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Abstract

We propose a new time series representation of persistence in conditional variance called
a long memory stochastic volatility (LMSV) model. The LMSV model is constructed by
incorporating an ARFIMA process in a standard stochastic volatility scheme. Strongly
consistent estimators of the parameters of the model are obtained by maximizing the
spectral approximation to the Gaussian likelihood. The finite sample properties of the
spectral likelihood estimator are analyzed by means of a Monte Carlo study. An empirical
example with a long time series of stock prices demonstrates the supcriority of the LMSV
model over existing (short-memory) volatility models. © 1998 Elsevier Science S.A.
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1. Introduction

A large body of research suggests that the conditional volatility of asset prices
displays long memory or long-range persistence.! Furthermore, as we demonstrate
below, this type of persistence cannot be appropriately modeled by autoregressive
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I'Sce Ding et al. (1993), de Lima and Crato (1993) and Bollerslev and Mikkelsen (1996) for
evidence that persistence in stock markets® volatility can be characterized as a long memory process.
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conditional heteroskedastic (ARCH), generalized ARCH (GARCH), exponential
GARCH (EGARCH) or standard (short-memory) stochastic volatility models. 2

In light of these recent findings and the limitations of short-memory models
of stochastic volatility in this paper we propose a new time series representa-
tion of persistence in conditional volatility that we call a long memory stochastic
volatility model (LMSV).?> The LMSV model is constructed by incorporating an
ARFIMA process in a standard stochastic volatility scheme. We show that the
parameters of the LMSV models can be estimated by applying a frequency do-
main likelihood estimator.* The finite sample properties of the spectral likelihood
estimator are evaluated by means of a Monte Carlo study.

The LMSV model has several advantages. First, because it is well-defined
in the mean square sense many of its stochastic features are easy to establish.
Second, because it has well-known counterparts in models for level series it
inherits most of the statistical properties of those models.

The rest of the paper proceeds as follows. In Section 2 we review models
of persistence in volatility (i.c. fractional GARCH and EGARCH models) and
introduce the long-memory stochastic volatility model. In Section 3 we present
further empirical evidence on the relevance of long memory by testing the null
of short memory for proxies of the conditional variances in an extensive set of
US stock return indexes. In Section 4 we discuss a Whittle-type estimator for the
LMSV model parameters obtained by maximizing the spectral approximation to
the Gaussian likclihood. We present finite-sample simulation evidence about the
properties of the estimators and, as an example, we study the daily returns for
the value-weighted CRSP market index. In Section 5 we conclude. Proofs are
found in the appendices.

2. Models of persistence in volatility

Following Brockwell and Davis, (1991) we state that a weakly stationary pro-
cess has short memory when its autocorrelation function (ACF), say p(h), is
geometrically bounded

o) <Cr™ for some C>0, 0<r<]1.

In contrast to a short-memory process with a geometrically decaying ACF, a
weakly stationary process has long memory if its ACF p(-) has a hyperbolic

* See Bollerslev et al. (1992) for a review of ARCH and GARCH-type models, and Taylor (1994)
for a recent review of stochastic volatility models.

T Harvey (1993) independently proposed a stochastic volatility model driven by fractional noise
and applied it to exchange rate series, obtaining smoothed estimates of the underlying volatilities.

4 This work was directly motivated by the empirical results of de Lima and Crato (1993).
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decay,
p(h) ~ Ch**~' as h — oo,

where C #0 and d <0.5 (e.g., Brockwell and Davis, 1991, Section 13.2). Alter-
natively, we can say the process has long memory if its spectrum f(4) has the
asymptotic decay

f(A)~CJAI=* as A—0 with d #0. (1)

If, in addition, d >0, then the autocorrelations are not absolutely summable,
3" |p(h)] =00, and the spectrum diverges at zero, f(4)Too as A—0. In this
case we conclude that the process is persistent. For a discussion of alternative
long-memory characterizations see Sections 2.2 and 2.3 of Baillie (1996).

2.1. GARCH and EGARCH models

Following Engle (1982), Bollerslev (1986) and Nelson (1991), let the predic-
tion error ), satisfy

nw=0d,

where {&,} is independent and identically distributed (i.i.d.) with mean zero and
variance one, and o7 is the variance of y, given information at time #— 1. Among
the most successful specifications for the conditional variance o} are the GARCH
and EGARCH models. A GARCH specification is given by

q ,J
k) 2 2
a; =+ Zl oy + 3 a4y (2)
= j

where w>0. Constraints on {b;} and {a;} are discussed below. More compactly,
we can write Eq. (2) as

b(B)al = w + a(B)y?,

where B is the backshift operator (B/v,=v,—;, j=0,%1,£2,...), b(z)=1 - bz
— o =b,z? and a(z)=ajz + -+ + apz’.

As an alternative to the GARCH specification, Nelson (1991) proposes the
Exponential GARCH (EGARCH) model

loga‘,z = + i)'ﬁjg(él-j—l), Y =1, (3)
j=

where no restriction is needed for the signs of the coefficients. The function g(-)

may be chosen to allow for asymmetric changes, depending on the sign of ¢;.
It is known that the GARCH model (Bollerslev, 1986) can also be written in

an ARMA(max{p,q},q) form, with the process {y?} being driven by the noise
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v, = y? — ¢2. From this representation it is clear that the autocorrelation function
for {y?} has a short-memory geometric decay.

EGARCH models have the general representation as in (3), but they are also
usually parameterized with weights {y;} corresponding to an ARMA( p,q). Thus,
the usual EGARCH specification can be written as:

d(B)(loga? — pt,) = 0(B)g(&i—j-1),

where ¢(z)=1~-d1z—---— PzP #0 for |z| <1 is an autoregressive polynomial,
0@z)=1+0,z+---+0,27 is a moving average polynomial and 6(z) has no roots
in common with ¢(z).

The empirical evidence previously discussed points in the direction of long
memory, both in the squared process {y?} and in the process of log squares
{log y?}. This contrasts with the usual short-memory formulations of GARCH
and EGARCH models. We will look for the formulation of models with persistent
properties.

2.2. Long-memory GARCH models

In order to accommodate the findings of long memory, a sensible approach
is to generalize GARCH models by using fractional differences, along lines ear-
lier suggested by Robinson (1991, p. 82). The fractional differencing operator is
defined through the expansion
= I'(j-d)

| - By = s,
( ) ,Z(, r'(j+ DIr(-d)

from which Baillic et al. (1996) formulated the fractionally integrated GARCH
(FIGARCH) model

(1 - B)"nb(B)(r;,2 - ,u)z::a(li')(y,2 — ).

Baillie et al. (1996) suggested quasi-maximume-likelihood estimation methods for
this model.

In order to have a well-defined process, the parameters {a;}, {b;}, and d are
constrained so that the coefficients y; in the representation

ol =p+(1 - By “a(B)b~\(B)y} = + f: l/{,-(y,z_,_j - 1), (4)
Jj=0

are all nonnegative. Otherwise we have a2 <0 with a positive probability. This
implies that the parameters {a;} and {b;} are constrained as in the standard
GARCH models. This also implics that the parameter d is constrained to be
positive, and so Z;";o Y¥; = oo. However, this means that the sum of all coefficients
is greater than one. It follows from a now standard result in Bollerslev (1986)
that {y} is not covariance stationary. Consequently, the autocovariance function
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(ACVF) of the process {)7} is not defined,® the series 2y Y(y2,_; — p)
is not defined in L2, and the use of spectral and time-domain autocorrelation
methods is not justifiable in a standard way. In addition, initializing the quasi-
likelihood, which is usually done with unconditional moments of out-of-sample
62, can be problematical, although Baillie et al. (1996) reported good results for
the quasi-maximum-likelihood estimation method.

As an alternative, Nelson (1991, p. 352) notes that persistence can be mod-
eled in the log squares with a long-memory specification of an EGARCH model.
Bollerslev and Mikkelsen (1996) have explicitly formulated a fractionally inte-
grated EGARCH model of the form

log 62 = p, + O(B)$(B) (1 — B)g(¢:-1), (5)

where ¢(z) and 6(z) are defined above. This generalization of EGARCH with
fractional noise gives a strictly stationary and ergodic process. The condition
for the covariance stationarity of {loga? — p,} is 32,7 <1 (Theorem 2.1 of
Nelson, 1991), which is satisfied for a parameter value d < %

EGARCH models have the convenient feature that the coefficients in the mov-
ing average expansion (5) are not restricted to be positive. However, asymptotic
results about the estimators have proven to be extremely hard to obtain, even
when d =0.

2.3. A long memory stochastic volatility model

In this subsection we introduce a different approach, based on stochastic volatil-
ity (SV) models similar to those discussed by Melino aind Turnbull (1990) and
Harvey et al. (1994).

The stochastic volatility model is defined by

nw=a0s, o =ocexp(v/2), (6)

where {v,} is independent of {&}, {&} is independent and identically distributed
(i.i.d.) with mean zero and variance one, and {v,} is an ARMA model.

The long memory stochastic volatility (LMSV) model we now introduce is
defined by (6) with {v,} being a stationary long-memory process.

Restricting our attention to a Gaussian {v,}, it follows that { v} is both covari-
ance and strictly stationary. Denote by y(-) the ACVF of {v}. The covariance
structure of y, is obtained from properties of th: lognormal distribution:

E[»] =0, Var(y ) = exp{7(0)/2}¢? and
Cov( v, yr4n)=0 for h#0,

5 However, this model displays the important property of having a bounded cumulative impulse-
response function for any d <1 as Baillie et al. (1996) have shown.
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so that {y,} is a white noise sequence. In fact, {y,} is a martingale difference,
a property inherited from {&,}. An appealing property of this model in terms of
its empirical relevance is the excess kurtosis displayed by y;, which is

E[y]
EL/P
when the driving noise {&;} is Gaussian.

The process {)?} is also both covariance and strictly stationary. Moments of
y? are again obtained from properties of the lognormal distribution:

E[)7] = exp{3(0)/2}0?,
Var(y?) = o*[{1 + Var(&})} exp{27(0)} — exp{1(0)}],
Cov(y2, y2.,) = a*[exp{y(0) + y(h)} — exp{7(0)}] for h #£0.

The series is simple to analyze after it is transformed to the stationary process

~3=3(exp{y(0)} - 1)

x; = log y? = log &® + E[log &] + v, + (log & — E[log £%])
=N+ 0+ &,
where {¢} is i.i.d. with mean zero and variance 2. For example, if ¢, is standard
normal, then log &2 is distributed as the log of a x} random variable, E[log £2] =
-1.27 and g? =n?/2 (Wishart, 1947).
The process {x;} is thus a long-memory Gaussian signal plus an i.i.d. non-

Gaussian noise, with E[x,] = u and

o) = Covixnxen) = y(h) + 6314 - o). (7)

where /i, g} is one if h=0 and zero otherwise. It turns out that the ACVF of
the process {log)?} is the same as that of a fractionally integrated EGARCH
model whenever d; =0 (see Appendix 2).

A simple long-memory model for {v,} is the fractionally integrated Gaussian
noise defined as the unique stationary solution of the difference equations

(1 =BY'u=n. {m} iid N©.q}), (8)

where d € (-0.5,0.5). The spectral density, ACVF, and ACF of {v,}, denoted by
SC), y(), and p(-), respectively, are given by

2
“y a a i ] - "
Y=g e =4, —r<ign,

W0) = a2 r(1 = 2d)/I*(1 - d),
- I'th+d)r(1 —d)

rth—-d+0)rady
(e.g., Brockwell and Davis, 1991, p. 522).

p(h) h=1,2,...
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More generally, {v,} can be modeled as an ARFIMA( p,d.q), defined as the
unique stationary solution of the difference equations

(1 - BY ¢(Byo, =0(B)y.,  {m} i.id. N(O,G?). 9)
The spectral density of {x,}, denoted by f(-), is then given by

a216(e~*)|? o2
n % .
T — e~ 2| g(e—1%)2 tog TESAST (10)

2= 5~

where f=(d, 67,62, ¢d1,....¢0p, 0., 0,).

3. Evidence of long memory in volatility

In this section we formally test for the existence of long memory in the volatili-
ties of stock markets’ series. This is achieved by analyzing two traditional volatil-
ity proxies, namely the squared series and the logarithm of the squared series.

3.1. Testing for long memory in volatility

There are several methods to test for long memory, ranging from fully paramet-
ric to nonparametric approaches. The present paper uses both a semiparametric
and a nonparametric test.

The first test is implemented by regressing the logarithm of the periodogram at
low frequencies on a function of the frequencies; the expected slope is dependent
on the long-memory parameter d, as can be seen from Eq. (1). This method was
introduced by Geweke and Porter-Hudak (1983) and developed by Robinson
(1993).

Geweke and Porter-Hudak suggest the use of only the first ordinates of the
periodogram, up to my, say, and argue that the resulting regression estimator for d
could capture the long-memory behavior without being ‘contaminated’ by the
short-memory behavior of the process. Further, Robinson suggests an additional
truncation of the very first ordinates, up to my, say, in order to avoid biases.
However, no clear rule exists about the choice of either my or my. Therefore,
we adhere to the common practice of experimenting with a few different values.
To test the null hypothesis of short memory against long-memory alternatives, we
perform the usual ¢-test for the hypothesis that d =0 against d # 0. The standard
deviation is obtained from the output of the regression.

It should be emphasized that we will apply this regression as a test of short
memory without assuming any particular form of long-memory alternatives. The
asymptotics in Eq. (1) define long-memory processes.
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The second test used in this paper is the normalized rescaled range, the R/S
statistic (see, e.g., Beran, 1994). The adjusted range R is defined as

] k
R(n)= max { 3 X,-—k./\-’}— min {ZXi—kX’},
1

Igk<sn { j= Isksn | jo

where X represents the sample mean. The normalization factor S can be defined
as the square root of a consistent estimator for the variance, given by

q
S mg)= 3 we(J)0),
J=-q
with #(j) representing the usual estimators for the autocovariances. The weights
w,(j) we used are those from the Bartlett window. The R/S statistic is
_ R(n)
S(n,q)’

Q(n,q)

and when ¢ =0 we have the classical R/S statistic of Hurst. The so-called Hurst
exponent J is cstimated as

log Q(n,q)

Jing) = logn

If only short memory is present, then J(n,q) converges to % If persistent long

memory is present, then J(n.¢) converges to a value larger than l (see, ¢.g.,
Mandelbrot and Taqqu, 1979).

If a process satisfies a set of regularity conditions, including the existence of
moments of order 449, with 0>0, Lo (1991) shows that under the short memory
null the statistic ¥'=n""2Q(n,q) converges weakly to the range of the Brownian
bridge on the unit interval. The distribution function for this range, say Fy, is

Fv(v)= Z (|‘4l’2k2)e"2":":_

h=—nc

If a short-memory process does not have finite second-order moments then the
classical Hurst estimate J(n,0) still converges to % as discussed in Mandelbrot
and Taqqu (1979). Therefore, the estimate J(n,0) continues to provide an in-
dication of long memory. However, no distribution theory is available in this
case.

In the absence of clear rules for the choice of ¢, we experimented with a few
values. First, we used ¢ =0, corresponding to the classical estimate. Second, we
used ¢ =¢*, chosen by Andrews’ (1991) data-dependent formula as in Lo (1991,
p. 1302). Finally, we tried ¢ =200 in an attempt to yield statistics which are
more robust against short-memory effects.
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3.2. Finite sample performance of the long-memory tests

In this section we consider the finite sample performance of the spectral regres-
sion test and the R/S analysis under both short and long memory. The generated
processes were long memory (d # 0) and short memory (d = 0) stochastic volatil-
ity models, defined in Eqgs. (6) and (9) above. Here, we focus on detecting long
memory in the log-squared observations; results for the squared observations are
qualitatively similar. An analogous Monte Carlo study for long memory in the
levels series is reported by Cheung (1993).

In designing this simulation experiment, we chose as a short memory bench-
mark the first-order autoregressive stochastic volatility (ARSV) model given by
Egs. (6) and (9) with p=1, d =0 and ¢=0. This model has been studied ex-
tensively; see Jacquier et al. (1994) and the refererces therein. We chose four
ARSYV parameter settings from Table 4 of Jacquier et al. (1994). To make the
LMSYV results comparable, we chose for each ARSV model an ARFIMA(O, 4, 0)
LMSV model which matched the ARSV parameterizations in two ways: first, the
ratio

Var(a}? )/E*[d}]

is the same for both models (implying that the excess kurtosis of y, is the same
for both models), and second, the lag-one autocorrelation of v, is the same for
both models. Under these parameterizations, the job of distinguishing long and
short memory is quite challenging. Finally, we consider an ARFIMAC(l1, d, 0)
LMSV model similar to the one fitted to the value-weighted CRSP data in
Section 4.3. All processes are simulated with ¢, and 5, Gaussian.

Simulation means and standard deviations over 1000 simulated realizations of
each model are given for the spectral regression test in Table 1. The table also
presents the proportion of rejections of the short-memory null hypothesis d =0,
using the standard r-test with nominal significance level 0.05. Some conclusions
from the results reported in Table | are as follows:

e Under the short-memory null, the size of the test is not far from nominal if
the upper truncation is taken to be less than [#%%]; [n%%°] seems to be an
appropriate choice. For this sample size, larger upper truncations have little
value: they distort the size under short memory and bias the point estimates
under all models considered.

e The spectral regression test has high power against all the long memory mod-
els considered. Power is lower for the third and fourth LMSV models, since
these models have a weaker long memory signal (i.e., a smaller value of
Var(a?)/E*[d?]) than the first and second LMSV models.

e The point estimates of d under long memory have large negative biases, which
increase with my, reflecting contamination by short-memory effects. Even with
this downward bias, estimates of  under long memory are clearly different
from those under short memory.
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Table 1

Finite sample performance of the spectral regression tests and the R/S analysis under stochastic
volatility (Simulation means and standard deviations (in parentheses) over 1000 replications of esti-
mated d parameters and of Hurst exponents J(#,q). Also reported is the proportion of rejections of
the short-memory nuil hypotheses d =0 and J = % using two-sided tests with nominal significance
level 0.05. The 4 parameters were estimated by spectral regression using the periodogram of the
log squares. Indices of the Fourier frequencies used in the regression have a lower truncation at
my = [n®!] and different upper truncations my = [n*] with u =0.45, 0.50, and 0.55. Hurst exponents
J(n,q) were estimated from log squares with q=0, g =g, which is the value chosen by Andrew’s
data-dependent formula, and ¢ = 200. Sample size is n =6144.)

- Y

Model du=04s du=0s0 du-0ss J(.0) J(ng*) J(n200)
ARSV: ¢ =09, a;,z = 045 0.031 0.061 0.112  0.627 0.549 0.522
(0.118) (0.089) (0.070) (0.025) (0.025) (0.022)
Rejection proportion 0057 0.110 0.388 0.190  0.024
LMSV: d = 047, a,,z = 0.37 0423 0392 0356 0707 0.669  0.562
(0.120) (0.087) (0.067) (0.039) (0.032) (0.023)
Rejection proportion 0923 0992 0999 0.997 0.428
ARSV: ¢ = 0.95, o,f =0.23 o1t 0189 0278 0661  0.571 0.522
(0.115) (0.088) (0.069) (0.027) (0.026) (0.023)
Rejection proportion 0.145 0562 0978 0.507 0.030
LMSV: d = 0.49, rr,,z =0.19 0384 0348 0307 0.688 0.667 0.564
(0.121) (0.089) (0.070) (0.039) (0.034) (0.023)
Rejection proportion 0885 0965 0988 0.995 0.438
ARSV: ¢ = 0.9, o;;’- =013 0026 0049 0.085 0.585 0556 0.523
(0.119) (0.085) (0.067) (0.026) (0.025) (0.021)
Rejection proportion 0.054 0083 0238 0285  0.025
LMSV: d = 047, qf 0.11 0.302 0263 0224 0651  0.643  0.502
(0.121) (0.089) (0.068) (0.039) (0.036) (0.024)
Rejection proportion 0.704 0832 0907 0.967 0.399
ARSV: ¢ = (.95, rr,f = 0.07 0.092  0.157 0221 0614  0.581 0.523
(0.117) (0.086) (0.067) (0.027) (0.026) (0.022)
Rejection proportion 0.133 0425 0906 0.651 0.026
LMSV: d = 049, o,;’* = 0.05 0255 0212 0176 0629 0626  0.560
(0.120) (0.091) (0.069) (0.038) (0.037) (0.023)
Rejection proportion 0.587  0.665 0.746 0929 0362

LMSV: o = 044, ﬂ;,2 = 0003, ¢ =093 0459 0455 0442 0717 0677  0.560
(0.121) (0.092) (0.068) (0.038) (0.030) (0.024)
Rejection proportion 0557 0998  1.000 0998  0.366

Simulation means and standard deviations for the R/S analysis over 1000 sim-
ulated realizations of each model are also provided in Table 1. Some general
conclusions that follow from the results in Table | are as follows:

e Long and short memory are distinguishable.
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e The classical Hurst exponent is substantially larger than % under the short
memory models we have considered.

e Andrews’ data-dependent formula for choice of g goes a long way toward
reducing the bias of the classical Hurst exponent, though J(n,q*) is still above
1 on average.

e The Hurst exponents estimated with values of g =200 provide some robustness

against even highly correlated short memory.

The overall conclusions from these tables are that the spectral regression tests
and the R/S analyses can be useful indicators of long memory in stochastic
volatility, but as with any asymptotic tests, they should be interpreted with cau-
tion. We recommend that additional diagnostics, in particular the shape of the
estimated autocorrelation function, be used to help assess the usefulness of LMSV
in any particular application.

3.3. Empirical evidence

The tests for long memory were performed over several market indexes’ daily
returns. The data and the designations used in the tables are as follows.

From the Center for Research in Security Prices (CRSP) tapes we used series
starting on the first trading day of July 1962 and ending on the last trading
day of July 1989. We computed returns for both the equally weighted and the
value-weighted data, here denoted ECRSP and VCRSP, respectively.

Using the same raw data, we also constructed the excess returns series based
on the monthly Treasury bill returns. We followed the usual simplification of
assuming the riskless returns were constant within ecach month and subtracted
these latter returns from the ones in the stock market indexes.

We have also used the long series constructed by Schwert (1990), comple-
mented with the more recent CRSP value-weighted index. This series, here de-
noted SCHWERT, spans from the first trading day of February 1885 to the last
trading day of 1990.

In each case, in order to whiten the series of returns, we followed the usual
practice of first removing any apparent correlation in the data, namely the day-
of-the-week and the month-of-the-year effects, by applying standard filters.

For each of the series we applied the long-memory tests over the squared
returns and the logarithms of the squared returns.

In the first three columns of Table 2 we show the results of the spectral
regression tests. We immediately note that in almost all cases and all series
the tests are highly significant, even when the high-frequency cut-off is severe
(u=0.40). Interestingly, the memory of the volatilities is reduced when the excess
returns are computed. In the case of the equaily weighted index the tests are less
significant. In some cases, they do not reject the null of sole existence of short
memory in the volatilities. We note, however, that the equally weighted indexes
are economically much less sensible as representatives of the overall financial
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Table 2

Resulis of the spectral tests and the R/S analysis (The integration parameters d are estimated with a
lower truncation at sy = [#%1] and different upper truncations my = [n*] with « = 0.45, 0.50, and 0.55.
Hurst sxponents J(n,q) are estimated with g =0, ¢ =g*, which is the value chosen by Andrew’s
data-dcpendent formula, and ¢ = 200. Unilateral test p-values for d and for ¥V =n—'2Q(n,q) are
displayed within parentheses. )

- -

Series dy=045 du=050 dy=055 Jn,0)  J(ng*) J(n,200)
VCRSP 0.295 0314 0.435 0.740 0.671 0.567
(Jul62-Jul89) (0.003) (0.000) (0.000) (0.000) (0.036)
InVCRSP 0.382 0.342 0.365 0.732 0.696 0.575
(Jul62-Jul89) (0.002) (0.000) (0.000) (0.000) (0.015)
ECRSP 0.333 0.218 0.295 0.696 0.619 0.538
(Jul62-Jul89) (0.024) (0.029) (0.000) (0.000) (0.232)
InECRSP 0.263 0.186 0.248 0.703 0.667 0.565
(Jul62-Jul89) (0.020) (0.018) (0.000) (0.000) (0.044)
ExRt-VCRSP 0.075 0.011 0.153 0.618 0.566 0.517
(Jul62-Jul8S) (0.140) (0.006) (0.000) (0.039) (0.591)
InExRt-VCRSP 0.446 0.391 0.347 0.746 0.703 0.583
(Jul62-Jul89) (0.001) (0.000) (0.000) (0.000) (0.005)
ExRt-ECRSP 0.032 0.063 0.101 0.588 0.519 0.490
(Jul62-Jul89) (0.316) (0.099) (0.003) (0.562) (0.908)
InExRt-ECRSP 0.346 0.322 0.303 0.660 0.650 0.557
(Jul62-Jul89) (0.005) (0.001) (0.000) (0.000) (0.061)
SCHWERT 0.781 0.482 0.407 0.742 0.667 0.560
(Feb1885-Dec1990) (0.000) (0.000) (0.000) (0.000) (0.000)
INSCHWERT 0.582 0.540 0.501 0.736 1.684 0.593
(Feb1885--Dect990) (0.000) (0.000) (0.000) (0.000) (0.000)
VCRSP 0.399 0.432 0.409 0.667 0.652 0.546
{Jan78-SepR7) (0.008) (0.000) (0.000) (0.000) (0.240)
InVCRSP 0.437 0.380 0.384 0.653 0.653 0.550
(Jun78-Sep87) (0.003) (0.000) 0.000) (0.000) 0.197)
ECRSP =0.019 ~0.072 -0.017 0.654 0.603 0.561
(Jan78-Sep87) (0.460) (0.287) 0.427) (0.002) (0.106)
InECRSP 0.165 0.168 0.142 0.660 0.650 0.557
(Jan78-Sep87) (0.164) (0.107) (0.073) (0.000) (0.131)
ExRt-VCRSP 0.399 0435 0.410 0.667 0.652 0.546
(Jan78-Sep87) (0.005) (0.000) (0.000) (0.000) (0.238)
InExRt-VCRSP 0.408 0.351 0.335 0.654 0.654 0.551
(Jan78-Sep87) (0.011) 0.002) (0.000) (0.000) (0.189)
ExRt-ECRSP -0.017 -0.071 -0.016 0.654 0.603 0.561
(Jan78-Sep87) (0.464) (0.228) 0.121) 0.002) (0.106)
InExRt-ECRSP 0.244 0.240 0.190 0.661 0.651 0.555
(Jan78-Sep87) (0.082) (0.047) (0.032) (0.000) (0.149)

Abbreviations used in the table are as follows.

VCRSP: squared returns from the filtered value-weighted CRSP series
ECRSP: squared returns from the filtered equally weighted CRSP series
In: logarithms of the squared return series

ExRt: series of excess returns
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markets’ activity than the value-weighted ones. Finally, it is interesting to note
that the log squared series reveal the existence of a considerably more significant
long-memory component.

In the last three columns of Table 2 we show the estimates J(n,q) and the
p-values for the statistic ¥ =n"12Q(n,q) for all the series described. All esti-
mates point in the direction of persistent long memory. The J estimates computed
with Andrews’ (1991) data-dependent formula are highly significant for all series
but the squared excess returns of the equally-weighted index. When the number
of lags g increases, the significance of all statistics is reduced, as it is natural
to expect in persistent processes. Even so, most of the computations show J
estimates significantly larger than 21

These tests can be questioned on the grounds that long data sets may display
nonstationarity in the variances and that we may be detecting nonstationarity
instead of long memory. In particular, the evidence indicates this for the Schwert
long indexes, since some d estimates are larger than % Diebold (1986), among
others, interprets the findings of persistence in volatility as the outcome of shifts
in the unconditional variances.

We complement the results with tests for shorter series, beginning with January
1978 and ending in September 1987. These shorter series avoid the crashes of
1976 and 1987 and display a period known for its relatively stable volatility.

The same tests, reproduced in the second part of Table 2, continue to reveal
long memory in the conditional variances, with the exception of the already noted
equally weighted index. This fact is significant and suggests that long-memory
models provide an alternative to nonstationarity for volatility modeling.

4. Estimating an .LMSV model

The exact likelihood of the parameter vector f# given (vi....,»,) involves
an n-dimensional integral and as a consequence is extremely difficult to evalu-
ate. Jacquier et al. (1994) have developed a Markov chain simulation methodol-
ogy for likelihood-based inference in an autoregressive stochastic volatility model
(ARSV). Their algorithm, a cyclic independence Metropolis chain, requires spec-
ification of prior distributions on all parameters and relies heavily on the special
Markovian structure of pure autoregressive processes. Other simulation-based es-
timation methods for the first-order ARSV exist, see, e.g., Danielsson (1994), but
it is not clear whether they apply to more general stochastic volatility models.
However, these methods are computationally intensive. Here we consider simpler
estimation strategies since the LMSV model is far more complicated than the
ARSV model.

Other methods for estimation from SV models have been proposed. A method
of moments (MM) estimator, which avoids the problem of evaluating the likeli-
hood function, was suggested by Taylor (1986) and Melino and Turnbull (1990).
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While easy to implement, MM estimators for parameters in the ARSV model have
a number of disadvantages. The MM method seems relatively inefficient when
some kind of persistence in the autocorrelations is present, as it is the case of
nearly nonstationary AR models (see Jacquier et al., 1994; Anderson and Soren-
son, 1994, for a discussion). Moreover, the choice of appropriate moments can
be problematic.

Though the process {x;} is non-Gaussian, a reasonable estimation procedure is
to maximize the quasi-likelihood, or likelihood computed as if {x,} was Gaussian
with ACVF 7.(h). See Nelson (1988) and Harvey et al. (1994) for discussion of
QML in the context of short-memory stochastic volatility models. In the context
of ARFIMA models, exact computation of the quasi-likelihood is possible (e.g.,
Sowell, 1992). However, it presents convergence problems and is extremely slow
especially for long time series. An alternative version of this method can be
conceived for LMSV models. However, the computational problems are likely to
be amplified.

We suggest a spectral-domain estimator. This is a computationally simple
method for which we provide an asymptotic characterization.

4.1. The spectral-likelihood estimator

A simple alternative to maximizing the time-domain Gaussian-likelihood is to
maximize its frequency-domain representation, as discussed in a long-memory
context by Fox and Taqqu (1986), Dahlhaus (1989) and Giraitis and Surgailis
(1990). The simulation results of Cheung and Diebold (1994) suggest that
spectral-likelihood estimators have efficiency comparable to exact QML estimators
when the process has an unknown mean. The following result gives the strong
consistency of estimators obtained by minimizing the negative of the logarithm
of the spectral likelihood function,

n/2)

) - ! . li(wk)
L(B)=2nn"" {1 " _éw-},
(f)=2nn AZ. °gj"(”‘)+/,,(wk) (11)

where [] denotes the integer part, w; = 2mkn~! is the kth Fourier frequency, and

3

2
l n - | n ©
L(wg)=— | Yxcosant ) + =— | D x, sinewyt
T e \ = . 2nn ! 4

2 =1
is the Ath normalized periodogram ordinate. For a general justification of the
method see, e.g., Beran (1994, chapter 6).

Theorem 1. Assume that the parameter vector
— 2 2 ’
p=d,6,.6 )1 ....¢p0,....00)

is an element of the compact parameter space @ and assume that f(w) =
S (@) for all w in [0,w) implies that B, = B>, where fz(-) is defined in (10).
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Let B, minimize (11) over @ and let By denote the vector of true parameter
values. Then B, — Bo almost surely.

The proof is provided in Appendix A.

Remarks. 1. The proof follows Dahlhaus (1989) in avoiding the special param-
eterization of Fox and Taqqu (1986). Dahlhaus’ (1989) result is not directly
applicable to our case because his explicit assumptions include Gaussianity and
his objective function is an integral version of (11). For the non-Gaussian case,
we verify Dahlhaus® remark (p. 1753) that his results extend to the function (11).

2. The componen |1 — e~ |72 =(v/2 = 2cos 1)~ of f3(/4) introduces in the
likelihood a term proportional to

[n/2]
d Y log(2 — 2coswy)2nn'; (12)
k=1

the corresponding integral is improper, but converges to zero (see Appendix A).
In the course of the proof, we show that the effect on the estimators of dropping
the term (12) is negligible.

3. The identifiability condition in Theorem 1 is met if > is known from an
assumed distribution for &; for example, & ~N(0,1) implies g2 =n2/2. If 62 is
not known, the model is identifiable only if the ARFIMA component is not white
noise; that is, if ¢, #0 for some p, 0, #0 for some g, or d #0.

4.2. Finite sample properties of the spectral likelihood estimator

This subsection presents a simulation study of the finite sample properties of the
maximum-likelihood spectral estimator previously proposed. In this experiment
we consider two different sample sizes (n = 1024 and n =4096) and three classes
of LMSV models given, respectively, by ARFIMA(0, d, 0), ARFIMA(1, d, 0),
and ARFIMAC(I, d, 1). Within each class of models, several combinations for
the parameters of these models are considered — see Table 3. The variance of
the i.i.d. innovations in the ARFIMA component are set to one as well as the
variance of the noise component.

All the results reported in this section are obtained from 1000 realizations of
each model. Table 3 presents simulation means and standard deviations for the
parameter estimates. Fig. |1 presents box plots for some of the models considered
in the simulation. The cases considered in this figure are representative of the
overall results.

Some general conclusions from the table and the box plots are:

e Maximum likelihood estimation in the spectral domain perform well for rel-
atively large samples, such as those found in the high frequency financial
markets’ data.
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Table 3

Finite-sample results for the spectral-likelihood estimator

(For each model and set of parameters, 1000 replications were performed with length » = 1024 and
n =4096. The LMSV model parameters are given within parentheses. The values in the table represent
the simulation means and standard deviations (in parentheses) for the estimated parameters.)

Parameters ¢ d 0
6.d.0
n=1024 =409 n=1024  2=409  n=1024  n=409
(0,—0.4.,0) —0.550 -0.419
(0.550) (0.189)
0. -0.2,0) -0.337 -0.223
0.521) (0.152)
(0,0.0,0) —-0.0678 —0.0169
(0.296) (0.107)
(0,0.2,0) 0.189 0.196
(0.187) (0.042)
(0,0.4.0) 0.407 0.401
(0.086) (0.036)
(0.8, -04.0) 0.756 0.781 -0.369 -0.389
(0.169) 0.114) (0.234) 0.172)
(0.8,—-0.2.0) 0.771 0.795 -0.211 -0.215
(0.157) (0.081) (0.207) (0.129)
(0.8.0.0,0) 0.773 0.797 -0.0213 -0.0142
(0.147) (0.063) (0.188) (0.101)
(0.8.0.2.0) 0.774 0.798 0.180 0.187
(0.158) (0.087) (0.191) (0.096)
(0.8.0.4,0) 0.774 0.797 0.181 0.394
(0.147) (0,082) (0.196) (0.088)
(0.4,-0.4.0) 0.360 0,391 ~{.420 ~0.400
(0.300) (0.228) (0.389) (0.247)
(0.4,-0.2.0) 0.398 0.435 -0,242 -(.2585
(0.293) (0.212) 0271 (0.213)
(0.4,0.0,0) 0.434 0.427 -0.0828 —-0.0423
(0.279) (0.169) 0.233) (0.145)
(0.4,0.2,0) 0.425 0.403 0.142 0.191
(0.250) (0.121) 0.172) (0.059)
(0.4,04,0) 0.373 0.390 0.382 0.399
(0.240) (0.112) (0.129) (0.046)
(0.8.0.2,0.3) 0.788 0.800 0.161 0.186 0.319 0.134
(0.128) (0.050) (0.175) (0.083) (0.521) (0.378)
(0.8.0.2,-0.3) 0.908 0.839 0.167 0.183 0.308 0.144
(0.251) (0.134) (0.172) 0.093) (0.530» (0.368)
(0.4,0.2.0.3) 0.345 0.371 0.128 0.188 0.303 0.114
0.410) (0.243) (0.204) (0.067) (0.525) (0.373)
(0.4.0.2.-0.3) 0.399 0.394 0.123 0.187 0.277 0.0864
(0.374) (0.229) 0.210) (0.060) {0.555) (0.400)
(0.8,0.4,0.3) 0.790 0.802 0.367 0.390 0.320 0.147
(0.113) (0.050) 0.177) (0.088) (0.548) (0.403)
(0.8,04,-0.3) 0.978 0.893 0.369 0.388 0.349 0.188
(0.316) (0.190) 0.172) (0.089) (0.557) (0.422)
(0.4,0.4,0.3) 0.302 0.365 0.362 0.393 0.371 0.177
(0.419) (0.220) 0.151) (0.050) (0.551) (0.426)
(0.4,04.-0.3) 0.395 0.374 0.348 0.394 0.297 0.147

(0.352) (0.221) (0.172) (0.051) (0.587) (0.427)
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Fig. 1. Boxplots represent the deviations of the estimated parameters from the true values.

341

e The biases arc relatively small and decrcase uniformly from n=1024 to
n=4096. The increase in the sample size also reduced significantly the dis-

persion of the results.

e The box plots in Fig. 1 also show that some less positive aspects of the
results obtained for n=1024 tend to be smoothed out for n=4096, namely,
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the asymmetry of the distribution of the estimates. An extreme case was the
LMSV model with an ARFIMA(0, —0.4,0) component.

e The maximum-likelihood spectral estimator provides less biased and more pre-
cise parameter estimates in processes in which the fractional parameter d was
positive. This includes both the estimate of d and the estimates of the other
parameters in the model.

e The performance of the maximum-likelihood spectral estimator in small sam-
ples might be less than ideal as is illustrated by the box plots of the smaller
sample size. Moreover, somc very large outliers occurred when n = 1024.

e The procedure encountered some difficulties in estimating the moving average
term, even when the number of observations was 4096 (although the magnitude
of the problem decreased for the larger sample size).

Given the overall good performance of the estimator when n =4096, these sam-
pling experiments indicate that maximum-likelihood spectral estimation of LMSV
models may be a very effective method for the type of financial applications that
have led to this line of research.

Moreover, this maximum-likelihood estimator is easy to implement. Conver-
gence for a LMSV model with an ARFIMA(O, d, 0) component and »n = 4096
was typically attained in less than 20 iterations and less than 4s of CPU time
on a Pentium 100 MHz. ¢

4.3. Modeling volatility of stock returns

Nelson (1991) introduces the EGARCH model using as an example the daily
returns for the value-weighted market index from the CRSP tapes for July 1962-
December 1987, He selects an ARMA(2, 1) model for log 67 and finds the largest
estimated AR root to be 0.99962, suggesting substantial persistence,

For comparison, we fitted a model with long-memory stochastic volatility to
the log squares of the VCRSP series described in Section 3.3 above This log
squared series, denoted {x,}. consists of n=6801 mean-corrected observations
modeled as

Xp == Uy + &,

where {&} is i.id. (0.47) independent of {r,} and {r,} is the ARFIMA(I, d, 0),
(1 - BY(1 - B, =n,,

with {5} iid. (0,6?).

®In these simulations we used the set of routines for maximum likelihood estimation provided
by the GAUSS programming language. The algorithm used is the derivative-based procedure of
Broyden, Fletcher, Goldfarb, and Shanno, as described in the GAUSS manual. Analytical derivatives
were provided. The code is available from the authors upon request.
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Fig. 2. Empirical and fitted autocorrelation functions for the log squares VCRSP series.

The spectral likelihood for the x,’s was formed as in Eq. (11) replacing (12)
with zero, which we have found useful though this needs further invc.slig,ation.
The rusullmg, likelihood was nmxlmued with respect to the paramcters ,, .d, ¢

and a? yiclding the estimates a =0.00318, d = 0.444, ¢ =0.932 and (r =5.238.

Fu, 2 shows the cmplrlcal and fitted autocorrelations for the series {x,}.
The empirical autocorrelations show a slow decay, remaining non-negligible for
hundreds of lags. The ACF of the fitted LMSV model was derived from the
ARFIMA(1, d, 0) formulae in Hosking (1981) and adjusted for the bias due to
the existence of long memory as in Theorem 5 of Hosking (1995). In Fig. 2, the
bias-adjusted ACF for LMSV accurately reflects the slow decay of the empirical
ACF.

We also fitted short-memory GARCH and EGARCH models as well as an
IGARCH model to the same VCRSP series. In order to compare the properties
of fitted GARCH, IGARCH, EGARCH, and LMSV models with the observations,
we computed the autocorrelations of the fitted models and plotted them against
the sample autocorrelations of the series. The order of the models was selected
by SIC.

As it is often observed in practice, the fited GARCH and IGARCH are
very similar; SIC selected a GARCH(1,2) and an IGARCH(1,2). The fitted
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GARCH had parameter estimates d; = 0.923, b, =0.143, and b, = — 0.067. Their
sum is 0.999. The fitted IGARCH has parameter estimates a =0.923, b; =0.145,
and by = — 0.068. Using the GARCH parameter estimates, we simulated 1,000
GARCH realizations, each of length n=6801, and computed the sample ACF
of the log squares for each realization. The same simulations were done for
IGARCH. The average of the GARCH sample ACF’s, plotted in Fig. 2 and la-
beled ‘GARCH/IGARCH’, is almost indistinguishable from the average of the
IGARCH sample ACF’s (not plotted). The GARCH models, nearly integrated or
integrated, seem ‘too persistent’ to model these data.

The SIC criterion selected an EGARCH(2, 0). The fitted EGARCH had param-
eter estimates b, 0.0185, ()2 =0.200, d), =0.577 and (/)-, =0.359. The ACF for
the log squares corresponding to the fitted EGARCH model was obtained theoret-
ically through the formulae derived in Appendix B. The short-memory EGARCH
model clearly fails to reflect the slow decay of the empirical ACF.

5. Conclusions

Empirical evidence suggests that the recent interest in long-memory conditional
variance models for stock market indices is well-founded. We find evidence of
long memory in variance proxies using both a nonparametric and semiparametric
test for many series. A simulation exercise shows that these tests are able to
distinguish long from short memory in the volatilitics.

The long memory stochastic volatility (LMSV) model is an analytically
tractable model of this persistence in the conditional variances. The LMSV is
casily fitted and analyzed using standard tools for weakly stationary processes. In
particular, the LMSV model is built from the widely used ARFIMA class of long-
memory time series models, so that many of its properties are well-understood.
The spectral-likelihood estimator proposed for this model is strongly consistent
and finite-sample simulation results show it has reasonable properties for series
of the length usually found in financial data.

An example with a long series of stock prices shows that short-memory mod-
¢ls are unable to reproduce more than the short-term structure of the auto-
correlations. In contrast, a parsimonious LMSV model fit to the data is able
to reproduce closely the empirical autocorrelation structure of the conditional
volatilities.

These results are encouraging and suggest some avenues for future research.
We believe it would be interesting to investigate further the empirical rele-
vance of the LMSV model, namely, its relevance for estimating and forecasting
the volatilities and pricing derivatives. We also believe that it would be use-
mll to compare properties of the LMSV with other models of persistence in the
volatilities,
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Appendix A. Proof of strong consistency for spectral-likelihood estimators

Let /3" minimize (11) and let

" f}:(,(w)}
LAP)=2 1 w)+ =24 4w

where fiy denotes the vector of true parameter values. Then
| Za(B) — Z£(B)]

n'2

[n/2] n
2! > gplan) —2/ gp(m)dm
0

k=1

<

[n/2] n
+[2mn™" S dlog(2 — 2cos wy) — 2 / dlog(2 — 2cosw)dw
k=1 Jo

121 f () ' f/; (w)
+2mn ' Y =L -2 [ Lo~ dw
I.zl Jp(exy) Jo fp(w) ¢

= Mln(ﬁ) + M2n(ﬂ) + MJII(/;)*

where

al0e™)* + aflpe™)*|1 — e |
2n|p(e1#)|? '

gp(4) = log {

Now M,,(f) converges to zero uniformly in f# by Riemann integrability of
dg(m), continuity in f§ of the integral and compactness of . Given 6>0, M, (ff)
can be bounded above and below by the upper Riemann sum plus ¢ and the lower
Ricmann sum minus & for a partition .%, of [0,7], where %, contains the nth-
order Fourier frequencies and .4, C .4, C - - . For each 3, these bounds converge
to zero £ 0 monotonically, and so uniform convergence in f# follows by Dini’s
theorem.

Next, Ms,(f8) can be bounded uniformly in f§ by

|n/2] n
0.5[2nn~" > log(2 —2cosmy) -2 / log(2 — 2cosm)dw|,
k=1 Jo

which converges to zero since
o1
/ log(2 — 2cosm)dm = 0.
Jo
Finally, M3,(f8) can be shown to converge almost surely (a.s.) to zero uni-

formly in f# by modifying Lemma 1 of Hannan (1973) (see also Lemma i of
Fox and Taqqu, 1986; Dahlhaus, 1989). First, 1/fy(w) satisfies the continuity
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condition of Hannan (1973) and so the Césaro sum of its Fourier series con-
verges uniformly in (w, B) for € ©. Second, the process {x;} is ergodic since
{v,} is a linear process with i.i.d. innovations and square-summable coefficients
(e.g., Hannan, 1970, p. 204) and {¢} is i.i.d., independent of {v,}. From these
two facts, Lemma 1 of Hannan (1973) follows.

Hence,

sup | Zn(B) — L(B)| — O as.
ped

Since —logx>1 — x, with equality holding if and only if x=1,

APy =2 f {- tog 22 1 10g £y (0) + —-—ﬁ‘"(“’)} do
0

Jp(w) Jp(w)
i _ ﬁio(w) . \ f}n(w)
= 2/0 {l _ﬁg(w) + log fs (w) + ——f;;(w) } dw
N L A Jp (@)
= 2/(; {Iog, Jp, (@) + ——__f}:,,((v)} dw

and so (using the identifiability condition) fy uniquely minimizes ¥#(f). Thus
‘(/JN(/}" ) S ‘(/)ll(l;ﬂ ) and ‘(!l( /’0 ) s y}( l}" )9

which implies that . /},,)m» (fo) as. and therefore also /}” - fy a.s. by com-
pactness of @, (]

Appendix B. Autocovariance function of log squares under EGARCH

Under an EGARCH model for {y,}, the ACVF for the series {x,} = {log y? -
i}, where {y,} are the deterministic volatility changes in Eq. (3), can be com-
puted as follows:

Cov(x, Xi4a)

o x
= Cov ( Z Yig(&r—j-1) + log Etzv > Yig(Eran—j—1) + log é;,"»h)

j=0 7=0
= Var{g(&)} () + - Elg(&,) log &) + Var(log & Min-o)s

where 7(h) is the autocovariance function

(h) = Z 'I{I‘/’Hh

j=0
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and Y_, := 0. If, as it was originally suggested by Nelson (1991), the function
g(+) is chosen to be

g(&r) = 0 & + 02(|&]| — E&i)),
then we have
Var{g(&,3} =87 + 03(1 - E?[&)).
For Gaussian &, E|&|=/2/n, Var(log £2)=7?/2 and

s 20
E[g(¢)log &2] = ——\/z—in(logz — K+ 127),

where k ~ 0.577216 is Euler’s constant. Thus, if d, =0, the Gaussian EGARCH
ACVF has the same form as the SV ACVF in (7).
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