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Abstract

Recent 3ndings of nonlinearities in 3nancial assets can be the product of contamination pro-
duced by shifts in the distribution of the data. Using the BDS and Kaplan tests it is shown that,
some of the nonlinearities found in foreign exchange rate returns, can be the product of shifts
in variance while other do not. Also, the behavior of the volatility is studied, showing that the
ARFIMA modeling is able to capture long memory, but, depending on the proxy used for the
volatility, is not always able to capture all the nonlinearities of the data
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to investigate whether the foreign exchange rates behave
nonlinear. At the same time some methodology issues in detecting nonlinear behavior
will be discussed. Simulating studies [1–6] have shown that the BDS and the Kaplan
tests have power against a large class of alternatives, so they will be used in this paper.
Also, these tests have been widely applied to investigate the behavior of 3nancial time
series as in Refs. [1,7], most of them yielding to the acceptance of nonlinearity in
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3nancial time series. There are two main explanations for the nonlinearity of 3nancial
returns. Concretely, one explanation for the nonlinear dependence in exchange rates is
that they come from a deterministic process that looks random (e.g. chaotic process).
A second explanation is that exchange rates changes are nonlinear stochastic func-
tions of their own past. In this sense, Hinich and Patterson [8] show that stock prices
are realizations of nonlinear stationary stochastic processes, also Hsieh [7] 3nds that
rejections of linearity in stock returns are due to neglected conditional heteroskedasticity
and cannot be attributed to structural changes.
Following the second explanation, some of the models used for asset prices and

volatility assume that the unconditional distribution of assets rates is constant over
time, which means that returns are stationary. This is the case of the autoregressive
conditional heteroskedasticity models or ARCH processes.
In this investigation we will use a modi3cation of the test proposed by Lima [9] that

attempts to discriminate the 3ndings of nonlinearity caused for intrinsic mechanisms,
from those due to nonstationarities in the data. We will show that some of the 3ndings
of nonlinearity are due to possible shifts in distribution, that is nonstationarities of
exchange rates while others are not.
Also, we use this methodology to study the behavior of the volatility using the

ARFIMA models that are able to capture the long memory of this variable.

2. Testing nonlinearity

Among the tests of nonlinearities, the BDS and the Kaplan tests have been proven
as very powerful and it will be used to test nonlinearities in exchange rate series in
our paper.

2.1. The BDS test

The Brock, Dechert and Scheinkman (BDS) [10] is a test for independence based
on the estimation of the correlation integral at various dimensions. It has power against
virtually all types of linear and nonlinear departures so it does not currently provides
a direct test either for nonlinearity or for chaos.
The BDS follows asymptotically a normal distribution with zero mean and unit

variance under the null hypothesis of independence. Hence the hypothesis of non-
linearity and chaos are nested within the alternative hypothesis, which includes both
non-independent linear and non-independent nonlinear processes.
Only when all the linear possibilities have been removed from the data by pre3ltering,

the test can be interpreted as a test of nonlinearities. The 3ltering can be done 3tting
the data with the proper ARMA [11] model, because the residuals of the model should
be in principle linear independent, and any dependence found in the residuals must be
nonlinear.
The BDS uses the correlation function that has two arguments, the embedding dimen-

sion m and the size of dimensional distance �. The proper choice of the two parameters
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is studied in detail in Kanzler [12]. We will use his recommendations and his tables
of the BDS distribution to test the results.
The BDS statistic for an embedding dimension m and dimensional distance � can be

estimated consistently on a sample of T observations by

wm;T (�) =
√
T − m+ 1

Cm;T (�)C1;T−m+1(�)m

�m;T (�)
; (1)

where the correlation integral is calculated as the average of all products of m histories:

Cm;T (�) =
2

(T − m+ 1)(T − m)
T∑
s=m

T∑
t=s+1

m−1∏
j=0

I�(xs−j; xt−j) ; (2)

where I� is the Heaviside function and the estimated variance �2m;T (�) is calculated by

�2m;T (�) = 4


km + 2

m−1∑
j=1

km−j[C1;T (�)]2j

+(m− 1)2[C1;T (�)]2m − m2k[C1;T (�)]2m−2


 ; (3)

where

kT (�) =
2

T (T − 1)(T − 2)

T∑
t=1

T∑
s=t+1

T∑
r=s+1

[I�(xt ; xs)I�(xs; xr) + I�(xt ; xr)I�(xr; xs) + I�(xs; xt)I�(xt ; xr)] (4)

The BDS statistic follows asymptotically the standard normal distribution:

lim
n→∞wm;T (�) ∼ N(0; 1) : (5)

As mentioned before the null hypothesis of the BDS test is that the data are i.i.d., thus
the rejection of the null with ARMA model pre3ltered data means that the data are not
independent and identically distributed, so (as pointed out in [9]) any change in the data
distribution will generate the rejection of linearity. In order to test how sensitive is this
test to nonstationarities due to possible shifts in the unconditional variance over time,
BDS will be calculated for a data set of 3000 observations with two diKerent variances,
created with three random samples of 1000 observations drawn from N(0; 1); N(0; 2),
and N(0; 1) distributions respectively. The BDS is calculated beginning with a data
set of 100 observations and adding 10 data to the set of observations under analysis.
Fig. 1 shows the evolution of the BDS and the con3dence intervals at the 5% signif-
icance level. It can be observed that before the data set has reach 1000 observations,
the BDS does not allow the rejection of the null, but as the variance change, the BDS
jumps out the con3dence intervals and the null is rejected for the rest of the data sets.
That means that shifts in the variance produce a jump in the result of the BDS test,
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Fig. 1. BDS statistics for two-variance data set. Dashed lines represent the 95% con3dence intervals.

Table 1
BDS test for a stochastic time series with 3000 observations: 1–1000 IID N (0; 1); 1001–2000 IID N (0; 2);
2001–3000 IID N (0; 1)

N 1–500 1–1000 1–1500 1–2000 1–2500 1–3000
m = 4 −0:657 −1:940 13:216∗ 13:216∗ 15:062∗ 16:783∗
N 1–500 500–1000 1000–1500 1500–2000 2000–2500 2500–3000
m = 4 −0:657 −1:171 0.653 0.014 0.627 −1:720

∗Statistical signi3cance at 5%.

yielding to the rejection of the null hypothesis. But if sub-samples of the same variance
are taken, the null hypothesis cannot be rejected as shown in Table 1.

2.2. The Kaplan test

The Kaplan test [13,14] was initially formulated for the detection of determinism in
the underlying dynamics of a time series, though thereafter it has been used to test the
hypothesis of stochastic or deterministic nonlinearities in the generating process of a
time series (see Refs. [4–6]).
This test is based on the continuity properties of the trajectories described by a

deterministic dynamical system in the phase space: when there is a deterministic law
governing the evolution of the state variable, then if two points are very close together
in the phase space, their images (resulting from the iteration of the system) will be
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close also; on the contrary, if the underlying system is stochastic, the images of two
nearby points could be very separate in the phase space, since in a stochastic process
a single point may be followed by very diKerent images.
The Kaplan test is related with the average distance between two points and their

respective images. More formally stated, the procedure is as follows. Using the Tak-
ens theorem and choosing properly the time delay � and the embedding dimension
m, it is possible to de3ne the vector xt = (xt ; xt−�; xt−2�; : : : ; xt−(m−1)�), to reconstruct
the behavior of the (unknown) deterministic dynamical system generating the time se-
ries. In such a case, there is a continuous recursive function xt+p = f(xt), where xt+p
is the image of the m-dimensional point xt . For a given choice of t, p and m the
distance between two points, �ij = |xi − xj|, and the distance between their images
�i; j = |xi+p − xj+p| for all pairs of time subscripts (i; j) are calculated. The average of
the values of �i; j over those (i; j) satisfying �ij ¡ r is de3ned to be E(r). The Kaplan’s
test statistic K is the limit of E(r) as t → 0. For a perfect deterministic system with
continuous f , one expects to have K → 0 as r → 0 (that is, a point xi may have
only an image). On the other hand, if the underlying system is a stochastic process
K will have a strictly positive lower bound (that is, a point xi may have diKerent
images).
Estimations of K can be obtained through the linear regression:

�ij = K + ��ij + uij ; (6)

where u is an error term since the estimated constant K can be interpreted as the
average value of �ij, E(r), when r = 0. There are, however, some limitations when
one uses this test to detect determinism. These limitations come from the fact that
when a system is chaotic, although deterministic, there will be a positive inferior level
for the estimated K that will be related with the sensitive dependence on the initial
conditions (other factors, as measurement errors, may also make possible a positive
K value to appear). Thus, to test the hypothesis of determinism, one has to estimate
the K statistic for the original series and to compare it with the one obtained un-
der the alternative hypothesis of a purely stochastic process. Unfortunately, and due
to the multitude of possible stochastic processes that are included in the alternative
hypothesis, the Kaplan test cannot be used to verify the hypothesis of determinism.
Nevertheless, it is possible to use the Kaplan statistic to test the less restrictive hy-
pothesis of linearity against the alternative of nonlinearity (deterministic or stochastic).
In order to do that, the statistics from an adequately large number of linear processes
that plausibly might have produced the data have to be calculated, and compared with
the estimated K statistic obtained from the original time series. This procedure in-
volves the production of general linear stochastic process surrogates for the original
time series. Kaplan uses surrogate series with the same histogram, amplitude and au-
tocorrelation function as the original time series. With these surrogate series one can
estimate the expected values for the K statistic under the hypothesis of linearity (KS).
This hypothesis of linearity is rejected if the value of the statistic from the surrogates is
never small enough relative to the value of the statistic computed from the original data
(K ¡KS).
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Table 2
Kaplan test for a stochastic time series with 3000 observations: 1–1000 IID N (0; 1); 1001–2000 IID N (0; 2);
2001–3000 IID N (0; 1)

N 1–500 1–1000 1–1500 1–2000 1–2500 1–3000

KS 1.10 1.15 1.53 1.77 1.66 1.58
KSmin 1.11 1.15 1.53 1.77 1.66 1.58
Ktest 1.13 1.16 1:52∗ 1:76∗ 1:65∗ 1:56∗

N 1–500 500–1000 1000–1500 1500–2000 2000–2500 2500–3000

KS 1.10 1.14 2.16 2.35 1.15 1.11
KSmin 1.11 1.14 2.16 2.36 1.16 1.11
Ktest 1.13 1.17 2.24 2.46 1.18 1.17
Sample period N ; embedding dimension m = 1; time delay for the reconstruction � = 1; time delay for

the calculation of the image p= 1; Ksmean: K statistic mean for the 20 surrogate series; Ksstd: K statistic
standard deviation for the 20 surrogate series; Ksmin: minimum K statistic from the 20 surrogate series; KS:
Ksmean− 2Ksstd; Ktest: K statistic for the original time series. The linear null hypothesis is rejected when
Ktest ¡KS and=or Ktest ¡Ksmin(∗).

The distribution of this statistic is not tabulated. However, Kaplan proposes two
methods to compute the minimum value of KS consistent with the hypothesis of lin-
earity. The 3rst is the minimum value of K estimated from a 3nite sample of surro-
gate time series, and impute that to the population of surrogates (Ksmin). The second
involves the calculation of the mean and standard error of the value of K from
the 3nite sample of surrogates and then subtract a multiple (conventionally 2) of
the standard error from the mean to get an estimate of the population minimum.
In our applications we use 20 surrogate time series using the previous procedure
proposed by Kaplan (linear stochastic time series with the same histogram, ampli-
tude and autocorrelation function as the original time series). The values of the K
statistic are calculated by the constant estimate in regression (6) using all the points
satisfying �ij ¡ r = 1:5�, where � is the standard deviation of the original time
series.
As the BDS test, the Kaplan one may also be used to detect nonstationarities due

to shifts in the unconditional variance over time. Table 2 shows the results of this test
when it is applied to the same time series used in the previous section drawn from the
three random samples N(0; 1); N(0; 2) and N(0; 1). It can be observed that linearity is
rejected when the data set has reached 1000 observations (with the 3rst change in the
distribution of the stochastic generation process). The results in Table 2 also show that
the Kaplan test accept the hypothesis of stationarity when applied on each sub-sample,
although to the absolute value of the K statistic increase with the volatility of the time
series.
We can summarize graphically the results of the Kaplan test by using the statistic

min{Ks;Ksmin} − Ktest. Thus, the null hypothesis of linearity will be rejected when
min{Ks;Ksmin} − Ktest ¿ 0. The results for the previous two-variance series are rep-
resented in Fig. 2.
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Fig. 2. Kaplan test for two-variance time series. The K-statistic is calculated for the sample period from 1
to N with steps of 10 observations (m = 1; � = 1; p = 1).

3. Application to foreign exchange rate returns

The data set under study consists on daily prices of three foreign currencies in term
of US dollars. The three currencies are: German Mark (DM), Japanese Yen (JY) and
British Pound (BP) that are particularly attractive as they represent the most actively
traded and quoted foreign currencies. All the data set have a total of 2895 observations
from 2 January of 1990 to 31 May 2001. The returns are calculated by taking the
logarithm diKerences between successive trading days.
In order to use the BDS and the Kaplan as tests for nonlinearities in returns, all the

linear possibilities should have been removed from the data by pre3ltering. So prior to
the application of the test all the series were detrended and passed by a standard linear
3lter that consists of removing the day-of-the-week and month-of-the-year eKects, also
an AR 3lter were used to remove linear correlations.
Table 3 shows the results of the application of the BDS to these 3ltered return

time series for embedding dimensions from 2 to 5 and a value of � of 1.5 units of
the standard deviation of the data. In Table 4 the results of the Kaplan test can be
observed. For all the cases the BDS and the Kaplan tests yield to the rejection of
linearity of the time series. These results does not diKer from the results obtained
before with exchange rate time series [15].
Now, to test the eKects of the shifts of distribution, the stability analysis of both

tests will be carried up for the exchange rate series. Fig. 3 shows the results for m=2
and �= 1:5 standard deviation. It can be observed that for the DM and BP short after
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Table 3
BDS test for the diKerent currencies

m �=� DM JY BP

2 1.5 5.97∗ 5.99∗ 7.98∗
3 1.5 7.00∗ 6.77∗ 9.99∗
4 1.5 7.59∗ 7.90∗ 11.18∗
5 1.5 8.21∗ 9.87∗ 12.49∗

∗Statistical signi3cance at 5%.

Table 4
Kaplan test for the diKerent currencies

DM 1 2 3 4 5 6 7 8 9 10

KS 0.715 0.703 0.692 0.661 0.673 0.622 0.643 0.573 0.568 0.494
Ksmin 0.717 0.700 0.701 0.665 0.684 0.626 0.649 0.563 0.592 0.532
Ktest 0:703∗ 0:657∗ 0:618∗ 0:586∗ 0:524∗ 0:495∗ 0:514∗ 0:536∗ 0:531∗ 0.569

BP 1 2 3 4 5 6 7 8 9 10

KS 0.614 0.608 0.589 0.574 0.560 0.555 0.525 0.488 0.463 0.404
Ksmin 0.615 0.605 0.592 0.578 0.563 0.556 0.550 0.461 0.484 0.411
Ktest 0:603∗ 0:538∗ 0:494∗ 0:441∗ 0:394∗ 0:368∗ 0:343∗ 0:353∗ 0:309∗ 0:358∗

JY 1 2 3 4 5 6 7 8 9 10

KS 0.762 0.745 0.737 0.718 0.672 0.648 0.694 0.638 0.525 0.548
Ksmin 0.761 0.744 0.744 0.717 0.681 0.660 0.674 0.646 0.520 0.528
Ktest 0:736∗ 0:674∗ 0:607∗ 0:551∗ 0:552∗ 0:548∗ 0:489∗ 0:430∗ 0:452∗ 0:524∗

∗Statistical signi3cance at 5%.

Fig. 3. BDS statistics of the exchange rate returns. Dashed lines represent the 95% con3dence intervals.
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Fig. 4. Kaplan test for the exchange rate returns time series. The K-statistic is calculated for the sample
period from 100 to N with steps of 50 observations (m = 2; � = 1; p = 1). The null hypothesis of linearity
is rejected when min{KS;Ksmin} − Ktest ¿ 0.

initialization the sample path of the test statistic crosses the 95% con3dence interval,
but for the JY until the data set has reach 1310 observations the BDS keeps under
the con3dence intervals, hence the null would not be rejected at the 5% signi3cance
level, and jumps from there outside of the interval. The same result about linearity is
achieved when the Kaplan test is used as it can be seen in Fig. 4.
These results for the JY case may be revealing a change in conditional variance.

The 1310 observation corresponds to February 1995, when the economic weaknesses
of Japan led to a sharp realignment of yen–dollar exchange rates. At the beginning
of 1995 the US and Japanese central banks and ministries of 3nance co-operated, the
Bank of Japan lowered its interest rate, weaken the yen, the discount rate was cut from
1.75 in March 1995 to 0.50 per cent in August. From April 1995 to May 1997 the
yen declined nearly 40 per cent. The BDS seem to be very sensitive to this fact.

4. Application to foreign exchange rate volatility

The study of the behavior of the volatility requires other kind of approximation. The
squared of returns and the log of the squared returns can be used as a proxy of the
volatility, and it is well known [16–21] that both exhibit long-range correlations with
persistence. Families of models that exhibit this kind of behavior are the ARFIMA
(p; d; q) models:

"(L)(1− L)dxt = $(L)ut ut v i:i:d:(0; �2); (7)
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Table 5
Results from the ARFIMA estimation

r2t

DM BP JY

Model (1; d; 1) (1; d; 1) (1; d; 1)

d 0.32 (5:83)∗ 0.30 (6:45)∗ 0.31 (5:89)∗
AR1 0.47 (8:71)∗ 0.30 (3:04)∗ 0.63 (9:16)∗
MA1 −0:68 − (11:5)∗ −0:52 − (4:24)∗ −0:76(−13:1)∗

ln r2t

DM BP JY

Model (1; d; 1) (1; d; 1) (1; d; 1)

d 0.29 (5:90)∗ 0.28 (6:33)∗ 0.26 (5:92)∗
AR1 0.39 (6:73)∗ 0.36 (5:69)∗ 0.33 (4:48)∗
MA1 −0:62 (−8:91)∗ −0:58 (−7:80)∗ −0:54 (−6:17)∗

∗t-values are in parentheses, statistical signi3cance at 5%.

where L is the lag operator, d is the fractional diKerencing parameter and all the roots
of "(L) and $(L) lie outside the unit circle. For any real number d, the fractional
diKerence operator (1− L)d is de3ned through a binomial expansion

(1− L)d = 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + · · · (8)

and for 0:5¡d¡ 0:5 the process is stationary.
The estimation requires writing the spectral density function f(w) in terms of the

parameter of the model and calculates the autocovariance function at lag k

&(k) =
1
2'

∫ 2'

0
f(w)eiwk dw: (9)

Then the parameters of the model are estimated by the exact maximum likelihood
method [22,23]. This method uses all the information, long and short term, of the series
and allows the calculation of all the parameters of the model. It requires the correct
speci3cation of the ARMA structure to obtain the 3nal ARFIMA speci3cation. In this
investigation we have estimated all the possible models for p=0; 1; 2; 3 and q=0; 1; 2; 3:
The best model have been selected using the Akaike Information Citerion (AIC), the
Bayesian Information Citerion (BIC) as well as the likelihood-based criteria. Table 5
shows the estimation results for the chosen model for both the squared returns and the
log-squared returns.
In this case, the BDS and the Kaplan tests will be used as a test of misspeci3cation

of the ARFIMA model for the volatility. Using the detrended Ructuation analysis (DFA
[24,25]) it is possible to verify that the residuals of the estimated models do not exhibit
long-range correlations as shown in Table 6, if there is no correlation or only short
correlation DFA statistics is 0.5, but if there is long-range power-law correlations then
DFA statistics is diKerent form 0.5.
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Table 6
Results for de DFA statistics over the residuals of the ARFIMA models

r2t ln r2t

DM BP JY DM BP JY

DFA 0.51 0.51 0.50 0.51 0.50 0.51

Fig. 5. BDS of the model for the squared returns. Dashed lines represent the 95% con3dence intervals.

Running the BDS and the Kaplan tests over the residual data, two diKerent behaviors
for the squared returns and the log-squared returns can be observed. In the 3rst case
shown in Fig. 5 the sample path of the test statistic is similar to the one obtained
for returns, that is, for the BP and DM the BDS statistics jumps quickly out of 95%
con3dence interval, where the null is rejected, revealing the existence of non-ARFIMA
nonlinearities, not captured by the model. But the JY is inside the con3dence interval
until the data set has 1310 observations, as it is explained before, this behavior can be
a sign of a jump in conditional variance.
The behavior of the residuals of the log-squared returns is very diKerent, as shown

in Fig. 6.
The BDS test keeps inside the con3dence interval in all the three cases, meaning that
the ARFIMA model is able to capture both long-memory and nonlinearities for this
series of volatility.
The Kaplan test results for the residuals of the ARFIMA models have not any

signi3cative diKerence with the BDS test (Figs. 7 and 8), so the same conclusions
can be applied (There are diKerences only in the case of the DM log-squared returns,
because of the Kaplan test rejects the null hypothesis of linearity).
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Fig. 6. BDS of the model for the log-squared returns. Dashed lines represent the 95% con3dence intervals.

Fig. 7. Kaplan test for exchange rate volatility time series (residuals squared returns). The K-statistic is
calculated for the sample period from 100 to N with steps of 50 observations (m = 2; � = 1; p = 1). The
linear null hypothesis is rejected when min{KS;Ksmin} − Ktest ¿ 0.
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Fig. 8. Kaplan test for exchange rate volatility time series (residuals log squared returns). The K-statistic is
calculated for the sample period from 100 to N with steps of 50 observations (m = 2; � = 1; p = 1). The
linear null hypothesis is rejected when min{KS;Ksmin} − Ktest ¿ 0.

5. Conclusions

Recent research has put forward the idea that both 3nancial assets returns, and
volatilities are nonlinear processes. This paper investigates the impact of nonstationari-
ties on the testing of nonlinearities. For returns time series nonlinearities are found for
the exchange rates DM=$ and BP=$, but for the JY=$ a possible shift in conditional
variance yields to a rejection of nonlinearity for the hole data set. The behavior of
volatility is studied through the behavior of the residuals of the ARFIMA estimated
model. Two diKerent behavior are found depending on the proxy of volatility used.
For the residuals of the squared returns, similar behavior as the returns time series is
found, that means that the ARFIMA model is not able to capture the nonlinearities
of the time series under study. However for the log-squared returns the residuals of
the ARFIMA model seems to be i.i.d. which means that this kind of model is able to
capture, both long-memory and nonlinearities of the series under study.
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