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Abstract 

We study the volatility of the S&P500 stock index from 1984 to 1996 and find that the volatil- 
ity distribution can be very well described by a log-normal function. Further, using detrended 
fluctuation analysis we show that the volatility is power-law correlated with Hurst exponent 
~ ~ 0.9. 
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The volatility is a measure of  the mean fluctuation of  a market price over a certain 

time interval T. The volatility is of  practical importance since it quantifies the risk 

related to assets [1]. Unlike price changes that are correlated only on very short time 

scales [2] (a few minutes), the absolute values of  price changes (which are closely 
related to the volatility) show correlations on time scales up to many years [ 3 -5 ] .  

Here we study in detail the volatility of  the S&P500 index of  the New York stock 

exchange, which represents the stocks of  the 500 largest US companies. Our study 
is based on a data set over 13 yr from January 1984 to December 1996 reported 

at least every minute (these data extend by 7 yr the data set previously analyzed in 
Refs. [ 6 - 8 ] ) .  

We calculate the logarithmic increments 

G(t )  = lOgeZ(t  + A t )  - l o g e Z ( t )  , (1) 

where Z ( t )  denotes the index at time t and At  is the time lag; G(t )  is the relative price 

change A Z / Z  in the limit At  ~ O. Here we set At  -- 30min,  well above the correlation 
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Fig. I. (a) The S&P500 index Z(t)  for 1 Jan. 1984-31 Dec. 1996. Note the large fluctuations, such as that 
on 19 Oct. 1987 ("black Monday"). (b) Volatility vr(t)  with T = 8190 rain (1 mon) and time lag 30min. 
The precursors of the 1987 crash are indicated by an arrow. 

time of the price increments; we obtain similar results for other choices of At  (larger 

than the correlation time). 
Over the day, the market activity shows a strong "U-shape" dependence with high 

activity in the morning and in the afternoon and much lower activity over noon. To 

remove artificial correlations resulting from this intra-day pattern of the volatility [ 9 -  

12], we analyze the normalized function 

g(t )  - G ( t ) / A ( t ) ,  (2) 

where A ( t )  is the mean value of IG(t)l at the same time of the day averaged over all 

days of the data set. 
We obtain the volatility at a given time by averaging Ig(t)l over a time window 

T = n At  with some integer n, 

1 t + n - -  1 

Ig(t')l. (3) 
n t t - t  

Fig. 1 shows (a) the S&P500 index and (b) the signal vr ( t )  for a long averaging 
window T = 8190min (about l month). The volatility fluctuates strongly showing 
a marked maximum for the 1987 crash. Generally periods of high volatility are not 
independent but tend to "cluster". This clustering is especially marked around the 1987 
crash, which is accompanied by precursors (possibly related to the oscillatory patterns 
postulated in Ref. [13]). Clustering occurs also in other periods (e.g. in the second half 
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Fig. 2. (a) The volatility distribution for different window sizes T in scaled form, x/-fiexp(a + p/4)P(vr) 
as a function of (ln(vl') - a)/x/~,  where a and p are the mean and the width on a logarithmic scale. By 
the scaling, all curves collapse to the log-normal form with a = 0 and p = -1,  exp(-(lnx) 2) (dotted line). 
(b) Comparison of the best log-normal and Gaussian fits for the 300min data. 

o f  1990), while there are extended periods where the volatili ty remains at a rather low 

level (e.g. the years of  1985 and 1993). 

Fig. 2a shows the scaled probabili ty distribution P ( v r )  for several values of  T. The 

data for different averaging windows collapse to one curve. Remarkably,  the scaling 

form is log-normal, not Gaussian. In the limit o f  very long averaging times, one expects 

that P ( v r )  becomes Gaussian, since the central limit theorem holds also for correlated 

series [14], with a slower convergence than for non-correlated processes [15,16]. For 

the times considered here, however, a log-normal fits the data better than a Gaussian, 

as is evident in Fig. 2b which compares the best log-normal fit with the best Gaussian 

fit for data averaged over a 300min window. 

The correlations found in Fig. lb  can be accurately quantified by detrended fluctua- 

tion analysis [17]. The analysis reveals power-law behavior independent o f  the T value 
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Fig. 3. The fluctuation F(t) of volatility Vr(t) with T -- 120, 600, and 2100rain, calculated using detrended 
fluctuation analysis (DFA) [15]. To implement the DFA method, we integrate vr(t) once; then we determine 
the fluctuations F(t) of the integrated signal around the best linear fit in a time window of size t. The lines 
are the best power-law fits with exponents ~ = 0.91,0.89, and 0.91. 

chosen (Fig. 3) with an exponent ~ ~- 0.9 in agreement with the value found for the 

absolute price increments [5]. 

To account for the time dependence o f  the volatility and its correlations, ARCH 

[18], GARCH [19] models and related approaches [20] have been developed, which 

assume that the volatility depends on time and on the past evolution of  the index. It 

may be worthwhile to test models also for the volatility distribution P(vr) .  

In summary, we have found that the probability distribution of  the S&P500 volatility 

can be well described by a log-normal function and that the volatility shows power-law 

correlations with Hurst exponent ~ ~ 0.9. The log-normal shape o f  the distribution is 

consistent with a multiplicative process [21] for the volatility [22]. However, a mul- 

tiplicative behavior would be surprising, because efficient market theories [2] assume 

that the price changes, G(t) ,  are caused by incoming new informations about an asset. 

Since such information-induced price changes are additive in G(t) ,  they should not 

give rise to multiplicative behavior of  the volatility. 
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