risk-free interest
rate, is positively related to risk as measured by the volatility of the stock
market.

*We have received helpful comments from Joel Hasbrouck, Donald Keim, John Long, Charles
Plosser, Jay Shanken, Lawrence Summers, Jerold Warner, Larry Weiss, Jerold Zimmerman, an
anonymous referee, and especially Eugene Fama. The Batterymarch Financial Management
Corporation, the Center for Research in Security Prices, the Foundation for Research in
Economics and Education, and the Managerial Economics Research Center provided support for
this project.
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Some argue that the relation between expected returns and volatility is
strong. For example, Pindyck (1984) attributes much of the decline in stock
prices during the 1970s to increases in risk premiums arising from increases in
volatility. Poterba and Summers (1986), on the other hand, argue that the
time-series properties of volatility make this scenario unlikely. Neither study,
however, provides a direct test of the relation between expected risk premiums
and volatility.

We investigate relations of the form

E(R,, - R,|6,)=a+B62, p=1,2, (1)

where R, is the return on a stock market portfolio, R s 18 the risk-free
interest rate, 4, is an ex ante measure of the portfolio’s standard deviation,
and 62, is an ex ante measure of the variance. If =0 in (1), the expected risk
premium is unrelated to the ex ante volatility. If a =0 and 8 > 0, the expected
risk premium is proportional to the standard deviation (p=1) or variance
( p = 2) of stock market returns.

Merton (1980) estimates the relation between the market risk premium and
volatility with a model similar to (1). Because his study is exploratory, he does
not test hypotheses about (1), such as whether 8 equals zero. Merton also uses
contemporaneous, rather than ex ante, measures of volatility, so his measures
include both ex ante volatility and the unexpected change in volatility. We
argue below that a positive relation between the expected risk premium and
ex ante volatility will induce a negative relation between the excess holding
period return (R,,, — R,,) and the unexpected change in volatility. Therefore,
combining the two components of volatility obscures the ex ante relation.

This study uses two statistical approaches to investigate the relation between
expected stock returns and volatility. In the first, we use daily returns to
compute estimates of monthly volatility. We decompose these estimates into
predictable and unpredictable components using univariate autoregressive-
integrated-moving average (ARIMA) models. Regressions of monthly excess
holding period returns on the predictable component provide little evidence of
a positive relation between ex ante volatility and expected risk premiums.
There is a strong negative relation, however, between excess holding period
returns and the unpredictable component of volatility. We interpret this as
indirect evidence of a positive ex ante relation.

We also use daily returns to estimate ex ante measures of volatility with a
generalized autoregressive conditional heteroskedasticity (GARCH) model
[Engle (1982), Bollerslev (1986)]. The GARCH-in-mean model of Engle, Lilien
and Robins (1987) is used to estimate the ex ante relation between risk
premiums and volatility. These results support our interpretation of the
ARIMA results by indicating a reliable positive relation between expected risk
premiums and volatility.
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2. Time series properties of the data

2.1. Standard deviations of stock market returns

We use daily values of the Standard and Poor’s (S&P) composite portfolio
to estimate the monthly standard deviation of stock market returns from
January 1928 through December 1984. This estimator has three advantages
over the rolling 12-month standard deviation used by Officer (1973) and by
Merton (1980) over his full 1926-1978 sample period. (Merton uses daily
returns to estimate monthly standard deviations for 1962-1978.) First, by
sampling the return process more frequently, we increase the accuracy of the
standard deviation estimate for any particular interval. Second, the volatility
of stock returns is not constant. We obtain a more precise estimate of the
standard deviation for any month by using only returns within that month.
Finally, our monthly standard deviation estimates use non-overlapping sam-
ples of returns, whereas adjacent rolling twelve-month estimators share eleven
returns.

Non-synchronous trading of securities causes daily portfolio returns to be
autocorrelated, particularly at lag one [see Fisher (1966) and Scholes and
Williams (1977)). Because of this autocorrelation, we estimate the variance of
the monthly return to the S&P portfolio as the sum of the squared daily
returns plus twice the sum of the products of adjacent returns,

N, N-1
oril= Zri$+2 Z ritri+1,r’ (2)

i=1 i=1

where there are N, daily returns, r,, in month . We do not subtract the
sample mean from each daily return in calculating the variance because this
adjustment is very small.!

Fig. 1a contains a plot of the monthly standard deviation estimates for
1928-1984. As Officer (1973) notes, stock returns are more volatile in the
1929-1940 period than either before or after. The plot in fig. 1a is not as
smooth as plots of twelve-month rolling estimates in Officer (1973) because
each point is based on a non-overlapping sample of returns. This plot
highlights the variation in estimated volatility.

As suggested by fig. 1la, the mean and standard deviation of the stock
market standard deviation estimates in table 1, panel A, are higher in
1928-1952 than in 1953-1984. The autocorrelations of o,,, in table 1, panel A,
are large and decay slowly beyond lag three. This behavior is typical of a

1See Merton (1980). We tried several modifications of (2), including (a) subtracting the
within-month mean return from each observation and (b) ignoring the cross-products. These
modifications had little effect on our results.
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Fig. 1a. Monthly percent standard deviations of the returns to the Standard & Poor’s composite
portfolio, o,,,, estimated from returns for days i within the month ¢, r,,, 1928-84.
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non-stationary integrated moving average process [see Wichern (1973)]. The
standard deviation estimates are positively skewed. To adjust for this skewness
we examine the logarithm of o,,,. Because non-stationarity is suggested by the
autocorrelations in table 1, panel A, we examine the changes in the logarithm
of the standard deviation estimates in table 1, panel B. The autocorrelations in
table 1, panel B, are close to zero beyond lag three. These autocorrelations
suggest that the first differences of Ino,, follow a third-order moving average
process.

(1-L)no,,=6,+(1—6,L-6,L*~6,L*)u,, (3)

for 1928-1984, 1928-1952, and 1953-1984. The estimates of the constant term
0, are small in relation to their standard errors, suggesting that there is no
deterministic drift in the standard deviation of the stock market return. The
moving average estimate at lag one is large in all periods, whereas the estimate
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at lag two is largest in the first subperiod and the estimate at lag three is
largest in the second. Nevertheless, the F-statistic testing the hypothesis that
the model parameters are the same in 1928-1952 and 1953-1984 is below the
0.10 critical value. The small Box-Pierce statistics, Q(12), support the
hypothesis that the forecast errors from these models are random.

The skewness coefficients are small (table 1, panels B and C) indicating that
the logarithmic transformation has removed most of the positive skewness in
o,..- The studentized range statistics in table 1, panel C, are large in the overall
sample period and in the first subperiod, but not in the second subperiod. The
standard deviation of the errors S(u,) is about one-third larger in 1928-1952
than in 1953-1984, which accounts for part of the large studentized range
statistic for the combined sample. »

We construct conditional forecasts of the standard deviation and variance of
S&P returns using the formulas

= exp[ln ,+0. 5V(u,)] (4a)

and

= exp[21n .+ 2V(u,)] (4b)

where 1;:1; is the fitted value for Ing,,, from (3) and ¥(u,) is the variance of
the prediction errors from (3) for 1928-1984. If the errors u, are normally
distributed, o,,, is lognormal and the corrections in (4a) and (4b) are exact.
Fig. 1b contains a plot of the predictions §,,, from (4a). The predicted
standard deviations track the actual standard deviations closely, although the
predicted series is smoother.

The evidence in table 1 indicates that there is substantial variation in stock
market volatility. The time series models are stable over time, and the
residuals appear to be random. In the subsequent tests, we interpret the
transformed fitted value from these models, 62,, as the predlctable volatility of
stock returns and the unexpected volatility, o2} = of, — 62,, as proportional to
the change in predicted volatility. The models seem to be stable, so we treat
the parameters as if they were known to investors and we estimate them using
all the data.? Conditional on the parameters, the forecasts depend only on
past data.

*We also conducted many of our tests with one-step-ahead predictions of § , from (3) where
the parameters were estimated using the previous 60 months of data. Other vanables were also
used to model 42,. The only variables that seem to have reliable predictive power are two lags of
the return to a market portfolio, such as the CRSP value or equal-weighted portfolio. Results
using these alternate models are similar to the results we report.
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Fig. 1b. Predicted monthly percent standard deviations of the returns to the Standard & Poor’s
composite portfolio, 3,,,, estimated from the ARIMA model in table 1, panet C, 1928-84.
(1-L)no,, =6, +(1-6,L— 8,12 —6;L°)u, 3)
3, = exp[Ine,,, + 0.5V (u,)] (4a)

2.2. ARCH models

Engle (1982) proposes the autoregressive conditional heteroskedasticity
(ARCH) model,

rr=a+g,, g~ N(O, 0,2), (5a)
o2=a+bel_|, (5b)

to represent a series with changing volatility. The assumption in (5b) that
volatility is a deterministic function of past returns is restrictive. For example,
conditional on the time ¢ — 1 shock ¢,_,, there is no unpredictable component
of volatility at time z. The ARCH model is attractive, however, because the
return and variance processes are estimated jointly.

We compute maximum likelihood estimates of the ARCH model using daily
risk premiums, defined as the percentage change in the S&P index minus the



10 K.R. French et al., Expected stock returns and volatility

daily yield on a one-month Treasury bill, r,=R,,— R 1o 3 To account for the
positive first-order serial correlation in the retums to portfolios of stocks
induced by non-synchronous trading [see Fisher (1966) or Scholes and Williams
(1977)}, we generalize the model for daily risk premiums in (5a) by including a
first-order moving average process for the errors,

(Rm,—R[,)=a+e,—0£,_1, (5¢)

where the moving average coefficient § will be negative. The autocorrelations
of the squared risk premiums (R, — R f,)z decay slowly (from 0. 27 at lag one
to 0.10 at lag sixty), suggesting that ¢ is related to many lags of ¢2. Therefore,
we generalize (5b) in two ways. First, we use the average of the previous
twenty-two squared errors to predict the variance of ¢,,

o’=a+b

%2: 5,2_,./22). (5d)

i=1

This is comparable to using the monthly variance estimates in table 1, since
there are about twenty-two trading days per month. Second, we use a
generalized autoregressive conditional heteroskedasticity (GARCH) model [see
Bollerslev (1986)] of the form

ol =a+bo’ +cie2 | +cyel,. (5e)

Table 2 contains estimates of the ARCH model (5d) and the GARCH
model (5e) for 1928-1984, 1928-1952, and 1953-1984. The 1928-1984 esti-
mate of b for the ARCH model is 0.94, with a standard error of 0.01, so there
is a strong relation between recent squared errors and the estimate of volatil-
ity. The x? test in table 2 implies that the parameters of the ARCH model are
not equal in 1928-1952 and 1953-1984.

The estimates of the GARCH model (5¢) and (5¢) in table 2 also indicate
that the variance of daily risk premiums is highly autocorrelated. To compare
the persistence implied by the GARCH model with the ARCH model (5d) it is
useful to consider the sum (b + ¢, + ¢,), which must be less than 1.0 for the
volatility process to be stationary [see Bollerslev (1986, theorem 1)]. This sum

3Yields are calculated from the average of bid and ask prices for the U.S. government security
that matures closest to the end of the month. Daily yields are calculated by dividing the monthly
yield by the number of trading days in the month. These data are from the CRSP U.S.
Government Securities File.

We are grateful to David Hsieh for providing the computer program used to estimate the
ARCH models.
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Table 2

Autoregressive conditional heteroskedasticity (ARCH) models for daily excess holding period
returns to the Standard & Poor’s composite portfolio.?

(R, —Rp)=a+e—0¢, (5¢)
2 512 1
2=a+b - 5d
o L% (s4)
ol=a+baol,+ced ;+ce, (5¢)
ARCH model x? test
equations ax10® ax10° b o & ] for stability

(A) January 1928 to December 1984, T = 15,369

ARCH 0.265 1.006 0.938 -0.142 92.7
(5¢), (5d) (0.061) (0.048) (0.012) (0.007)
GARCH 0.324 0.062 0.919 0121 —0.044 -0.157 86.7
(5¢), (5¢) (0.063)  (0.005) (0.002) (0.007) (0.007) (0.007)
(B) January 1928 to December 1952, T = 7,326
ARCH 0.405 1.678 0.924 —0.080
(5¢), (5d) (0.111)  (0.094) (0.015) (0.010)
GARCH 0.496 0.149 0.898 0.106 -0.012 -0.090
(5¢), (5¢) (0.111)  (0.013)  (0.004)  (0.009) (0.009) (0.012)
(C) January 1953 to December 1984, T = 8,043
ARCH 0.218 0.947 0.856 —0.194
(5¢), (5d) (0.076)  (0.069)  (0.023) (0.010)
GARCH 0.257 0.052 0.922 0.130 -0.060 -0.211
(5¢), (5¢) (0.080) (0.008) (0.004) (0.010) (0.010) (0.012)

(R, — Ry,) is the da11y excess holdmg period return to the Standard & Poor’s composite
portfolio (the percentage price change minus the yield on a short-term default-free government
bond). Non-linear optimization techniques are used to calculate maximum hkehhood estimates.
Asymptotic standard errors are in parentheses under the coefficient estimates. The x2 test statistic
is distributed x2 for the ARCH model (5d) and x? for the generalized ARCH or GARCH model
(5¢) under the hypothesis that the parameters are equal in the subperiods.

equals 0.996, 0.992, and 0.992 for the 1928-1984, 1928-1952, and 1953-1984
sample periods, respectively. The comparable estimates of b for the ARCH
model are 0.938, 0.924, and 0.856. The x? test implies that the GARCH model
parameters are not equal across the two subperiods.

2.3. Stock market risk premiums

We use the value-weighted portfolio of all New York Stock Exchange
(NYSE) stocks from the Center for Research in Security Prices (CRSP) at the
University of Chicago to measure monthly stock market returns. We use the
NYSE portfolio because its returns include dividends. We use the S& P returns
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Table 3

Means, standard deviations, and skewness of the monthly CRSP value-weighted market excess
holding period returns (z-statistics in parentheses).®

WLS WLS
Period Mean mean® mean® Std. dev. Skewness
1928-84 0.0061 0.0116 0.0055 0.0579 0.444
@.73) (9.42) 3.51)
1928-52 0.0074 0.0151 0.0083 0.0742 0.454
(1.74) (6.68) 2.76)
1953-84 0.0050 0.0102 0.0044 0.0410 -0.05
(2.38) (6.91) Q.42)

#The one-month Treasury bill yield is subtracted from the CRSP value-weighted stock market

retum to create an excess holding period return.
bSample mean estimated by weighted least squares, where the standard deviation of the

Standard & Poor’s composite portfolio estimated from the days within the month, o,,,, is used to
weight the observations.

¢Sample mean estimated by weighted least squares, where the predicted standard dev1anon of
the Standard & Poor’s composite portfolio estimated from the ARIMA model in table 1, panel C,
is used to weight the observations.

9 Greater than the 0.95 fractile of the sampling distribution under the hypothesis of a stationary,
serially uncorrelated normal distribution.

ml'

to estimate monthly variances because the CRSP portfolio is not available on
a daily basis before July 1962. The fact that the S&P returns do not include
dividends should have little effect on the estimates of monthly volatility.* The
returns on the NYSE portfolio are highly correlated with the returns on the
S & P composite portfolio. For example, the correlation between these portfolios
is 0.993 for 1928-1984. The yield on a one-month Treasury bill is subtracted
from the NYSE value-weighted return to compute the excess holding period
return.

Table 3 contains estimates of the means, standard deviations, and skewness
coefficients of the monthly excess holding period returns. The mean excess
holding period return is an estimate of the average expected risk premium. The
mean is estimated in three ways: (i) using ordinary least squares (OLS), (ii)
using weighted least squares (WLS) where the weight for each observation is
the reciprocal of the monthly standard deviation estimated from daily S&P
returns, 1/9,,,, and (iii) using weighted least squares where the weight is the
reciprocal of the predicted standard deviation from the ARIMA model in

4Since the ex-dividend days are different for different stocks in the S&P composite portfolio,
there are not large changes in the daily index due to dividend payments. We compared the
estimates of monthly volatility computed from daily data for the CRSP value-weighted portfolio
of NYSE and American Stock Exchange stocks with the estimates for the S&P composite
portfolio from July 1962 through December 1984, and they are very similar.
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table 1, panel C, 1/6,,. The WLS estimator using the actual standard
deviation o,,, gives larger estimates of the expected risk premium and larger
t-statistics than either of the other estimates. This foreshadows a result in the
regression tests below: in periods of unexpectedly high volatility (so that ,,, is
larger than 6,,,), realized stock returns are lower than average. These lower
returns receive less weight when 1/6,,, is used to estimate the average risk
premium.

As Merton (1980) stresses, variances of realized stock returns are large in
relation to the likely variance of expected returns. This low ‘signal-to-noise’
ratio makes it difficult to detect variation in expected stock returns. For
example, consider the average risk premiums for 1928-1952 and 1953-1984.
The sample standard deviations are much higher in the first subperiod, and the
mean risk premiums are also higher in that period. The standard errors of
the sample means are so large, however, that neither the hypothesis that the
subperiod expected premiums are equal, nor the hypothesis that expected risk
premiums in 1928-1952 are twice the expected premiums in 1953-1984 can be
rejected at conventional significance levels. The tests below provide more
structured ways to assess the relation between expected risk premiums and
volatility.

3. Estimating relations between risk premiums and volatility

3.1. Regressions of excess holding period returns on ARIMA forecasts
of volatility

In an efficient capital market, investors use best conditional forecasts of
variables, such as the standard deviation of stock returns, that affect equi-
librium expected returns. Thus, we can estimate the relation between expected
risk premiums and volatility by regressing excess holding period returns on the
predictable components of the stock market standard deviation or variance,

' (Rmt_th)=a+B6mpt+et' (6)

If B=0 in (6), the expected risk premium is unrelated to the variability of
stock returns. If a =0 and B > 0, the expected risk premium is proportional to
the standard deviation ( p = 1) or variance ( p = 2) of stock returns.

Table 4 contains weighted least squares estimates of regression (6). Each
observation is weighted by the predicted standard deviation d,, from the
ARIMA model in table 1, panel C, to correct for heteroskedasticity. Two sets
of standard errors are calculated for each regression. The first (in parentheses)
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is based on the usual least squares formula. The second [in brackets] is based
on White’s (1980) consistent correction for heteroskedasticity.’

The estimates of regression (6) provide little evidence of a relation between
expected risk premiums and predictable volatility. For example, the 1928-1984
estimate of B8 is 0.02, with a standard error of 0.12, in the standard deviation
specification ( p = 1), and 0.34, with a standard error of 0.94, in the variance
specification ( p = 2). All of the estimates of 8 are within one standard error of
zero.

Regressions measuring the relation between excess holding period returns
and contemporaneous unexpected changes in market volatility,

(Rm,—Rf,)=a+B6,ﬁ,+yo,ﬁ,“+e,, (7)

m

unpredicted standard deviation ( p = 1) or variance ( p = 2) of returns from the
ARIMA model in table 1, panel C. The unpredicted components of volatility
are essentially uncorrelated with the predicted components, so including them
in the regressions should not affect the estimates of 8. Including o2}, however,
improves the tests in two ways. First, because more of the excess holding
period returns are explained, the standard errors of the regression coefficients
are reduced. More important, the coefficient on the unpredicted component of
volatility y provides indirect evidence about the effects of predictable volatil-
ity on ex ante risk premiums.

Suppose this month’s standard deviation is larger than predicted. Then the
model in table 1, panel C, implies that predicted standard deviations will be
revised upward for all future time periods. If the risk premium is positively
related to the predicted standard deviation, the discount rate for future cash
flows will increase. If the cash flows are unaffected, the higher discount rate
reduces both their present value and the current stock price.® Thus, a positive
relation between the predicted stock market volatility and the expected risk
premium induces a negative relation between the unpredicted component of
volatility and excess holding period returns.

provide more reliable evidence. In this regression, o2} =02 — 672, is the

’The importance of correcting for heteroskedasticity is illustrated by results in Gennotte and
Marsh (1985). They estimate a model like (6), except the prediction of this month’s variance is the
square of last month’s risk premium. Their estimate of B is more than five standard errors from
zero for 1926-1978 using the CRSP equal-weighted portfolio. We replicated their estimates for
1928-1984, and the OLS estimate of B8 is 0.69, with a standard error of 0.11. The regression errors
are heteroskedastic, however, much like the behavior of the standard deviation of market returns
in fig. 1a. The OLS standard errors are too small since White’s (1980) corrected standard error is
0.42. The WLS estimate of B is 0.75, with a standard error of 0.25 (0.29 with White’s correction).
Thus, the reliability of the relation reported by Gennotte and Marsh (1985) is overstated because
of heteroskedasticity.

6This volatility-induced change in the stock price in turn contributes to the volatility estimated
for that month, but this effect is likely to be a negligible fraction of the month’s total unexpected
volatility.



16 K.R. French et al., Expected stock returns and volatility

Table 4 contains WLS estimates of (7). There is a reliably negative relation
between excess holding period returns and unpredicted changes in the volatil-
ity of stock returns. The estimated coefficients of the unexpected change in the
standard deviation y range from —1.01 to —1.04, with t-statistics between
—6.88 and —10.98. The estimates of y in the variance specification vary from
—3.99 to —9.08, with r-statistics between —5.78 and —8.95.

Again, regression (7) provides little direct evidence of a relation between the
expected risk premium and volatility. Five of the six estimates of B are
negative, and only one is more than one standard error from zero.’

Many of the estimates of a are reliably positive in (7). For example, the
estimate for 1928-1984 is 0.0077, with a standard error of 0.0039, when p =1,
and 0.0057, with a standard error of 0.0020, when p = 2. This implies that the
expected risk premium is not proportional to either the predicted standard
deviation or the predicted variance of stock market return. It also implies that
the expected slope of the capital market line conditional on é,,,E,_;[(R,,,—
R;)/6,,]), is not constant.

The evidence in table 4 provides little basis to choose between the standard
deviation and variance specifications of the relation between volatility and
expected risk premiums. The residual variances S(¢) are smaller for the
estimates of the standard deviation specification in (7) and the R? statistics
based on weighted residuals are larger (except for 1928-1952). These differences
favoring the standard deviation specification are not large, however.®

3.2. GARCH-in-mean models

Engle, Lilien and Robins (1987) and Bollerslev, Engle and Wooldridge
(1985) propose generalizations of the ARCH model that allow the conditional
mean return to be a function of volatility, and they refer to these as
GARCH-in-mean models. Table 5 contains estimates of the GARCH-in-mean
model in two forms:

(Rm,-—Rf,)=a+ﬂo,+£,-—0£,_1, (8a)
and

‘(Rmt_th)=a+B°lz+51_06t—ls (8b)

"The correlation between the predicted standard deviation from the ARIMA model §,,, and the
prediction error ¥, is —0.07 for the 1928-1984 sample period. This small negative correlation
and the highly significant negative coefficient on the prediction error cause a number of the
estimates of 8 to change sign in relation to the simple regression (6).

#Pagan (1984) and Murphy and Topel (1985) argue that regressions with generated regressors
[such as (6) or (7)] produce understated standard errors because the randomness in the predictions
is ignored. Following Pagan, we estimated (6) using several lags of o, as instrumental variables,
and the estimates of B and their standard errors were similar to the estimates in table 4. We also
calculated the adjustment suggested by Murphy and Topel (1985). The results in table 4 were
unaffected, so they are not reported. Pagan and Ullah (1985) discuss other estimation strategies,
including ARCH models, for models like (6) or (7).
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where R, — R, is the dally excess holding period return on the S&P
composite portfolio, and ¢2, the variance of the unexpected excess holding
period return ¢,, follows the process in (5¢). As before [cf. (5c)], the moving
average term fe,_, is included to capture the effect of non-synchronous
trading. The slope has the same interpretation in (8b) that it has in the
monthly ARIMA regression (6) with p =2, because both the risk premium
and the variance 62 should be approximately proportional to the length of the
measurement interval.® Since the standard deviation o, should be proportional
to the square root of the measurement interval, the estimate of 8 in (8a)
should be about 4.5 times smaller than the comparable monthly estimate in (6)
with p=1. The intercept a has the dimension of an.average daily risk
premium in (8a) and (8b), so it should be about twenty-two times smaller than
the monthly estimates in (6).

The results in table 5 indicate there is a reliably positive relation between
expected risk premiums and predicted volatility. The estimated coefficient of
predicted volatility B8 for 1928-1984 is 0.073, with a standard error of 0.023, in
the standard deviation specification (8a), and 2.41, with a standard error of
0.934, in the variance specification (8b). This evidence supports our interpreta-
tion of the negative relation between realized risk premiums and the unex-
pected change in volatility in table 4.

As with the results in table 4, the standard deviation specification (8a) of the
GARCH model fits the data slightly better than the variance specification
(8b). The log-likelihoods from the GARCH model are larger for the standard
deviation specification in 1928-1984 and 1928-1952. Also, if the power of the
standard deviation p is estimated as a parameter in the following model,

(Rmr—th)=a+ﬂ°rp+£t_0£r—l’ (9)

the estimates of p are closer to 1.0 than 2.0. The standard errors of the
estimates are large, however. The evidence in favor of the standard deviation
specification is not strong.

3.3. Comparisons of ARIMA and GARCH models

The ARIMA models in table 4, which use monthly excess holding period
returns, and the GARCH-in-mean models in table 5, which use daily data,
yield sufficiently different results that it is worth exploring the relation between

°If the errors in (8a) are serially mdependent the variance of the N,-step-ahead forecast error
(ignoring parameter estimation error) is N,o2. Since the variance process in (5¢) is almost a
random walk, the sum of the one- throug,h N,-step-ahead forecasts of the risk premium is
approximately N,E(R,,, — Ry |0,).
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Table 5

Generalized autoregressive conditional heteroskedasticity-in-mean (GARCH-in-mean) models for
daily excess holding period returns to the Standard & Poor’s composite portfolio.?

(le_R/x)=a+Bar+el_0er—l (83)
(Rm,—Rf,)=a+ﬂo,2+e,—0e,_1 (8b)
ol=a+bal, +cie2 | +c80 (5¢)
GARCH-in-mean x? test
equations ax10® B ax10* b o ¢ 0 for stability

(A) January 1928 to December 1984, T = 15,369

Std. dev. —-0159 0.073 0.063 0918 0121 -0.043 -0157 86.6
(8a), (Se) (0.170) (0.023) (0.006) (0.003) (0.007) (0.007) ~ (0.008)
Variance 0201 2410 0063 0918 0121 -0.043 -0157 89.3
(8b), (Se) (0.079) (0.934) (0.006) (0.003) (0.007) (0.007) (0.008)

(B) January 1928 to December 1952, T = 7,326
Std. dev. 0.100 0.048 0.151 0.897 0107 -0.011 -0.09
(8a), (Se) (0.272) (0.030) (0.014) (0.004) (0.009) (0.009) (0.012)
Variance 0377 1510 0.151 0.897 0107 -0012 -0.090
(8b), (5¢) (0.138) (1.009) (0.014) (0.004) (0.009) (0.009) (0.012)

(C) January 1953 to December 1984, T = 8.043
Std. dev. —-0.406 0112 0052 0922 0131 -0.061 -0.2i1
(8a), (Se) (0.277) (0.044) (0.008) (0.004) (0.010) (0.011) (0.012)
Variance -0.019 7220 0052 0922 0131 -0.061 -0211
(8b), (Se) (0.134) (2.809) (0.008) (0.004) (0.010) (0.010) (0.012)

*(R,,,— Ry,) is the daily excess holding period return to the Standard & Poor’s composite
portfolio (the percentage price change minus the yield on a short-term default-free government
bond). Non-linear optimization techniques are used to calculate maximum likelihood estimates.
Asymptotic standard errors are in parentheses under the coefficient estimates. The x? test statistic
is distributed x2 under the hypothesis that the parameters are equal in the two subperiods.

these models. Table 6a contains estimates of the GARCH-in-mean models in
(8a) and (8b) using monthly excess holding period returns. The estimates in
table 6a do not use daily return data to predict the volatility of risk premiums,
so one would expect the volatility estimates to be less precise. Nevertheless,
the estimates of S8, the coefficient of predicted volatility, are quite large in
comparison with the regression model estimates in table 4. In particular, these
estimates of 8 for 1928-1984 and 1953-1984 in table 6a are closer to the
estimates from the comparable daily GARCH-in-mean models in table 5 than
to the regression estimates in table 4, and several are more than two standard
errors above zero.!?

10The daily estimate of B for the standard deviation specification (10a) in table 5 should be
multiplied by the square root of the number of days in the month, ‘/I\_I, = 4.5, to be comparable to
the monthly estimates in table 6a. Thus, the values of 8 for (10a) implied by table 5 are 0.30, 0.25,
and 0.39, for 1928-1984, 1928-1952, and 1953-1984, respectively.
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Table 6a

Comparison of ARIMA with GARCH predictions of stock market volatility and their relations to
monthly CRSP value-weighted excess holding period returns.

GARCH-in-mean estimates using monthly excess holding period returns.?

(Rm,—Rf,)=a+Ba,+e,—0e,_1 (8a)

(Rm,—R/,) =a+Bo?+e —0¢_, (8b)

o} =a+ba? | +cet, +eel, (5¢)
GARCH-in-mean x? test®
equations @ B ax10® b o ¢ 6 for stability

(A) February 1928 to December 1984, T = 683 .

Std. dev. -0.0020 0224 0083 03814 0.058 0.104 -0.073 9.6
(8a), (5¢) (0.0056) (0.132) (0.031) (0.027) (0.044) (0.054) (0.038)
Variance 0.0041 1.693 0085 0.813 0.061 0101 -0.072 9.7
(8b), (5¢) (0.0023) (0.873) (0.031) (0.027) (0.044) (0.054) (0.037)

(B) February 1928 to December 1952, T = 299
Std. dev. 0.0109 0.005 0.070 0.847 0121 0.017 -0.077
(8a), (5¢) (0.0085) (0.171) (0.063) (0.032) (0.079) (0.087) (0.054)
Variance 0.0097 0598 0.073 0.845 0124 0015 -0.080
(8b), (5¢) (0.0041) (1.077) (0.065) (0.033) (0.081) (0.089) (0.053)

(C) January 1953 to December 1984, T = 384
Std. dev. —0.0209 068 0172 0746 -0.021 0.172 -0.053
(8a), (5¢) (0.0132) (0.353) (0.090) (0.076) (0.045) (0.070) (0.049)
Variance —0.0064 7.809 0.167 0751 -0.019 0168 -0.053
(8b), (5¢) (0.0062) (4.198) (0.089) (0.075) (0.044) (0.068) (0.049)

®The statistical procedure used in table 6a is the same as in table 5, except that monthly excess
holding period returns to the CRSP value-weighted portfolio are used instead of the daily excess
holding period returns to the S&P composite portfolio.

®The x? statistic is distributed x2 under the hypothesis that the parameters are equal in the
two subperiods.

Table 6b contains estimates of the regression of the monthly excess holding
period return on the prediction of the monthly standard deviation or variance
from the monthly GARCH-in-mean model in table 6a,

R, ,—R,)=a+Be +e, (10a)
mt ft

and
(R,m—R/,)=a+Bo,2+e,. (10b)

Each observation in these regressions is weighted by the predicted monthly
standard deviation ¢, from table 6a. Table 6b contains estimates of (10a) and
(10b) that are comparable to the estimates of regression (6) in table 4. The
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Table 6b

Comparison of ARIMA with GARCH predictions of stock market volatility and their relations to
monthly CRSP value-weighted excess holding period returns.

Weighted least squares regressions of monthly CRSP value-weighted excess holding period returns
against the predicted standard deviation or variance of stock returns from the monthly GARCH-
in-mean model.?

(R —Ry)=a—Bo+g (10a)
(R —Ry)=a—Bo’+¢, (10b)
Volatility measure @ B S(e) R? 0(12) SR(e)
(A) February 1928 to December 1984, T = 683
Monthly GARCH 0.0035 0.049 00580 00005 209 6.83
Std. dev. (0.0057) (0.133)
(0.0057) (0.133]
Monthly GARCH 0.0049 0349 00580 00005 208 6.81
Variance (0.0025) (0.989)

[0.0024]  [0.973]

(B) February 1928 to December 1952, T = 299

Monthly GARCH 0.0209 -0.233 0.0750  0.0180 129 6.75
Std. dev. (0.0090) (0.179)

[0.0089] [0.179]
Monthly GARCH 0.0121 —0.884 0.0749 ~ 0.0144 134 6.71
Variance (0.0042) (1.152)

[0.0041]  [1.107]

(C) January 1953 to December 1984, T = 384

Monthly GARCH -0.0108 0372 0.0408  0.0035 16.5 5.99
Std. dev. (0.0093) (0.237)

[0.0087] [0.218] -
Monthly GARCH —0.0034 4423 0.0408  0.0044 16.6 5.99
Variance (0.0045) (2.655)

[0.0043] [2.381]

3The statistical procedure used in this table is the same as in table 4, except that the predicted
standard deviation of the CRSP value-weighted return, o,, estimated in table 6a, is used to
standardize each observation, instead of the prediction §,,, from the ARIMA model in table 1,
panel C. Sce the footnotes to tables 4 and 5 for more detailed descriptions of the statistical
procedures.

estimates of the coefficient of predicted volatility 8 are small in relation to
their standard errors in the 1928-1984 sample period. In the 1928-1952
period the estimates of B are negative, and in the 1953-1984 period they are
positive, although none of the estimates is more than two standard errors from
zero. Although these regressions use the GARCH-in-mean estimates of pre-
dicted volatilities, they provide no evidence of a relation between expected risk
premiums and predictable volatility.
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As a final comparison of the regression and GARCH-in-mean models, we
create a series of monthly predicted standard deviations from the daily
GARCH-m -mean model in table 5 by using the fitted GARCH process (5€) to
forecast o2 for each of the N, trading days in the month, conditional on data
available on the first day in the month. We compute the implied monthly
standard deviation by summing the predicted variances within the month and
taking the square root of the sum. We estimate the expected monthly risk
premium from the GARCH-in-mean model by inserting the predicted stan-
dard deviations for the days in the month into (8a) and summing the predicted
daily expected risk premiums.

The GARCH-in-mean prediction of the monthly standard deviation is
similar to the ARIMA prediction §,, (the correlation for 1928-1984 is 0.89
and the means are virtually identical). The GARCH-in-mean and ARIMA
predictions have essentially the same correlation with the actual monthly
standard deviation g¢,,, (0.755 and 0.744), although the sample variance of the
GARCH prediction is about one third larger. Thus, the two models have
similar abilities to predict future volatility.!!

In contrast, the behavior of the expected risk premiums implied by the
regression and GARCH-in-mean models is quite different. Fig. 2a contains a
plot of the monthly expected risk premium from regression (6) with p =1 for
1928-1984 from table 4, and fig. 2b contains a plot of the monthly expected
risk premium from the daily GARCH-in-mean model (8a). The correlation
between the two measures is 0.88 over the full sample period. However, the
predicted risk premiums from the dailly GARCH model have a much higher
mean and variance than the predictions from regression (6). (The scale in fig.
2a is from 0 to 1.0 percent per month, and the scale in fig. 2b is from 0 to 10.0
percent per month.) The higher variability of predicted risk premiums in fig.
2b is caused by two factors: (1) the greater variability of the predicted
standard deviation from the GARCH-in-mean model and (2) the larger
coefficient of the predicted standard deviation, 8, in the GARCH-in-mean
model. The sensitivity of the monthly expected risk premium to a change in
the predicted monthly standard deviation is about fifteen times greater in the
GARCH-in-mean model than in the ARIMA regression model.'> Thus, al-
though the ARIMA and GARCH-in-mean models have similar ability to
predict volatility, the GARCH-in-mean model implies greater variability of

"''The monthly GARCH-in-mean predictor of the standard deviation has a correlation of 0.702
with a,,,.

12The estimate of B for eq. (6) is 0.023 for the 1928-1984 sample period in table 4; the
comparable estimate of 8 is 0.073 for the standard deviation specification of the daily GARCH-
in-mean model in table 5. As discussed in footnote 10, the daily estimate of 8 in table 5 must be
multiplied by \/X’: =45 to make it comparable to the monthly estimate in table 4, so
(4.5)(0.073) /(0.023) = 15.
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Fig. 2a. Predicted percent monthly risk premium to the Standard & Poor’s composite portfolio
from the regression on ARIMA predictions of the standard deviation, 6,,,, in table 4, 1928—84.

(R,,—R;)=a+B6,,

expected risk premiums.!> More puzzling, however, is the fact that the average
of the expected risk premiums is much higher for the GARCH-in-mean model
(1.34 percent per month in fig. 2b versus 0.58 percent per month for the
regression model on ARIMA predictions of the standard deviation in fig. 2a).
The GARCH-in-mean predictions seem too high, since they are almost twice
the average realized premium (see table 3).

The high GARCH-in-mean predictions probably reflect the negative rela-
tion between the unexpected component of volatility and the unexpected
return observed in table 4. The likelihood function used to estimate the
GARCH model assumes that the standardized residuals ¢,/0, have a unit
normal distribution. The daily standardized residuals from the standard devia-
tion specification (8a) and (5e) for the 1928-1984 sample period in table 5
have a mean of —0.038, a standard deviation of 0.999, and a skewness

13The greater variability of the expected risk premiums from the GARCH-in-mean model does
not arise solely because we use forecasts conditional on information for the first day in the month
to construct each month’s forecast. We also constructed monthly forecasts’ by cumulating all of
the one-step-ahead daily forecasts within each month. The variance of these forecasts is 0.000872;
the variance of the monthly forecasts constructed from first-of-the-month estimates is 0.000867.
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Fig. 2b. Predicted percent monthly risk premium to the Standard & Poor’s composite portfolio
from the daily GARCH-in-mean model for the standard deviation, g, in table 5, 1928--84.
(Rm,——Rf,)=a+Ba,—06,,1 (8a)

of=a+bol | +ciet | +cyet Se
1 t—1 1%r-1 2%-2

coefficient of —0.37. The mean and skewness coefficients are reliably different
from zero, implying that the normality assumption underlying the GARCH-
in-mean model is violated. Since o, is predetermined in the GARCH model,
the negative skewness of the standardized residuals reflects the negative
relation between the unexpected component of volatility and the unexpected
excess holding period return.!* This negative skewness probably causes
the negative mean of the standardized residuals, which in turn causes the
GARCH-in-mean predictions of the risk premiums to be too high (e.g., the
average monthly error from the GARCH-in-mean model is —0.90 percent per
month, which is greater than the difference between the average predicted risk
premiums in figs. 2a and 2b). Of course, this argument says that the level of
the predictions in fig. 2b is too high because a is too large; it is also possible
that B, the sensitivity of expected risk premiums to changes in predictable
volatility, is biased.

14Indeed, a WLS regression of the daily errors from (8a), ¢, on the ‘unexpected’ standard
deviation, |, | — @, yields a coefficient of —0.375 with a r-statistic of —34.1. This regression is
similar to the multiple regression estimates of eq. (7) in table 4.



24 K.R. French et al., Expected stock returns and volatility

It is well known in the econometrics literature that full information maxi-
mum likelihood (FIML) estimators, such as the GARCH models, are more
efficient than instrumental variables estimators, such as the two-step regression
procedures, although both estimators are consistent if the model is correctly
specified. On the other hand, FIML estimators are generaily more sensitive to
model misspecification than instrumental variables estimators. Hausman (1978)
proposes a class of model specification tests based on this observation. Thus,
one interpretation of the apparent differences between the GARCH-in-mean
and the regression results is that the statistical specification underlying these
models is not adequate. A formal test such as Hausman’s is difficult because
the GARCH and ARIMA models for volatility are not nested. It is likely that
neither model is entirely adequate for predicting expected risk premiums.

4. Analysis of the results

4.1. Interpreting the estimated coefficients

Merton (1980) notes that in a model of capital market equilibrium where a
‘representative investor’ has constant relative risk aversion, there are conditions
under which the expected market risk premium will be approximately propor-
tional to the ex ante variance of the market return,'®

Er—l(Rmr—th) = Cémzt- (11)

The parameter C in (11) is the representative investor’s coefficient of relative
risk aversion. For example, the logarithmic utility function for wealth, U(W)
= log W, implies C=1. If we ignore the intercepts (a), the coefficient of
relative risk aversion equals 8 in both the regression model (6) for p =2 and
in the GARCH-in-mean model (8b).

The estimate of relative risk aversion () from the regression model in table
4 is 0.34 for the overall period, but the large standard error (0.90) does not
allow us reliably to distinguish the coefficient from zero. The corresponding
GARCH-in-mean estimate of 8 in table 5 is 2.41, which is about 2.75 times its
estimated standard error. Both of these point estimates appear economically
reasonable, however, and they are well within the range of estimates produced
by other studies using different approaches. For example, Friend and Blume
(1975) estimate relative risk aversion to be about 2.0, Hansen and Singleton
(1982) obtain estimates between — 1.6 and 1.6, and Brown and Gibbons (1985)
obtain estimates between 0.1 and 7.3. Estimates of relative risk aversion can

15This approximation will hold in Merton’s (1973) intertemporal model if (a) the partial
derivative of the representative investor’s consumption with respect to wealth is much larger than
the partial derivative with respect to any state variable or (b) the variance of the change in wealth
is much larger than the variance of the change in any state variable.
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also be obtained from the standard deviation specifications in ) for p=1
and in (8a) by dividing the B estimates by an average value of g,. The
estimates obtained in this fashion are similar to those obtained from the
variance specifications.

As noted above, a negative ex post relation between excess holding period
returns and the unexpected component of volatility is consistent with a
positive ex ante relation between risk premiums and volatility. The negative
coefficient in the ex post relation is also likely to be larger in absolute value
than the positive coefficient in the ex ante relation, especially when volatilities,
and thus expected future risk premiums, are highly autocorrelated. This can be
seen using a model developed by Poterba and Summers (1986). They model
volatility as a first-order autoregressive process to illustrate this effect. Let p
denote the first-order autocorrelation of the variance. Assume that expected
real dividends grow at a constant rate g, that the real risk-free rate is a
constant r, and that the expected risk premium in period ¢ + 7, conditional o’
equals BE(o?2|0?). Then, as Poterba and Summers show, the percentage
change in stock price arising from a change in volatility is approximately

dlog P
do?

= —[1/(1+ 7+ Bo? - p(1+4))] . (12)

The quantity in brackets in (12) exceeds unity and is increasing in p. The value
of the derivative is sensitive to the choice of p, but an example can illustrate
the potential magnitude of the ex post relation between returns and volatility
in comparison with the ex ante relation. Assume that (i) the monthly variance
o equals 0.002, (ii) the real risk-free rate equals 0.035 percent per month, and
(iii) real dividends are expected to grow at 0.087 percent per month. (The last
two values are the same as those used by Poterba and Summers.) The estimate
of the coefficient of the unpredicted component of volatility for 1928-1984 in
table 4 is —4.438, which implies that 8#=205 if p=0.5 and B8=1.07 if
p=0.7. Given these hypothetical magnitudes and the estimated standard
errors in table 4, it is not surprising that an ex post negative relation is
detected more strongly in the data than is an ex ante positive relation.!6

4.2. The effect of leverage

Many of the firms whose common stocks constitute the indexes used in
computing the market risk premiums are levered. Although the observed

'®Poterba and Summers estimate that the elasticity of the stock price with respect to the
variance o2 is about ten times higher for the IMA(1, 3) model in table 1, panel C, than for their
AR(1) model. This means that the implied values of 8 would be correspondingly smaller, given
our estimates of y. In an earlier version of this paper we presented estimates of B that used a
constraint similar to (12). The constrained estimates of 8 were small, but several standard errors
from zero, reflecting the precision of the estimates of y.
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strong negative relation between excess holding period returns and unexpected
volatility is consistent with a positive ex ante relation between risk premiums
and volatility at the firm level, Black (1976) and Christie (1982) suggest
another interpretation. They note that leverage can induce a negative ex post
relation between returns and volatility for common stocks, even if the volatil-
ity and the expected return for the total firm are constant.

Suppose a firm’s volatility and expected return are constant. A decline in
stock prices (in relation to bond prices) increases leverage, increases the
expected return on the stock, and increases the variance of the stock’s return.
As Black (1976) and Christie (1982) demonstrate, however, if this is the sole
reason for the relation between stock returns and volatility, then a regression
of the percentage change in standard deviation on the percentage change in
stock price should have a coefficient (elasticity) greater than —1.0.

An elasticity of —1.0 is an extreme lower bound. Consider a firm with
riskless debt. The elasticity of the stock return standard deviation with respect
to the stock price is —D/V, where D is the value of the debt and V is the
value of the firm. The lower bound of —1.0 occurs only when the stock has no
value. Evidence in Taggart (1986) suggests that the fraction of debt in the
capital structure of large U.S. corporations was below 45 percent throughout
1926-1979, so the leverage hypothesis should not generate an elasticity below
-0.45.

To test the hypothesis that the relation between realized risk premiums and
unexpected volatility is caused only by leverage, we regress the percentage
change in the estimated standard deviation of the S&P composite portfolio
against the continuously compounded return on that portfolio,

In(e,,/0,,_1) = ay+ a;In(1 + R,,-,,) +¢,. (13)

The estimated elasticity a; is —1.69, with a standard error of 0.25, for
1928-1984. The estimates for 1928-1952 and 1953-1984 are —1.63 and
—1.89, with standard errors of 0.32 and 0.45. The estimated elasticity is
reliably less than —1.0. Black (1976) obtains a similar result using a sample of
thirty stocks from May 1964 to December 1975. Our longer sample period and
more inclusive market index support Black’s conclusion: leverage is probably
not the sole explanation for the negative relation between stock returns and
volatility.

4.3. Extensions

This paper examines the time series relation between the risk of a stock
market portfolio and the portfolio’s expected risk premium. The tests above
use the predicted volatility of stock returns as the measure of risk. We have
also tried to estimate this relation using several other measures of risk,
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including the predicted variability of the real interest rate, the predicted
covariance between the stock market return and consumption, and the predict-
ed variability of decile portfolios formed on the basis of firm size. All of these
variables involve monthly data, so none is estimated as precisely as our
measure of volatility that uses daily data. Perhaps because of this estimation
problem, none of these risk measures produces a stronger relation between risk
and return than we observe using the volatility of stock returns based on daily
data.

We have also tried to improve the tests by including other predictive
variables in the models. Fama and Schwert (1977) show that the nominal
interest rate can be used to predict stock returns. Keim and Stambaugh (1985)
use (i) the yield spread between long-term low-grade corporate bonds and
short-term Treasury bills, (ii) the level of the S& P composite index in relation
to its average level over the previous 45 years, and (iii) the average share price
of the firms in the smallest quintile of NYSE firms to predict stock returns.
Including these variables in the models does not have much impact on our
estimates of the time series relation between risk and return.

5. Conclusions

We find evidence of a positive relation between the expected risk premium
on common stocks and the predictable level of volatility. The variability of
realized stock returns is so large, however, that it is difficult to discriminate
among alternate specifications of this relation. We present several estimates of
the relation between the expected risk premium and the predicted volatility of
NYSE common stocks over the 1928-1984 period.

There is also a strong negative relation between the unpredictable compo-
nent of stock market volatility and excess holding period returns. If expected
risk premiums are positively related to predictable volatility, then a positive
unexpected change in volatility (and an upward revision in predicted volatil-
ity) increases future expected risk premiums and lowers current stock prices.
The magnitude of the negative relation between contemporaneous returns and
changes in volatility is too large to be attributed solely to the effects of
leverage discussed by Black (1976) and Christie (1982), so we interpret this
negative relation as evidence of a positive relation between expected risk
premiums and ex ante volatility.

The estimates of volatility and expected risk premiums in this paper suggest
that these variables have fluctuated widely over the past sixty years. Although
we are unwilling to choose a particular model for the relation between
expected risk premiums and predictable movements in volatility, it seems
obvious that future work in this area is called for. Other variables that could
affect expected risk premiums should be integrated into this analysis, as well as
different measures of time-varying risk. We have done some work along these
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lines, but the results are so ambiguous — probably because the measures of
risk and other factors that might affect expected risk premiums are less precise
than the volatility measures reported above — that they are not worth report-
ing in detail.
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