
Journal of Financial Economics 50 (1998) 125—150

The relation between implied and realized volatility1

B.J. Christensen!, N.R. Prabhala",*
! School of Economics and Management, University of Aarhus, DK-8000 Aarhus C, Denmark

" Yale School of Management, Yale University, New Haven, CT 06511, USA

Received 10 October 1996; received in revised form 29 December 1997

Abstract

Previous research finds the volatility implied by S&P 100 index option prices to be
a biased and inefficient forecast of future volatility and to contain little or no incremental
information beyond that in past realized volatility. In contrast, we find that implied
volatility outperforms past volatility in forecasting future volatility and even subsumes
the information content of past volatility in some of our specifications. Our results differ
from previous studies because we use longer time series and nonoverlapping data.
A regime shift around the October 1987 crash explains why implied volatility is more
biased in previous work. ( 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The volatility implied in an option’s price is widely regarded as the option
market’s forecast of future return volatility over the remaining life of the relevant
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option. If option markets are efficient, implied volatility should be an efficient
forecast of future volatility, i.e., implied volatility should subsume the informa-
tion contained in all other variables in the market information set in explaining
future volatility. Implied volatility is interpreted as an efficient volatility forecast
in a wide range of settings (e.g., Day and Lewis, 1988; Harvey and Whaley, 1992;
Poterba and Summers, 1986; Sheikh, 1989).

Whether implied volatility predicts future volatility and whether it does so
efficiently are both empirically testable propositions. Such questions have been
the subject of several papers. Early papers (e.g., Latane and Rendleman, 1976)
focus on static cross-sectional tests. These papers essentially document that
stocks with higher implied volatilities also have higher ex-post realized volatil-
ity. With the availability of sufficient time series data, however, more recent tests
have focused on the information content of implied volatility in dynamic
settings. Such studies examine whether the implied volatility of an option
predicts the ex-post realized volatility over the remaining life of the option.

The time series literature has produced mixed results. At one end of the
spectrum, Jorion (1995) reports that implied volatility is an efficient (though
biased) predictor of future return volatility for foreign currency futures. In
contrast, Day and Lewis (1992), who study S&P 100 index options with expiries
from 1985—1989, and Lamoureux and Lastrapes (1993), who examine options on
ten stocks with expiries from 1982 to 1984, conclude that implied volatility is
biased and inefficient: past volatility contains predictive information about
future volatility beyond that contained in implied volatility. Both studies use
overlapping samples, and, additionally, are characterized by a ‘maturity mis-
match’ problem, in that Lamoureux and Lastrapes examine one-day-ahead and
Day and Lewis examine one-week-ahead predictive power of implied volatilities
computed from options that have a much longer remaining life (up to 129
trading days in the former and 36 trading days in the latter). Thus, their results
are hard to interpret. Most striking, however, is the evidence reported by Canina
and Figlewski (1993) — henceforth CF — who find that ‘. . . implied volatility has
virtually no correlation with future return volatility. . .’ and does not incorpor-
ate information contained in recent observed volatility.’ These results are sur-
prising, in part because they are so extreme, and more so because the evidence
pertains to the most active options market in the U.S. — the market for S&P 100
index (OEX) options.

One explanation for the CF results is that index option markets process
volatility information inefficiently. However, this explanation is unlikely given
the liquidity, depth, and trading activity in the OEX options market. A second
possibility, suggested by CF, is that the Black and Scholes (1973) option pricing
model, which is used to compute implied volatility, cannot be used to price index
options because of prohibitive transaction costs associated with hedging of
options in the cash index market. This explanation is also incomplete, though.
The Black—Scholes formula does not necessarily require continuous trading in
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cash markets. One-period equilibrium representative agent models, of the sort
analyzed in Brennan (1979) and Rubinstein (1976), also lead to the
Black—Scholes formula. Further, Constantinides (1994) shows that transaction
costs do not have a first-order effect on option prices. Hence, transaction costs
could not, in isolation, explain the apparent failure of the Black—Scholes pricing
model for the OEX options market.

Finally, while the Black—Scholes implied volatility can be thought of as
a volatility forecast, it can also be interpreted as a measure of an option’s price
— one that controls for option-specific characteristics such as the moneyness of
an option, time to expiry, etc. All option pricing theory of which we are aware
implies that option prices should be positively correlated with the underlying
asset’s volatility; this is established, most recently, in Theorem 6 of Bergman
et al. (1996). Thus, CF’s finding of no significant relation between an option’s
price (implied volatility) and future realized volatility appears to refute this basic
tenet of option pricing theory.

We reexamine the relation between implied volatility and subsequent realized
volatility for the OEX options market. Our study differs from previous work
along two primary dimensions. First, we use volatility data sampled over
a longer period of time than in previous studies. This increases statistical
power and allows for evolution in the efficiency of the market for OEX
index options since their introduction in 1983. A second difference relative
to previous work is that we sample the implied and realized volatility series
at a lower (monthly) frequency. This enables us to construct volatility series
with nonoverlapping data with exactly one implied and one realized volati-
lity covering each time period in our sample. Our nonoverlapping sample
yields more reliable regression estimates relative to less precise and potentially
inconsistent estimates obtained from overlapping samples used in previous
work.

We find that implied volatility is a less biased forecast of future volatility than
reported in previous studies. This difference could be attributed to our use of
longer volatility time series. Our data span the 111

2
year period between Novem-

ber 1983 and May 1995, while the CF findings are based on a shorter time
period preceding the October 1987 crash. We document that there was a regime
shift around the crash period. Implied volatility is more biased before the crash
than after, at least partially due to a poor signal-to-noise ratio prevalent prior to
the crash, and perhaps also due to learning by market participants in the wake
of the crash.

We also find that past volatility has much less explanatory power than
reported in CF. In fact, it has no incremental explanatory power over implied
volatility in some of our specifications. We attribute this difference to differences
in sampling procedures. While our sampling procedure yields nonoverlapping
data, the CF procedure results in an extreme degree of overlap in consecutive
observations in the time series of past and future volatility as well as highly
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autocorrelated errors with a low Durbin—Watson statistic (of the order of 0.2)
and, hence, imprecise and potentially inconsistent regression estimates. In fact,
applying our sampling procedure to a pre-crash subperiod similar to that used
by CF, we find that implied volatility is an efficient, albeit biased, volatility
forecast. Thus, the apparent inefficiency of implied volatility reported by CF
seems to be an artifact of their overlapping sampling method.

The paper is organized as follows. Section 2 describes how our volatility series
are constructed and provides descriptive statistics for these series. Section 3
presents the empirical results, and Section 4 discusses why our results are
different from those reported in earlier literature. Section 5 concludes.

2. Data and sampling procedure

Our empirical analysis focuses on S&P 100 index options. Exchange-traded
OEX options with one-month expiration cycles became available in November
1983. Our monthly implied and realized volatility series begin at that time and
end in May 1995. Thus, the data span a time period of 139 months, or about 111

2
years.

2.1. Sampling procedure

By convention, OEX options expire on the third Saturday of every month. We
move to the Wednesday that immediately follows the expiry, and record the
OEX level — say, S

t
— on this date. On the same date, we locate a call option

expiring the next month that is closest to being at-the-money. We record the
price, C

t
, of this call, as well as its strike price, K

t
. This option expires on the

third Saturday of the following month t#1; the next (t#1) call option is
sampled on the Wednesday that immediately follows. An entire sequence of
option prices is constructed in this manner. The key feature of this sampling
procedure is that it results in nonoverlapping data, as time periods covered by
successive options exhibit no overlap whatsoever.

2.2. Variable definitions

From each observed call price C
t
, we compute implied volatility p

it
by

numerically solving the Black—Scholes call option pricing formula, i.e.,

C
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denotes the time to expir-

ation, r
f,t

stands for the interest rate, and N( ) ) denotes the standard normal
distribution function. For the interest rate, we use the one-month LIBOR (the
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inter-bank borrowing rate in the Eurodollar market) as this is probably close to
the rate faced by option traders. The implied volatility estimate obtained by
solving formula (1) is based on options with about 24 days (18 trading days) to
expiration.

While implied volatility represents an ex-ante volatility forecast, we also
compute the ex-post return volatility over each option’s life. This is computed as
the sample standard deviation of the daily index returns over the remaining life
of the option. That is,

p
ht
"S

1

q
t

qt
+
k/1

(r
t,k
!rN

t
)2, (2)

where q
t
is the number of days to expiration, rN

t
"q~1

t
+qt

k/1
r
t,k

, and r
t,k

is the
index return on day k of month t. Both volatility measures are expressed in
annual terms to facilitate interpretation. Finally, much of our empirical work is
based on the log-volatility series, which we denote by i

t
"log p

it
and h

t
"log

p
ht

(we use log to denote natural logarithm throughout). All data are from the
financial databases of Interactive Data Corporation.

2.3. Descriptive statistics

Table 1 presents descriptive statistics for the volatility and log-volatility
series. Statistics for the entire sample period (November 1983 to May 1995) are
presented in Panel A. Information for two subperiods surrounding the October
1987 stock market crash are provided in Panels B & C.

Starting with the means, we find that both average implied volatility and
average log implied volatility exceed the means of the corresponding realized
volatility series. The mean difference between the two log-volatility series is
greater than the mean difference between the level series. For instance, in the
post-crash period, mean implied volatility and mean realized volatility differ by
0.01, while mean log implied volatility and mean log realized volatility differ by
0.12. This difference can be reconciled by observing that if the means of two
lognormal series are equal, then the more volatile series should have the lower
mean after taking logarithms.2

2Specifically, the mean of log implied volatility should be log k
i
!1

2
p2
i

and that of log realized
volatility should be log k

h
!1

2
p2
h
, where p2

i
and p2

h
denote the variances of log p

it
and log p

ht
and the

k’s are the means of the level series. For instance, in the post-crash subperiod, mean implied and
realized volatility are 0.14 and 0.13, respectively, while the variances of the log-volatility series are
p2
i
"0.0891 and p2

h
"0.1514. Thus, log implied volatility should have a mean of log(0.14)!

0.5]0.0891"!2.01 and log realized volatility a mean of log(0.13)!0.5]0.1514"!2.12, and
these are virtually identical to the observed means of the log-volatility series. Similar computations
reconcile the difference in the log means for full period, and half the difference for the pre-crash
subperiod.
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Table 1
Descriptive statistics

Statistic Implied
volatility

Realized
volatility

Log implied
volatility

Log realized
volatility

Panel A: Full period — 11/1983 to 05/1995

Mean 0.15 0.14 !1.98 !2.07
100*Variance 0.28 0.68 10.34 15.21
Skewness 2.48 5.64 0.41 1.04
Kurtosis 16.45 47.61 3.71 7.17

Panel B: Subperiod 11/1983 to 09/1987

Mean 0.15 0.14 !1.95 !2.02
100*Variance 0.18 0.10 9.49 5.11
Skewness 0.04 0.59 !0.50 !0.10
Kurtosis 2.17 3.43 2.40 3.06

Panel C: Subperiod 12/1987 to 05/1995

Mean 0.14 0.13 !2.00 !2.12
100*Variance 0.19 0.35 8.91 15.14
Skewness 0.91 2.17 0.29 0.48
Kurtosis 3.34 9.33 2.42 3.88

Descriptive statistics for monthly time series of levels natural logarithms of implied volatility and
realized volatility for the S&P 100 index. Here, implied volatility is computed each month using the
Black—Scholes formula for an at-the-money OEX call option which expires on the third Saturday of
the month and has 18 trading days to expiration. Realized volatility is the annualized ex-post daily
return volatility (sample standard deviation) of the index over the life of the option. Statistics for the
entire sample (Panel A) are based on 139 nonoverlapping monthly observations on each volatility
series, covering the period November 1983 to May 1995. We also report statistics for two subperiods
that exclude the October 1987 stock market crash — the 47 months from November 1983 to
September 1987 (Panel B) and the 90 months from December 1987 to May 1995 (Panel C).

The data also reveal interesting patterns in the variances of the volatility series
across the two subperiods. Realized volatility is more variable in the post-crash
period relative to the pre-crash period, e.g., the variance of realized volatility in
the pre-crash period is only about 29% of that in the post-crash period. More
strikingly, implied volatility is more variable than realized volatility in the
pre-crash subperiod. This is at odds with the notion that implied volatility is
a smoothed expectation of realized volatility, in which case it should be less
variable than realized volatility. We examine this issue further in Section 4 of the
paper.

Finally, for the full period, the distributions of both implied and realized
volatility are highly skewed and leptokurtic, whereas the distributions of the
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log-volatility series are less so. Skewness and kurtosis are considerably lower in
the individual subperiods relative to the whole period. This feature reflects the
rather extreme nature of the October 1987 stock market crash, which is omitted
from the subperiods.

To assess the time series properties of the two series, we fit ARIMA(p, d, q)
models of the form

U(B)(Ddx
t
!k)"H(B)e

t
(3)

where x
t
represents one of the two log-volatility series, as in French et al. (1987)

or Schwert (1987). In Eq. (3), parameter k is the mean, e
t
is white noise, U and

H are polynomials of order p and q in B, the backshift operator defined by
Bx

t
"x

t~1
, and D"1!B is the first-difference operator. The time series

models are fit to the log-volatility series rather than the level series, since the
former conform more closely to normality (see also French et al., 1987; Schwert,
1987, 1989).

Table 2 displays results for both series. For the nonintegrated AR(1), AR(2),
and ARMA(1, 1) models, the Box—Pierce (1970) portmanteau statistics suggest
that the nonintegrated ARMA(1, 1) process appears to best describe both
volatility series. Since the first-order autocorrelation is close to one, we also fit
an integrated ARIMA(1, 1, 1) model to the log-volatility series. The moving
average coefficient is larger and the Box—Pierce statistic is actually worse for
the integrated model than for the nonintegrated model. The results are similar
to those obtained in previous work with monthly volatility series (e.g.,
French et al., 1987) and indicate that from a time series perspective, our
volatility series do not appear to be unusual relative to similar series used in
previous research.

2.4. Measurement error in implied volatility

Our estimate of implied volatility is afflicted with several sources of measure-
ment error. First, the Black—Scholes formula in Eq. (1) applies to a European
style call option on an asset that is known in advance to pay no dividends prior
to expiration of the option. OEX options are American-style and thus can be
exercised early, and the underlying asset — the S&P 100 index — pays dividends.
Early exercise precipitated by dividend payments causes few problems, since
OEX dividends are small, smooth, and not concentrated on any one day. Thus,
the early exercise premium due to dividends is likely to be small for call options.
However, dividends do reduce call values, so implied volatility computed via
Eq. (1) understates true implied volatility. The difference should be roughly
constant for all time periods since dividends are relatively uniform for the OEX.
Thus, in regressions that use implied volatility as an independent variable,
estimates of the intercept term should be biased (upwards, if the regression
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Table 2
ARIMA(p, d, q) models for implied and realized volatility

Fitted model k /
1

/
2

h
1

Box—Pierce
statistic Q

12

Degrees of
freedom

Panel A: Implied volatility Mi
t
N

AR(1) !1.99! 0.70! 14.69 11
(!33.40) (11.37)

ARMA(1, 1) !1.99! 0.88! 0.40! 4.19 10
(!25.08) (16.60) (3.25)

AR(2) !2.00! 0.53! 0.23! 6.62 10
(!21.47) (6.28) (2.74)

ARIMA(1, 1, 1) !0.00 0.36! 0.80! 5.77 10
(!0.16) (2.81) (9.66)

Panel B: Realized volatility Mh
t
N

AR(1) !2.07! 0.56! 27.95! 11
(!33.40) (8.03)

ARMA(1, 1) !2.07! 0.90! 0.56! 8.98 10
(!33.40) (16.34) (3.44)

AR(2) !2.09! 0.40! 0.28! 13.73 10
(!25.40) (4.91) (3.44)

ARIMA(1, 1, 1) !0.00 0.20 0.82! 11.86 10
(!0.49) (1.72) (12.11)

! p-value(0.01.
" p-value"0.05.
Estimates of ARIMA(p, d, q) models from specification (3) in the paper of the form

U(B)(Ddx
t
!k)"H(B)e

t
,

fitted to the time series Mx
t
N, with x

t
"i

t
(Panel A) or x

t
"h

t
(Panel B), where i

t
denotes the

natural logarithm of the Black—Scholes implied volatility for at-the-money call options on the
S&P 100 index, h

t
denotes the natural logarithm of the ex-post daily return volatility of the index,

e
t
is white noise, U(B) denotes the AR polynomial 1!/

1
B!/

2
B2, H(B) denotes the MA poly-

nomial 1!h
1
B, B denotes the backshift operator, and D"1!B denotes the first-difference

operator. The data consist of 139 nonoverlapping monthly observations on each volatility series,
covering the period November 1983 to May 1995. Numbers in parentheses denote asymptotic
t-statistics.
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coefficient for implied volatility is positive) but the slope coefficient should not
be affected.3

Second, option prices and closing OEX index levels may be nonsynchronous,
either because they are simply recorded at different times or because closing
prices of at least some of the one hundred stocks that constitute the OEX are
stale. Assuming such random errors in index prices to be 0.25%, Jorion (1995)
estimates that the error in measured implied volatility is about 1.2%.

Additional measurement error is introduced by bid-ask spreads in option
prices and the ‘wild-card’ option embedded in OEX options, particularly short-
maturity options (Harvey and Whaley, 1992). To some extent, we minimize these
sources of error, since we exclude deep out-of-the-money options and options
with very short maturities. Nevertheless, some measurement error will remain
and we account for this in our empirical analysis.

Finally, we note that the Black—Scholes formula in Eq. (1) assumes that
index levels follow a log-normal diffusion process with deterministic volati-
lity. If this assumption is not satisfied — for instance, because of jumps in
index prices — several papers (e.g., Cox and Ross, 1976; Heston, 1993) show
that the Black—Scholes formula is misspecified, which would exacerbate the
errors-in-variable problem if Black—Scholes implied volatility is used as a
volatility forecast. Even so, a study of the relation between Black—Scholes
implied and realized volatility is meaningful, but must be interpreted differ-
ently. Following the discussion in Section 1, our study can be regarded simply
as a test of whether option prices are informative about future return volati-
lity, without necessarily drawing any inferences about the efficiency of option
markets.

3. The relation between implied and realized volatility

In this section, we analyze the information content of implied volatility via
several different specifications. We show that implied volatility contains in-
cremental information beyond that in past volatility. Similar conclusions are
reached by all approaches, underscoring the robustness of our findings.

3The difference between true implied volatility and that estimated by ignoring dividends is
roughly constant, provided the true volatility is not too small. For instance, for at-the-money
options with 25-day maturities, the difference lies between 1.94% and 2% if true implied volatility
lies between 10% and 50% and annualized dividend yields are about 4% per annum. We also
replicate our study for a period beginning in 1983 and ending in 1992 using dividend-adjusted
implied volatilities instead of unadjusted volatilities, with no material change in the results.
Campbell Harvey kindly provided us the dividend data.
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3.1. Conventional analysis

The information content of implied volatility is typically assessed in the
literature by estimating a regression of the form

h
t
"a

0
#a

i
i
t
#e

t
, (4)

where h
t
denotes the realized volatility for period t and i

t
denotes the implied

volatility at the beginning of period t, as defined in Section 2.2.
At least three hypotheses can be tested using Eq. (4). First, if implied volatility

contains some information about future volatility, a
i
should be nonzero. Second,

if implied volatility is an unbiased forecast of realized volatility, we should find
that a

0
"0 and a

i
"1. Finally, if implied volatility is efficient, the residuals

e
t
should be white noise and uncorrelated with any variable in the market’s

information set.
Ordinary least-squares estimates of Eq. (4) are reported in the first row of

Table 3. The estimate of a
i
is 0.76 and is statistically significant against a null of

a
i
"0. Hence, implied volatility contains some information about future volatil-

ity. However, it appears to be a biased forecast of future volatility since a
i
is

reliably different from unity and the intercept a
0

is different from zero. An F-test
rejects the joint hypothesis a

0
"0 and a

i
"1; the F (2, 136) statistic of 10.58 is

significant at 1%.
That a

i
is less than unity could be a consequence of an errors-in-variable (EIV)

problem associated with implied volatility, an issue to which we will return soon.
The fact that the intercept is negative is a consequence of the EIV problem and
our use of the log-volatility series rather than the volatility level series to
estimate the regression. If hM

t
and iM

t
denote the means of the two log-volatility

series, then following Section 2.3, hM
t
(iM

t
(0; additionally, the regression esti-

mate of a
i
is less than one. These inequalities lead to a negative intercept a

0
, since

this must satisfy the relation a
0
"hM

t
!a

i
iM
t
. Consistent with this proposition, the

intercept is smaller (0.03) and not significantly different from zero when Eq. (4) is
estimated using the volatility level series. The Durbin—Watson statistic is not
significantly different from two, indicating that the residuals from Eq. (4) are not
autocorrelated.

How does the information content of implied volatility compare to that of
past realized volatility? To address this question, we estimate the following
multiple regression (the ‘encompassing’ specification in the nomenclature of the
forecasting literature):

h
t
"a

0
#a

i
i
t
#a

h
h
t~1

#e
t
. (5)

OLS estimates of Eq. (5) are reported in Table 3. Past realized volatility, in
isolation, explains future volatility (see the second row of Table 3). However,
once implied volatility is added as an explanatory variable (third row of
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Table 3
Information content of implied volatility: OLS estimates

Dependent variable: Log realized volatility h
t

Independent variables Adj. R2 DW

Intercept i
t

h
t~1

!0.56! 0.76! 39% 1.89
(!3.47) (9.48)

!0.89! 0.57! 32% 2.32
(!6.02) (8.04)

!0.49! 0.56! 0.23" 41% 2.23
(!3.01) (4.78) (2.38)

! p-value(0.01
" p-value "0.05
OLS estimates of specification (5) in the paper,

h
t
"a

0
#a

i
i
t
#a

h
h
t~1

#e
t
.

Here, i
t
denotes the natural logarithm of the Black—Scholes implied volatility for at-the-money call

options on the S&P 100 index, measured at the beginning of month t, and h
t
denotes the natural

logarithm of the ex-post daily return volatility of the index, over the life of the option whose log
implied volatility is i

t
. The data consist of 139 nonoverlapping monthly observations of each

volatility series covering the period November 1983 to May 1995. Numbers in parentheses denote
asymptotic t-statistics.

Table 3), the regression coefficient for past volatility (a
h
) drops from 0.57 to 0.23,

but it remains significant, suggesting that implied volatility is inefficient; the F (2,
135) statistic of 9.18 rejects the joint hypothesis a

0
"0, a

i
"1, and a

h
"0 at 1%.

Nevertheless, the slope coefficient for implied volatility itself remains significant
in the multiple regression and, in particular, is more than twice the coefficient for
past volatility. Adding more lags and correcting standard errors along the lines
of Newey and West (1987) does not alter these results.

Even these basic results differ from those reported in Canina and Figlewski.
For Eq. (4), the CF estimates of a

i
range from 0.14 to 0.22, whereas ours (0.76) is

more than three times larger. In the multiple regression (5), the CF estimate of
a
h

is about 0.50; our largest estimate (0.23) is much smaller. For the same
specification, the CF estimates of a

i
range from 0.04 to 0.08 and are never

significant. In contrast, our estimate (0.56) is an order of magnitude larger and is
statistically significant.

To this point, our results indicate that OEX implied volatility is neither
unbiased nor efficient. Nevertheless, implied volatility has more predictive
power than past volatility, whether judged by the magnitude of the regression
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slope coefficients or by the R2 of each of the regressions discussed above. At the
very least, implied volatility contains information about future volatility beyond
that contained in past volatility. In this respect, OEX index options do not
appear to be structurally different from currency options (Jorion, 1995) or
options on individual stocks (Lamoureux and Lastrapes, 1993).

3.2. Alternative specifications

In this section, we examine an alternative specification of the form

i
t
"b

0
#b

i
i
t~1

#b
h
h
t~1

#e
it
, (6)

for at least two reasons. First, we use specification (6) in an instrumental
variables framework to correct for EIV problems in OEX implied volatility.
Second, we use it to test whether implied volatility is predicted by past volatility.
If option prices reflect volatility information, implied volatility should not only
predict future volatility but should also itself endogenously depend on past
volatility, since past and future volatility are positively related. We test this
implication using Eq. (6). Specification (6) is similar to a GARCH (1,1) specifica-
tion (Bollerslev, 1986), with i

t
playing the role of the underlying volatility series

and h
t~1

that of the lagged squared return in the standard GARCH model.
However, the existence of the error term e

it
moves Eq. (6) closer to a stochastic

volatility model rather than a GARCH model (Nelson, 1990).
We characterize the effect of the EIV problem in estimated implied volatility

on the conventional OLS estimators used in Section 3.1. We then reexamine the
information content of implied volatility using alternative instrumental variable
estimators of Eqs. (4) and (5). We start by establishing that the EIV problem
causes implied volatility to appear both biased and inefficient. Proposition
1 describes the relevant results, based on standard least squares asymptotics (see,
e.g., Greene, 1993, Chapter 9).

Proposition 1. Suppose that observed implied volatility i
t
"i*

t
#g

t
, where i*

t
denotes true implied volatility and g

t
denotes measurement error (uncorrelated

with i*
t
). ¹hen the probability limit of the O¸S estimate of a

i
in Eq. (4) is given by

a*
i,u
"a

i

1

1#(p2g /p2
i
)

(7)

and the limits of the O¸S estimates of slope coefficients a
h

and a
i
in Eq. (5) are

given by

a*
i,m

"a
i

1!o2

1!o2#(p2g /p2
i
)
, (8a)

a*
h
"a

h
#a*

i,m

p2g
p
i
p
h

o
1!o2

, (8b)
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where p2
i
, p2

h
and p2g denote the variances of true implied volatility, past realized

volatility, and the measurement error, respectively, and o denotes the correlation
between true implied volatility and past realized volatility.

The EIV problem has two effects. First is the familiar attenuation result,
whereby the slope coefficient associated with implied volatility is itself biased
downward towards zero, and more so in multiple regression (5) than in univari-
ate regression (4) since a*

i,m
)a*

i,u
. Second, the slope coefficient for past volatility

(a
h
) is biased upward, provided a

i
and o (the correlation between implied

volatility and past realized volatility) are positive (as, empirically, they are). In
particular, even when past volatility has no explanatory power, i.e., a

h
"0, the

limiting OLS estimates a*
h

will be positive. Further, Eq. (8b) suggests that the
upward bias will be greater when a

i
and o are large. In other words, the smaller

the true bias in implied volatility and the stronger its relation to past volatility,
the stronger will be the apparent evidence that it is inefficient.

The preceding discussion suggests that OLS estimates of both Eqs. (4) and (5)
will be inconsistent and will typically lead to the incorrect conclusion that OEX
implied volatility is biased and inefficient. Consistent estimation is possible,
however, through an instrumental variables (IV) procedure. Under this proced-
ure, implied volatility i

t
is first regressed on an instrument (and any other

exogenous variables). Fitted values from this regression replace implied volatil-
ity i

t
in Eqs. (4) and (5), and the specifications are then estimated by OLS.

The IV procedure requires us to specify an instrument for implied volatility.
Past implied volatility i

t~1
is a natural candidate for an instrument, since it is

correlated with true time t implied volatility i*
t

but is quite plausibly unrelated to
g
t
, the measurement error associated with implied volatility sampled one month

later. Following Section 2.4, the error g
t

can be attributed to (i) nonsyn-
chronous measurement of option prices and index levels, (ii) early exercise and
dividends, which are ignored in the Black—Scholes formula, (iii) bid—ask
spreads, (iv) the ‘wild-card’ option, or (v) misspecification of the stochastic
process governing index returns. Regarding (i), the closing cash index level
precedes the level implied in option prices by up to 15 min, due to different
closing times on the two exchanges. However, the difference between the cash
market closing and the level implied in closing option prices is unlikely to be
correlated at a one-month lag. Furthermore, Day and Lewis (1992) find no
material differences in their results when actual index levels are used instead of
the levels implied by closing option prices. With regard to (ii)—(iv), the discussion
in Section 2.4 suggests that these are not likely to be major sources of error,
because OEX dividends are smooth and our sample excludes deep out-of-the-
money options and options with very short maturities. Finally, regarding (v),
following Cox and Rubinstein (1985) and Lamoureux and Lastrapes (1993), the
Black—Scholes implied volatility is approximately equal to expected future
return volatility for at-the-money options (used in our study) even when returns
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follow the (non-Black—Scholes) stochastic volatility model of Hull and White
(1987). Thus, misspecification error should be small and there is little reason for
it to be correlated across time.

With i
t~1

as the instrument, IV estimation of Eq. (4) simply consists of
replacing implied volatility i

t
by fitted values from the regression of i

t
on i

t~1
and

then estimating Eq. (4) by OLS. Specification (5) is handled in a similar manner
except that in the first step, i

t
must be regressed on both i

t~1
and h

t~1
rather

than on i
t~1

alone. The first-step procedure of regressing i
t
on i

t~1
and h

t~1
can

also be used in estimating specification (4), in which case the procedure is
equivalent to estimating (4) with two instruments (i

t~1
and h

t~1
) for implied

volatility rather than just one (i.e., i
t~1

). Empirically, both approaches yield
nearly identical results. Since implied volatility is a generated regressor in the IV
procedure, OLS standard errors are inappropriate; see, e.g., Pagan (1984),
Murphy and Topel (1985), or Schwert and Seguin (1990) for a discussion in the
the context of volatility series. Consistent standard errors for the IV estimates
can be obtained following, e.g., Greene (p. 602).

Table 4 reports the IV estimates. Panel A reports estimates of the first-step
regression (6), while Panel B reports the IV estimates of Eqs. (4) and (5). The IV
estimates in Panel B provide evidence that implied volatility is both unbiased
and efficient. The point estimates of a

i
in both specifications — 0.97 and 1.04 for

(4) and (5), respectively — are not significantly different from unity, which
suggests that implied volatility is unbiased. Additionally, the IV estimate of
a
h

(!0.06) is not significantly different from zero, indicating that implied
volatility is efficient. The Hausman (1978) s2 statistic (one degree of freedom) for
detecting the presence of measurement error is 7.11 for specification (4) and 7.13
for specification (5). With both statistics significant at 5%, we reject the null
hypothesis that the EIV problem in observed implied volatility does not matter.
Collectively, the results indicate that the EIV problem offers a plausible explana-
tion for both the bias and inefficiency associated with implied volatility in the
OLS results. There is little evidence of either bias or inefficiency of implied
volatility, once we account for the EIV problem.

Additional evidence on the unbiasedness and efficiency of OEX implied
volatility is provided by reduced form regressions implied by Eqs. (5) and (6).
Specifically, substitute the right-hand side of Eq. (6) for i

t
into Eq. (5) to get

h
t
"a

0
#a

h
h
t~1

#a
i
i
t~1

#e
ht
, (9)

where a
h
"a

h
#a

i
b
h
and a

i
"a

i
b
i
. Solving these equations for a

h
and a

i
, we get

a
h
"a

h
!

a
i
b
h

b
i

(10a)

a
i
"

a
i

b
i

. (10b)
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Table 4
Information content of implied volatility: Instrumental variables estimates

Panel A: First stage regression estimates

Dependent Variable: i
t

Independent variables Adj. R2 DW

Intercept i
t~1

h
t~1

!0.37! 0.39! 0.40! 62% 2.19
(!3.41) (7.25) (5.77)

Panel B: Second stage I» estimates

Dependent Variable: h
t

Independent variables Adj. R2 DW

Intercept i
t

h
t~1

!0.15 0.97! 36% 2.04
(!0.63) (8.23)

!0.14 1.04! !0.06 34% 1.98
(!0.57) (3.75) (!0.33)

! p-value(0.01.
" p-value"0.05.
Panel A reports OLS estimates of specification (6) in the paper,

i
t
"b

0
#b

i
i
t~1

#b
h
h
t~1

#e
it
,

where i
t
denotes the natural logarithm of the Black—Scholes implied volatility for at-the-money call

options on the S&P 100 index, measured at the beginning of month t, and h
t
denotes the natural

logarithm of the ex-post volatility of the option whose log implied volatility is i
t
. The data consist of

139 nonoverlapping monthly observations on each volatility series, covering the period from
November 1983 to May 1995. Numbers in parentheses denote asymptotic t-statistics.
Panel B reports instrumental variables (IV) estimates of specifications (4) and (5) in the paper,

h
t
"a

0
#a

i
i
t
#a

h
h
t~1

#e
t
,

using lagged implied volatility i
t~1

as an instrument for implied volatility, and the same data as in
Panel A. Numbers in parentheses denote asymptotic t-statistics.

OLS estimates of Eq. (9), which are not reported here, yield a
h
"0.36 and

a
i
"0.40, while the results in Panel A of Table 4 indicate b

h
"0.40 and

b
i
"0.39. Substituting these values into Eq. (10a), we get a

h
"!0.05, which is

close to the corresponding IV estimate (!0.06) and smaller than the OLS
estimate (0.23). Likewise, the a

i
implied by Eq. (10b) is a

i
/b

i
"1.03, which is also

closer to the IV estimate (1.04) than the OLS estimate (0.56).
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Finally, while we have used estimates of Eq. (6) primarily in an instrumental
variables setting, the specification is also of independent economic interest for
two reasons. First, estimates of the specification (Panel A, Table 4) reveal that
implied volatility is positively related to past realized volatility. This result
suggests that option prices reflect future volatility information, since past and
future volatility are positively correlated. Second, specification (6) models time
t implied volatility as a function of past implied and realized volatility, variables
known to the market in advance of time t. Thus, the specification provides
a constructive (though nontheoretic) means of forecasting future implied volatil-
ity, and hence future option prices, using variables in the market’s information
set. Our estimates (Panel A, Table 4) indicate that both past realized volatility
and past implied volatility are significant determinants of one-period-ahead
implied option prices, and both variables have roughly the same regression
coefficients. Though parsimonious, the model explains an economically signifi-
cant portion (62%) of the variation in implied volatility.

3.3. Further tests for robustness

We conduct additional tests to verify the robustness of the results reported
above, with little change in the basic character of our results. To begin, we
replicate all tests using alternative estimators of volatility, namely, the square
root of the mean squared return (Jorion, 1995) and the standard deviation of
returns corrected for the sample autocorrelation in daily returns (French et al.,
1987). We also recompute realized volatility using two other estimators of the
mean return, namely, the average return for the previous month and the risk-free
rate, r

f,t
. Our results are not sensitive to the manner in which realized volatility

is computed.
A second question relates to how the October 1987 stock market crash should

be treated. Should this observation be included as an extreme, though unlikely,
draw from the same distribution as the other observations or should it be
eliminated as an unusual outlier? In any event, it is useful to know whether any
of our conclusions hinge on the inclusion of crash-related observations. To
examine this issue, we reestimate all our specifications after eliminating observa-
tions in which realized volatility is estimated using returns on October 19, 1987,
with no substantive change in our results.

A third issue is that all tests reported above are within-sample. However, we
also examine the predictive power of implied volatility in an out-of-sample
context. Specifically, we use 115 observations for estimating specifications (4)
and (5) and then use the estimates to forecast the one-period-ahead volatility.
Repeating this procedure for the last 24 months of our sample period, we obtain
three sets of out-of-sample forecast errors for the two-year period ending May
1995, pertaining to volatility forecasts based on implied volatility alone, past
realized volatility alone, and both implied and past realized volatility. The mean
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squared forecast error when using implied volatility alone is roughly equal to
that obtained using both implied and past volatility, and is smaller in both cases
than that obtained using past realized volatility alone. While the difference is not
statistically significant (the t-statistic is 0.88) since the sample size (24 forecast
errors) is small, we certainly find no evidence that the within-sample results
reported before are reversed in an out-of-sample context.

4. Comparison with previous literature

Our results are most directly related to those of Canina and Figlewski, who
find that, for the OEX options market, implied volatility has little correlation
with future volatility and past volatility is significantly related to future volatility
and subsumes whatever information implied volatility has. These results are
clearly at odds with ours, and this section examines why the two studies arrive at
different results.

Our research design differs from that of CF mainly along two dimensions.
First, the CF data are drawn from a 48-month period from March 1983 to
March 1987, whereas our data span a longer period of time, namely, the 139
months from November 1983 to May 1995. A second difference is the sampling
procedure. Both aspects help explain the differences in results across the two
studies, as we discuss below.

To control for the time period effect, we reestimate specifications (4) and (5)
separately for two separate subperiods: a pre-crash subperiod (November 1983
to March 1987) similar to that used in CF, and a post-crash subperiod (Decem-
ber 1987 to May 1995) that begins after the crash. Our pre-crash subperiod
begins only in November 1983 rather than March 1983 (as in CF) since options
with monthly expiries became available only in November 1983. Our pre-crash
subperiod ends in March 1987, as in CF. Our post-crash period begins in
December 1987 in order to eliminate observations in which realized volatility
for October 1987 appears as a dependent or independent variable.

Panel A of Table 5 reports estimates of Eqs. (4) and (5) for the pre-crash
subperiod, and Panel B reports the corresponding post-crash results. We report
the results using both the log-volatility and the volatility level series. As both
sets of results are qualitatively similar, we focus the discussion on results
obtained with the log-volatility series. We compare the pre-crash estimates to
the post-crash and full period estimates as well as to the estimates reported by
CF.

4.1. The slope coefficient for implied volatility

The pre-crash estimates of a
i
, the slope coefficient for implied volatility, are

40—50% smaller than the corresponding post-crash (and full—period) estimates,
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Table 5
Information content of implied volatility: Subperiod analysis

Dependent variable: log realized volatility h
t

Dependent variable: realized volatility p
ht

Independent variables Adj. R2 DW Independent variables Adj. R2 DW

Intercept i
t

h
t~1

Intercept p
it

p
h, t~1

Panel A: Pre-crash subperiod

!1.36! 0.33! 18% 1.78 0.09! 0.31! 16% 1.91
(!6.44) (3.09) (5.55) (2.90)

!1.39! 0.30 5.8% 2.05 0.11! 0.20 0.8% 1.96
(!4.19) (1.85) (4.66) (1.15)

!1.25! 0.29! 0.09 16% 1.95 0.09! 0.31! 0.00 14% 1.92
(!3.90) (2.40) (0.48) (3.88) (2.58) (0.03)

Panel B: Post-crash subperiod

!0.27 0.92! 50% 2.03 0.00 0.92! 46% 2.00
(!1.37) (9.45) (0.02) (8.82)

!0.87! 0.60! 37% 2.42 0.05! 0.58! 37% 2.38
(!4.99) (7.38) (4.57) (7.36)

!0.26 0.74! 0.18 50% 2.27 0.00 0.70! 0.20 47% 2.26
(!1.33) (4.96) (1.60) (0.73) (4.26) (1.76)

! p-value(0.01.
" p-value "0.05.
OLS estimates of specifications (4) and (5) in the paper. The regressions reported in the left side of
each panel are of the form

h
t
"a

0
#a

i
i
t
#a

h
h
t~1

#e
t
.

Here, i
t
denotes the natural logarithm of the Black—Scholes implied volatility for at-the-money call

options on the S&P 100 index, measured at the beginning of month t, and h
t
denotes the natural

logarithm of the ex-post daily return volatility of the index, over the life of the option whose log
implied volatility is i

t
. The regressions reported in the right side of each panel are of the form

p
ht
"d

0
#d

i
p
it
#d

h
p
h,t~1

#e
1t
,

where p
ht

and p
it

satisfy h
t
"log p

ht
and i

t
"log p

it
. The results reported in Panel A are based on

nonoverlapping monthly volatility observations for the 41 months from November 1983 to March
1987, while those reported in Panel B are based on nonoverlapping monthly volatility observations
for the 90 months from December 1987 to May 1995. Numbers in parentheses denote asymptotic
t-statistics.

and the difference between the two is significant. The Chow (1960) test statistic
for a structural change around the crash takes the value 8.12 for specification (4)
and 3.30 for specification (5) and both test statistics are significant at 5%.
However, the Chow test is not robust to heteroskedasticity, and Section 2.3
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demonstrates that the volatility series are heteroskedastic because the variance
of volatility is greater after the crash than before. Hence, we also compute the
likelihood ratio test statistic for a structural change around the crash. The
likelihood ratio statistics for Eqs. (4) and (5) are 20.52 and 14.46, respectively,
and both are significant at 5%. These results indicate that there was a regime
shift following the crash, with implied volatility significantly more biased before
the crash.

Our pre-crash subperiod estimates of a
i
, which are 0.33 for Eq. (4) and 0.29 for

Eq. (5), are larger than the largest relevant estimates obtained by CF, or 0.22 for
Eq. (4) and 0.08 for Eq. (5), but the two are now closer than in Section 3.1. Thus,
part but not all of the difference between our estimates of a

i
and those reported

in CF could be attributed to differences in time periods considered by the two
papers. Qualitatively similar results obtain when the pre-crash subperiod is
defined to end in September 1987 rather than in March 1987.

Why is the pre-crash estimate of a
i
smaller than its post-crash and full period

counterparts? One possibility, of course, is that OEX options were priced
differently prior to October 1987, perhaps because the market was still in its
infancy in the pre-crash period (index options began trading only in 1983) or
because the stochastic process followed by index returns was different in the
pre-crash subperiod. We cannot reject the possibility of such nonstationarities in
the return-generating process or in the model for pricing index options. It has
also been suggested to us that the pre-crash and post-crash results differ because
post-crash implied volatilities price stock market crashes similar to that experi-
enced in October 1987. This argument, however, suggests that the
Black—Scholes prices and implied volatilities are more biased in the post-crash
period; it does not explain our finding that implied volatility is more biased in
the pre-crash period.

A second possibility suggested by Proposition 1 is that the signal-to-noise
ratio is lower before the crash than after. This could happen either because there
is less variation in true implied volatility (p2

i
from Proposition 1 is lower) during

the pre-crash subperiod, or because implied volatility is noisier (p2g is higher) in
this subperiod. The data in Table 1 are consistent with both possibilities, though
we cannot empirically estimate the individual contribution of each factor to the
lower signal-to-noise ratio.

Consider the variation in realized volatility in the 1983—1987 subperiod
relative to that in the post-crash subperiod. Both numbers are reported in
Table 1. The pre-crash subperiod variance of realized volatility is only about
29% of its post-crash subperiod counterpart, and the pre-crash subperiod
variance of log realized volatility is only about 34% of the corresponding
post-crash subperiod variance. Volatility is less variable in the pre-crash sub-
period. While the pre-crash data in Table 1 pertain to the subperiod from
November 1983 to September 1987, similar numbers obtain when the pre-crash
subperiod is defined to end in March 1987, as in CF.
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The data in Table 1 also suggest that implied volatility is noisier before the
crash than after. Consider the following two facts. First, implied volatility is,
somewhat counterintuitively, nearly twice as variable as realized volatility in the
pre—crash subperiod, while it is smoother than realized volatility in the
post—crash period as well as in the full period. Second, the ratio of the 1983—1987
subperiod variance of implied volatility to the post-crash subperiod variance is
about 94% (107% for log implied volatility), whereas the same variance ratio for
realized volatility is much smaller at 29% (34% for log realized volatility). Both
facts are consistent with implied volatility being noisier in the pre-crash period.

Summing up, the difference between our study and that of CF on the bias of
implied volatility could be attributed to a regime shift following the October
1987 stock market crash, which in turn could be attributed to nonstationarities
in either the index return process or the pricing model or to a poor signal-to-
noise ratio in the pre-crash subperiod.

4.2. The slope coefficient for past volatility

Canina and Figlewski find that past volatility subsumes the information
content of implied volatility when the two series are sampled at daily frequency.
They report that the slope coefficient for past volatility in Eq. (5), the associated
t-statistic, and the regression R2 all are virtually invariant to whether implied
volatility is included as an explanatory variable or not. In contrast, we find that
even in the pre-crash subperiod, implied volatility dominates past volatility (see
Panel A of Table 5) when the two series are sampled in a nonoverlapping
manner.

Why does past volatility appear to have limited explanatory power in our
study but not in CF, even for data from a similar time period? We argue that the
difference is because of differences in our sampling methods. Specifically, the CF
procedure of sampling overlapping data tends to overstate the explanatory
power of past volatility, as discussed next.

Accordingly, consider any one option expiration date, say q, and the time
series of past and future volatility built around this date. If t is any date prior to
q, CF define the time t future volatility (p

f, q, t) and 60-day past volatility (p
p, q, t)

as follows:

p2
f,q,t"

1

q!t

q
+
k/t

r2
k

(11)

and

p2
p,q,t"

1

60

t
+

k/t~60

r2
k
. (12)

For expositional ease, we ignore the correction for the squared mean return in
defining volatility in both Eqs. (11) and (12). Consider now the next term in the
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daily time series of past volatility p
p,q,t`1

:

p2
p,q,t`1

"

1

60

t`1
+

k/t~59

r2
k
. (13)

The extreme overlap between successive terms in the past volatility series is
obvious from Eqs. (12) and (13). Given an expiry date, each element in the time
series of realized volatility is a moving average of 60 squared returns, and
p
p,q,t and p

p,q,t`1
share 59 of these terms. Thus, for a given option expiration q,

successive elements in the past volatility series, p
p,q,t and p

p,q,t`1
, are virtually

identical and only differ by a small amount of noise of the order of 1
30

of p
p,q,t.

Thus, even if one-day volatility for day t and day t#1 had zero correlation, the
procedure of sampling overlapping data would introduce dependence in the
time series Mp

p,q,tNq/1,2,2
, and, likewise, in the series Mp

f,q,tNq/1,2,2
.

It is well known (e.g., Richardson and Smith, 1991) that moving average
processes induced by such extreme overlap distort inferences in a regression
context. Slope coefficients have poor finite sample properties, and the associated
t-statistics and R2 will typically be overstated. The usual Richardson and Smith
analysis for overlapping data cannot, however, be applied directly in our
context, since our volatility series Mp

pt
N and Mp

ft
N are heterogeneous composites

of several more homogeneous moving average processes, namely, Mp
p,q,tN and

Mp
f,q,tN, one for each expiration date q. Nevertheless, given the manner in which

the daily series are constructed, biases due to overlap are likely to arise, and it is
useful to analyze their effect.

Accordingly, we construct a sample of overlapping volatility series sampled at
daily frequency along the lines of CF. Given an option expiration date q (there is
one per month), we first pick a day t such that 7(q!t(35, i.e., such that
there are at least seven and not more than 35 calendar days from date t to the
next option’s expiration. We record the implied volatility of an at-the-money
call option on date t and compute 60-day past volatility and future realized
volatility using Eqs. (11) and (12), respectively. The two steps are then repeated
for every option expiration date q preceding the October 1987 stock market
crash. Daily option price data were hand-collected from The Wall Street
Journal, and to the extent there are measurement errors in such data, our test
procedures will understate the true explanatory power of implied volatility.
Note that cov(p

p,q,t, p
p,q,t`i

) is never zero in the daily data series, simply by
construction. To see why, note that p

p,q,t is the volatility for the last 60 days prior
to t, whereas q!t never exceeds 35. Thus, given q, p

p,q,t and p
p,q,t`i

share at least
25 squared returns for all i and t.

We regress future volatility on past realized volatility and implied volatility
for the sample of daily volatilities, i.e., we estimate

log p
f,q,t"c

0
#c

p
log p

p,q,t#c
i
log p

i,q,t#vqt (14)

and the corresponding univariate regressions. Table 6 reports the results.
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Table 6
Information content of implied volatility: Daily estimates for pre-crash subperiod dependent
variable: Realized volatility log p

fqt

Independent variables Adj. R2 DW

Intercept log p
pqt log p

iqt

Panel A: O¸S estimates

!0.63 0.70 17% 0.26
!5.04) (11.43)

!1.63 0.20 7.5% 0.28
(!29.77) (7.39)

!0.66 0.63 0.06 17% 0.27
(!5.33) (8.64) (2.03)

Panel B: FG¸S estimates

!3.16 !0.57 11% 2.00
(!9.03) (!3.31)

!2.00 0.01 0% 1.80
(!36.82) (0.80)

!3.15 !0.57 0.01 11% 2.00
(!8.99) (!2.24) (0.54)

Panel A reports OLS estimates of specification (14) in the paper,

log p
fqt"c

0
#c

p
log p

pqt#c
i
log p

iqt#vqt.

Here, log p
fqt denotes the natural logarithm of the realized volatility over the period from date t to

the nearest date q on which an OEX option expires, log p
pqt denotes the log realized volatility over

a 60-day period prior to date t, annd log p
iqt denotes the natural logarithm of the date

t Black—Scholes implied volatility of an at-the-money call option expiring at q. The data consist of
653 observations on each volatility series, covering the time period from November 1983 to March
1987. Numbers in parentheses denote asymptotic t-statistics.
Panel B reports Cochrane—Orcutt feasible generalized least-squares (FGLS) estimates of the speci-
fication estimated in Panel A. Numbers in parentheses denote asymptotic t-statistics.

The univariate regression coefficient for past volatility is 0.70 while the
multiple regression yields c

p
"0.63. The corresponding numbers in CF are 0.57

and 0.49, respectively. The univariate and multivariate estimates of c
i
, the slope

for implied volatility, are 0.20 and 0.06, respectively, while CF report estimates
of 0.22 and 0.08. Our pre-crash daily results are thus qualitatively similar,
though not identical, to those obtained by CF. Asymptotic t-statistics based on
Newey and West standard errors are also similar to those obtained in CF when
the number of lags used in standard error computations exceeds ten (the actual
number of lags should be about 25, based on the extent of overlap within the
past and future volatility series).
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The daily results present a sharp contrast to the monthly results for the
same period (Panel A, Table 5). In the monthly regressions, past volatility
has little incremental explanatory power, whereas past volatility appears to
dominate implied volatility in the daily data. However, consider the Durbin—
Watson statistic for the daily data, which ranges from 0.26 to 0.28 (Panel A,
Table 6). The low Durbin—Watson statistic indicates that the daily residuals
are highly autocorrelated and raises the possibility of a spurious regression
phenomenon (see, e.g., Granger and Newbold, 1974; Phillips, 1986). If so,
the regression estimates are inconsistent and converge to a nondegenerate
limiting distribution involving functionals of Brownian motion. Feasible gener-
alized least-squares (FGLS) provides one means of handling the spurious
regression phenomenon, and also provides alternative consistent estimates of
Eq. (14) in the presence of autocorrelated errors (Hamilton, 1994; pp. 561—562).
We report Cochrane—Orcutt FGLS estimates of specification (14) in Panel B of
Table 6.

The Durbin—Watson statistic for the transformed regressions used in FGLS
estimation is close to two, indicating that the FGLS procedure has virtually
eliminated the autocorrelation in the daily residuals. Somewhat surprisingly, the
FGLS estimates of c

p
are now negative (!0.57). This estimate, viewed in

conjunction with the low Durbin—Watson statistic for the daily regression, calls
for considerable caution in interpreting the daily OLS results.4 On the other
hand, the monthly regression (Table 6) has a Durbin—Watson statistic close to
two, which indicates that monthly residuals exhibit little autocorrelation. The
monthly results in Table 6 suggest that while implied volatility is certainly
biased in the pre-crash period, it dominates past volatility in explaining future
volatility. In fact, implied volatility appears to subsume the information con-
tained in past volatility for the very subperiod in which the daily results seem to
lead to exactly the opposite conclusion.

4That the daily regression estimates are unreliable is consistent with Richardson and Stock (1989)
(RS). RS show that when the degree of overlap (J) is large relative to the time series length (¹), OLS
estimates are inconsistent and, furthermore, converge in the limit to a nondegenerate random
variable. The RS distribution cannot, however, be used to analyze our Eq. (14), which differs in three
significant ways from the RS model. Specifically, (i) regression errors are serially uncorrelated in RS
under the null, whereas they are correlated in Eq. (14), from the time-varying volatility literature; (ii)
only one independent variable (the lagged left-hand-side variable) appears in RS, while we have one
extra variable (implied volatility); and (iii) past volatility is not just the lagged future volatility in
Eq. (14). Rather, future volatility is computed using between seven and 35 squared returns, while
past volatility uses 61 prior squared returns, which makes the overlap structure more heterogeneous
and complicated than that in RS. Thus, derivation of the asymptotic distribution is significantly
more complex than in RS and is not attempted here.
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5. Conclusions

The fundamental question addressed in this study is whether the volatility
implied in S&P 100 index option prices predicts ex-post realized volatility.
Previous work indicates that implied volatility is both biased and inefficient
when the series are sampled on a day-to-day or weekly basis. Such results have
been construed as a vote against the joint hypothesis that option markets
aggregate volatility information efficiently and the Black—Scholes option pricing
formula is valid for OEX options.

This study introduces a different research design to examine the relation
between implied volatility and realized volatility. Our analysis employs a lower
(monthly) sampling frequency and nonoverlapping data that span a longer
period of time, such that exactly one implied and realized volatility estimate
pertain to each time period under consideration. Our conclusions are signifi-
cantly different from those of previous literature, and the difference is robust to
variations in econometric approach. We find that implied volatility does predict
future realized volatility in isolation as well as in conjunction with the history of
past realized volatility. In fact, OEX implied volatility subsumes the information
content of past volatility in some of our specifications. We attribute the differ-
ences to our use of a longer time period relative to previous work and our use of
nonoverlapping data.

Our analysis sheds light on an interesting aspect of the October 1987 stock
market crash. While the crash itself was an extreme event accompanied by
a period of high volatility (Schwert, 1990), we find that it is also associated with
a structural change in the pricing of index options. Implied volatility is a signifi-
cantly better predictor of future volatility following the crash. Our results also
complement Jorion, who reports that implied volatility is an efficient volatility
forecast in the foreign exchange futures market but is unable to definitively
explain why the results differ from those reported for the OEX market. Jorion
suggests two explanations for the difference, namely that index options are
priced differently from foreign exchange futures options due to higher trading
costs in the cash index markets or that OEX implied volatility has a greater
errors-in-variable problem. Our results lend some support to the latter explana-
tion. Our results also complement the findings of Harvey and Whaley (1992),
who suggest that the errors-in-variable issue is important in the context of OEX
options. Finally, the results provide an empirical justification for the common
practice of interpreting the Black—Scholes implied volatility of OEX options as
a volatility forecast rather than as just a convenient means of quoting option
prices.

Virtually all studies in the literature have focused on predicting future realized
volatility using options data, with less emphasis on the issue of predicting
implied volatility. Our results suggest that the implied volatility of at-the-money
call options is predictable using a parsimonious set of variables in the market
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information set. Interpreting implied volatility as an option’s price, we have
a constructive empirical approach for forecasting future prices of a subset of
OEX options. An obvious extension of our paper would be to test whether
prices of other options, such as out-of-the money options, puts, and longer
maturity options, can be similarly forecast.
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