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Abstract 

A new class of fractionally integrated GARCH and EGARCH models for character- 
izing financial market volatility is discussed. Monte Carlo simulations illustrate the 
reliability of quasi maximum likelihood estimation methods, standard model selection 
criteria, and residual-based portmanteau diagnostic tests in this context. New empirical 
evidence suggests that the apparent long-run dependence in U.S. stock market volatility 
is best described by a mean-reverting fractionally integrated process, so that a shock to 
the optimal forecast of the future conditional variance dissipate at a slow hyperbolic rate. 
The asset pricing implications of this finding is illustrated via the implementation of 
various option pricing formula. 
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1. Introduction 

Much recent interest  in econometr ics  and  empir ical  finance has centered on 
model ing  the tempora l  var ia t ion  in financial marke t  volatil i ty.  Par t icular ly  
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instrumental in these developments has been the Autoregressive Conditional 
Heteroskedastic (ARCH) class of models introduced by Engle (1982). In its most 
general form the ARCH model simply postulates the conditional variance to be 
a nontrivial function of the current information set. Unfortunately, economic 
theory offers little guidance as to which variables should be important in 
determining the observed time variation in the conditional variances. In light of 
this numerous ad hoc parametric formulations have been suggested in the 
literature. Two of the most successful such parameterizations for characterizing 
high-frequency financial market volatility have been the Generalized ARCH 
(GARCH) model introduced by Bollerslev (1986) and the Exponential GARCH 
(EGARCH) model proposed by Nelson (1991). The GARCH and the EGARCH 
models are readily interpreted as ARMA-type models for the conditional 
second-order moments and the logarithm of the conditional variance, respec- 
tively. A common finding in many empirical applications with both of these 
models concerns the apparent persistence of the estimated conditional variance 
processes; see Bollerslev, Chou, and Kroner (1992). The so-called Integrated 
GARCH (IGARCH) class of models was introduced by Engle and Bollerslev 
(1986) to capture this effect. In the IGARCH model a shock to the conditional 
variance remains important for the optimal forecasts of the variance for all 
future horizons. Thus, from a forecasting perspective the difference between the 
covariance-stationary GARCH formulation and the IGARCH model provides 
a natural analog to the difference between l(0) and l(l) type processes for the 
conditional mean. I 

The distinction between I(0) or I(1) time series for the conditional mean may 
be far too narrow, however. An added flexibility is obtained by allowing for 
fractional orders of integration, as in the l(t0 class of models introduced by 
Granger (1980), Granger and Joyeux (1980), Hosking (1981), and Mandelbrot 
and Van Ness (1968). In contrast to an I(0) time series in which shocks die out at 
an exponential rate, or an l(I) series in which there is no mean reversion, shocks 
to an l(d) time series with 0 < d < l dissipate at a slow hyperbolic rate. The 
importance of this generalization in modeling long-run economic phenomena 
has recently been illustrated by a number of studies including Baillie and 
Bollerslev (1994), Baiilie, Chung, and Tieslau (1996), Cheung and Lai (1993), 
Diebold, Husted, and Rush (1991), Lo (1991), and Sowell (1992). Just as the 
generalization of the standard ARIMA class of models to the fractionally 
integrated ARF! MA models have proven empirically important, a correspond- 
ing result t,lay hold true when modeling long-term dependence in conditional 
variances. The new class of Fractionally Integrated GARCH (FIGARCH) 

i As discussed further below, considerable care should be cxcrci~d in interpreting persistence in 
nonlinear models. The analogy to I(I ) processes for the conditional mean is far from complete. 
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Fig. I. Autocorrelations for absolute returns. 

The figure graphs the lag 5 through 1040 sample autocorrelations for the absolute daily returns, [r,I, 
on the Standard and Poor's 500 composite index from January 2, 1953 through December 31, 1990. 
The 95% confidence bands for no serial dependence are also indicated in the figure. 

models proposed by Baiilie, Boilerslev, and Mikkelsen (1996) allows for such 
an added flexibility. Analogous to the ARFIMA class of models for the 
conditional mean, a shock to the conditional variance in the FIGARCH 
model is transitory, in the sense that the influence on the forecast of the 
future conditional variance dies out at a slow hyperbolic rate of decay. In this 
paper we present some new results on the theoretical properties and the 
importance of allowing for such fractional unit roots in the conditional variance 
process. 

In order to motivate the empirical relevance of these ideas, Fig. 1 plots the 
lag 5 through 1040 sample autocorrelations of the daily absolute returns, 
Irtl, on the Standard and Poor's 500 composite index from January 2, 1953 
through December 31, 1990. A more detailed description and analysis of the 
data is contained in Section 4 below. The volatility clustering phenomenon 
is immediately evident from this figure. The absolute return correlations for 
very long lags frequently exceed the two 95% Bartlett (1946) confidence 
bands for no serial dependence. Also, the Ljung and Box (1978) portmanteau 
test for the joint significance of lags 781 through 1040, corresponding roughly 
to a dependence between three to four years, equals 580.7, which is highly 
significant when tested in a chi-square distribution with 260 degrees of 
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Fig. 2. Autocorrclations for the first difference of absolute returns. 

The figure graphs the lag 5 through 1040 sample autoeorrelations for the first difference of the 
absolute daily returns, (I - L) It, I, on the Standard and Poor's 500 composite index from January 2, 
1953 through December 31, 1990. The 95% confidence bands for no serial dependence are also 
indicated in the figure. 

freedom. 2 This apparent persistence in the autocorrelation function is substan- 
tially reduced in Fig. 2, which plots the sample autocorrelations for the first 
difference of the absolute returns; i . e . ,  ( 1  - L ) l r ~ l  - Ir, I - I t , - ~  I. The portman- 
teau test for the joint significance of the lag 781 through 1040 autocorrelations is 
reduced to 340.1. Judged by the chi-square distribution the p-value is only 0.001, 
however. In contrast, on applying the fractional differencing operator (1 - L) °s  
to the absolute returns, where (1 - L) d is formally defined in Section 2 below, the 
autocorre]ations for the filtered series, (1 - L)°'sl rt ], show much less long-term 
dependence. In particular, the same portmanteau test for no serial dependence 
beyond the three-year lag in the filtered series now equals 268.6, corresponding 
to a conventional p-value of 0.344. Of course, this particular test statistic may be 
even further reduced by judiciously choosing the value of d. This preliminary 
analysis therefore suggests that the important long-run features of financial 

a The Bartlett standard errors and tbe Ljung-Box test statistic both assume that the variance of lr, I is 
constant, so that the conventional p-values reported below are merely indicative. We shall return to 
a more formal discussion of the distributional properties of the Ljung-Box statistic in the presence of 
ARCH in Section 3 below. 
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Fig. 3. Autoeorrelations for the fractionally differenced absolute returns. 
The figure graphs the lag 5 through 1040 sample autocorrelations for the fractionally differenced 
absolute daily returns, (! - L)°'Slr+], on the Standard and Poor's 500 composite index from January 
2, 1953 through December 31, 1990. The 95% confidence bands for no serial dependence are also 
indicated in the figure. 

marke t  volatility may  be conveoient!y modeled by a fractionally integrated 
p rocess )  

The plan for the rest of  the paper  is as follows. The  basic definitions and 
theoretical properties of  the new F I G A R C H  and F I E G A R C H  models  are 
discussed in the next section. An approx imate  m a x i m u m  likelihood est imation 
strategy is outlined in Section 3, which also reports  the results f rom a small-scale 
Monte  Car lo  analysis of  this es t imator  along with various model selection 
criteria and diagnostics in an A R C H  context. Section 4 contains an empirical 
analysis of  the daily Standard  and Poor ' s  500 composi te  stock price index over  
the 1953 through 1990 period. The  estimated degree of fractional integration 
across th0 different model formulations are all highly suggestive for the existence 
of long-memory features in the conditional variance of aggregate U.S. stock 
market volatility. The practical importance of this findings is further explored in 

Dacorogna, Mfiller, Nagler, Oisen, anti Pictet (1993) also note that, when measured in terms of 
a market activity scale, the autocorrelatk>n function for twenty-minute absolute returns on the U.S. 
dollar/Deutschmark exchange rate show a clear hyperbolic rate of decay up until a lag length of ten 
days, 
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Section 5 through the simulation of synthetic option prices for the estimated 
EGARCH, IEGARCH, and FIEGARCH data-generating mechanisms. Sec- 
tion 6 concludes. 

2. Fractionally integrated ARCH 

To set out the notation, let {et } denote a discrete-time real-valued stochastic 
process. Also, let El- ! {" ) refer to the mathematical expectation conditional on 
the information set available at time t - 1, including the past of the process 
{~,~},=,-I.,-2 ..... Following Engle (1982), the process {e,} is then said to follow 
an ARCH model if there exist a representation such that 

e, = z, tr,, (1) 

where 

El- l(zt) ~- El- 1(z 2 - 1) = 0, (2) 

and ~r, is measurable with respect to the time t -  ! information set. In most 
applications, r., will correspond to the innovations for the conditional mean from 
some other process ~ }. i.e., e I lY, s, - y , -  E,- l (y , )  so that v a r , - l ( y , ) =  E,-l(e~) 
= try. The setup in Eqs. (1) and {2) is extremely general and does not lend itself 

directly to empirical implementation without first imposing some simplifying 
assumptions regarding the temporal dependencies in the conditional variance 
function. Arguably the two most successful such parameterizations to date have 
been the Generalized ARCH, or GARCH(p, q), model of Bollerslev (1986}, and 
the Exponential GARCH, or EGARCH{p,q), model proposed by Nelson 
(1991). 

In the GARCH(p, q) model, the conditional variance is parameterized as 
a distributed lag of past squared innovations, 

= ,o + • + 7 .  - ,o + + (3) 
i =  ! ,~ i =  I . p  

where L denotes the lag'or backshift operator; i.e., L~x, - x , -v  For the condi- 
tional variance in Eq. (3) to be well-defined, all the coefficients in the lag poly- 
nomial in the corresponding infinite ARCH representation, [I - f l (L) l -  1 ~t(L), 
must be positive; see Nelson and Cao (1992). On rearranging the terms in Eq. (3) 
it follows that 

[I -- ~(L) - fl(L)]e~ = to + (I - fl{L)]v,, (4) 

where v,=-e~-o]. Thus, E,_l{v,)=0, and following Bollerslev {1988), 
the GARCH{p,q) formulation in Eq.(3) is readily interpreted as an 
ARMA(max {p, q }, p) model for the squared process, {el }. In many applications 
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of the G A R C H ( p ,  q) model the estimated lag polynomial l - k(x) - f l ( x )  = 0 

has a root  which is statistically indistinguishable from unity. + Motivated by this 
empirical regularity, Engle and Bollerslev 0986)  proposed the so-called Integ- 
rated G A R C H ,  or  IGARCH(p ,  q), process, in which the autoregressive poly- 
nomial in Eq. (4) has one unit root. Thus, factorizing this polynomial as 
1 - a ( L )  - f l ( L )  = (1 - L)ck(L), where ~(z) = 0 has all the roots outside the 
unit circle, the IGARCH(p ,  q) model may be written as 

4,(L)(1  - L)~,  2 = ~ + [1 - / ~ ( L ) ]  v,. (5) 

Of course, the notion of a unit root  is intrinsically a linear concept  and 
considerable care should be exercised in interpreting notions of  persistence in 
nonlinear models. For  instance, as shown by Nelson (1990), even though the 
IGARCH(1,  1), model is not  covariance-stationary, the process is strictly sta- 
t ionary and ergodic. Specifically, Bollerslev and Engle (1993) define a process to 
be integrated, or  persistent, in variance if l imj+~E,[var,÷~_ t(Y,+~)] does not 
converge to a constant  with probability one for all t; that  is, the long-term 
forecasts for the conditional variance remain sensitive to the initial conditions 
for forecasts of all horizons. This same notion of  persistence in nonlinear 
structures is also the motivation behind the conditional volatility profiles 
discussed in Gallant, Rossi, and Tauchen (1993). s Whereas the conditional 
volatility profile for a covarianee-stationary G A R C H  model will decay at 
a geometric rate, the conditional volatility profile for an I G A R C H  model 
exhibits infinite dependence on initial conditions. 

Although the empirical estimates for the parametric GARCH(p ,  q) model in 
Eq. (3) may not reject the null hypothesis of an IGARCH(p ,  q) model, intuition 
suggest that in most situations the volatility process is mean-reverting. A pos- 
sible reconciliation of this conflicting evidence may be available by allowing for 
fractional orders of  integration. To  that end Baillie, Bollerslev, and Mikkelsen 
(1996), recently introduced the so-called Fractionally Integrated G A R C H ,  or  
F I G A R C H ( p ,  d, q), class of models, 

¢k(L)(l - L ) % ~  = to + I-1 - f l(L)]v, ,  (6) 

4For instance, Chou (1988) on estimating a GARCH(I, I) model for weekly data on the value- 
weighted returns on the NYSE from July 1962 through December 1985 finds ~,~ + ~ = 0.986, 
with the. corresponding likelihood ratio test statistic for a unit root equal to 0.980. Lumsdain¢ (1996) 
and Lee and Hansen (1994) have shown that this likelihood ratio test and the t-test for 
~,t +/l~ = 1 in the GARCH( I, I) model have standard asymptotic chi-square and normal distribu- 
tions, respectively. 
SA conditional volatility profile is defined as the conditional expectation of or+j, j = i. 2 ..... 
evaluated at time t. The difference between a particular conditional volatility profile and a baseline 
profile provides a natural generalization of linear impulse-response analysis to nonlinear models.. 
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where the roots oftp(z) = 0 lie outside the unit circle. The fractional differencing 
operator is defined by its Maclaurin series expansion, 

(1 - L )  a= 1 - d "  ~. F (k -d )F(1  - d ) - t F ( k  + l ) - t L  k 
k ~ l . o c  

= 1 - 6a{L), (7) 

in which F(.)  denotes the gamma function. Also, by definition (1 - L) ° -= 1. 
Thus, the FIGARCH(p, d, q) model nests the covariance-stationary 
GARCH(p, q) model for d = 0 and the IGARCH(p, q) model in Eq. (5) for 
d = 1. Allowing for values of d in the interval between zero and unity gives an 
added flexibility that may be important when modeling long-term dependence 
in the conditional variance. 

This new class of conditional variance models provides a direct analogy to the 
Fractionally Integrated ARMA, or ARFIMA, class of models for the condi- 
tional mean; see, e.g., Diebold and Rudebusch (1989), Diebold, Husted, and 
Rush (1991), Lo (1991), and Sowell (1992) for a discussion of the importance of 
allowing for noninteger values of integration when modeling long-run depend- 
encies in the conditional mean of economic time series. In the ARFIMA class of 
models, the short-run behavior of the time series is captured by the conventional 
ARMA parameters, while the long-run dependence is conveniently modelled 
through the fractional differencing parameter. A similar result may well hold 
true when modeling conditional variances. While a shock to the optimal forecast 
of the future conditional variance decays at an exponential rate for the 
covariance-stationary GARCH(p, q) model, and remains important for fore- 
casts of all horizons for the IGARCH(p, q) model, in the FIGARCH(p, d, q) 
model the effect of a shock to the forecast of the future conditional variance will 
die out at a slow hyperbolic rate. The fractional differencing parameter is 
therefore identit~ed by the decay rate of a shock to the conditional variance, and 
not by the ultimate impact on the forecast for the long-run conditional variance. 

in order to better understand the statistical properties and the estimation 
strategy proposed in Section 3 below, it is convenient to rewrite the 
FIGARCH(p, d, q) model in Eq. (6) in terms of the observationally equivalent 
infinite ARCH representation, 

a~ = I1 - f l( l)]- 'co + {l -- [l - fl(L)]-tt/)(L)(I - L)a}e~ 

=- [I - fl(1)]-'¢o + 2(L)e~. (8) 

Since 6a(1)= I for all d > 0, it follows immediately from the representation 
in Eq, (8) that the FIGARCH(p, d, q) model is not covariance-stationary. 6 

6 However, since the coefficients in the infinite lag polynomial, ~( L L are dominated by the coeffi- 
cients in the infinite ARCH representation of an appropriately defined high-order IGARCH model, 
it follows from Bougerol and Picard 11992} and Nelson 11990) that the FIGARCHip, d, q) model is 
strictly stationary and ergodic. 
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Of course, for the F I G A R C H ( p ,  d, q) model to be well-defined and the condi- 
tional variance positive a lmost  surely for all t, all the coefficients in the infinite 
A R C H  representation in Eq. (8) must  be nonnegative. General  condit ions for 
this to hold are difficult to establish, a l though the requirements are relatively 
straightforward to verify on a case by case basis following Nelson and Cao  
(1992). 7 

While the G A R C H ( p ,  q) model conveniently captures the own short-run 
temporal  dependencies for a wide variety of  speculative assets, the formulat ion 
in Eq. (3) leaves no room for the so-called leverage effect in stock returns. As first 
noted by Black (1976), stock return volatility tend to be negatively correlated 
with past  returns, possibly due to the increased leverage following a d rop  in the 
stock price. In the G A R C H  models discussed above,  the conditional variances 
are functions only of the absolute magni tudes of the lagged residuals and 
not their signs. T o  circumvent  this shortcoming,  several recent studies have sug- 
gested the inclusion of different asymmetr ic  terms in the condit ional  variance 
equation; see, e.g., Ding, Granger ,  and Engle {1993), Engle and Ng (1993), and 
Glosten,  Jagannathan ,  and Runkle (1993). Alternatively, in the Exponential  
G A R C H ,  or E G A R C H ( p ,  q), model developed by Nelson (1991), the logar i thm 
of the condit ional variance is parameter ized as an ARMA(p ,  q) model,  

( )'( ) In(a, 2) = e J  + 1 --i=~i.pq)iLi 1 + i=~Lq~iL i g (z , - t )  

- o J  + [ l  - q ~ ( L ) ] - ' [ I  + ~k(L)]g(z,_ ~), 19) 

where 

g(z,)  = Oz, + 7[Iztl - E(Iz, I)]. (10) 

Fo r  0 < 0 the future condit ional variaaces will therefore increase proport ional ly  
more  as a result of  a negative shock than for a positive shock of the same 
absolute magnitude.  Note,  by definition, the news impact  function, g( .  ), satisfies 
E,_ l [g(zr)] = 0. A richer parametr izat ion for this function, which downweighs 
the influence of large absolute  innovations has recently been investigated by 
Bollerslev, Engle, and Nelson (1994). 

7 For instance, for the FIGARCH(I, d, 1) model estimated below, the ARCH parameters in the lag 
polynomial )~(L) may be written as 

/ . t = ~ l - - / J t + d ,  ) , ,~=pl;~k_l+[(k--l--d}k-l--dp,]6d.k_,  for k~>2, 
where ~.~ -= ¢i~.~_ i(k -- I -- d)k- 1, k = 2, 3, ..., refer to the coefficients in the Maclaurin series 
expansion of( I - L)~; i.e., 6~(L) = ~ = 1. ~ #d'hLk" From these recursions, it follows fairly easily that 
the inequality constraints, 

fit -d~<~,  < (2 - d)/3, d[~t -(1 - d)/2] <~ fl,(q~t - f i t  +d), 
are sufficient to ensure that the corresponding ARCH parameters are all nonnegative. 
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Just as the estimates for the standard GARCH(p,  q) model often indicate an 
approximate unit root in the autoregressive polynomial in Eq. (4), when estima- 
ting the EGARCH(p,  q) model in Eqs. (9) and (10), the largest root of the 
estimated polynomial ~(x) = 1 is often very close to unity. 8 However, as noted 
by Nelson (1991), the EGARCH(p,  q) model could be extended to allow for 
fractional orders of integration also. Specifically, by factorizing the autoregres- 
sire polynomial [1 - ¢p(L)] = ~b(L)(l - L) d where all the roots of O(z) = 0 lie 
outside the unit circle, the model may be written as 

In(o~) = to + ~b(L)-l(l  - L)-~[I  + ~ ( L ) ] g ( z t - t ) .  (11) 

This F I E G A R C H ( p , d , q )  formulation obviously nests the conventional 
EGARCH model for d = 0 and the Integrated EGARCH (IEGARCH) model 
for d = 1. By analogy to the ARFIMA class of models for the conditional mean, 
{ln(#~)} is covariance-stationary and invertible for d in the interval between 
- 0 . 5  and 0.5; see, e.g., Hosking (1981). However, shocks to the optimal 

forecasts for future values of In(or, z) will dissipate for all values of d < 1. 9 it is 
worth noting that in contrast to the F IGARCH formulation, the parameters for 
the F IEGARCH model do not have to satisfy any nonnegativity constraints in 
order for the model to be well-defined. 

3. Model specification and estimation 

The most common approach for estimating ARCH models relies on the 
maximization of a conditional likelihood function, in particular, assuming that 
the one-step-ahead prediction errors are conditionally normally distributed, the 
likelihood function for the sample { y~, Y2 . . . . .  Yr} equals 

logL(0; y~, Yz . . . . .  yr l lo)  = - 0.5" T • 1n(270 

- 0.5" ~ [ln(6~) + c ~ 7 2 ] ,  (12) 
t =  I , T  

where the initial conditions, 1o, are used to start up the recursions for the 
conditional mean and variance functions. 

in many applications with high-frequency financial data, the assumption of 
conditional normally distributed standardized innovations, zt = etat- t, is viol- 
ated. However, following Weiss (1986) and Bollerslev and Wooldridge 0992) 

s For instance, Nelson (1991) on modelling the daily return on the value weighted CRSP index from 
July 1962 through December 1987 estimates the largest antoregressive parameter to be 0.9996 with 
an asymptotic t-statistic for a unit root equal to 0.442. 
9 It follows also from Theorem 2. I in Nelson (1991) that {In(o,2)} is strictly stationary and ergodic 
for d < I/2. 
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asymptotically valid inference regarding the normal Quasi Maximum Likeli- 
hood Estimates (QMLE) resulting from Eq. (12), say /7, may be based on 
robustified versions of the standard test statistics. In particular, an asymptotic 
robust covariance matrix for the parameter estimates is consistently estimated 
by A(/7)- i B(O')A(O')- 1, where A(0") and B(0) denote the Hessian and the outer 
product of the gradients, respectively, evaluated at 17. 

Another complication that arises in the estimation of ARCH type models 
concerns the proper treatment of the initial conditions, Io. The approach taken 
here for the fractionally integrated models is based on the infinite ARCH-type 
representation for the FIGARCH(p,  d, q) model in Eq. (8) and the correspond- 
ing expansion for the FIEGARCH(p,d ,  q) model in Eq. (11), with h - - 0  for 
t = 0, - 1, - 2 . . . . .  and the pre-sample values of et z and a z set equal to the 
unconditional sample variance. Of  course, for the F IGARCH model with d > 0 
and the F IEGARCH model with d/> 0.5 the population variance does not exist. 
This approach directly mirrors the conventional way of estimating stationary 
GARCH as well as IGARCH models, however, t° Unlike the finite-lag repre- 
sentations for the standard GARCH(p ,q )  and EGARCH(p,q)  models in 
Eqs. (3) and (9), the approximate maximum likelihood techniques for the frac- 
tionally integrated models also necessitates the truncation of the infinite distrib- 
uted lags in Eqs.(8) and (11). Since the fractional differencing operator is 
designed to capture the long-memory features of the process, truncating at too 
low a lag may destroy important long-run dependencies. In the simulations and 
the actual estiination results reported on here we fixed the truncation lag at 
3 =  1,000) t 

To gauge the accuracy of this approximate maximum likelihood method, 
Tables 1, 2, and 3 report the results from a detailed simulation study. Some of 
the findings complement earlier evidence in Baillie, Bollerslev, and Mikkelsen 
(1996) for different parameter settings. Tables 1, 2, and 3 also contain new 
important results on model specification and diagnostic checking of ARCH- 
type models, however. The true Data Generating Process (DGP) for the results 
in Table 1 is the F IGARCH(I ,  d, 0) model. The results in Tables 2 and 3 are for 
a covariance-stationary GARCH(I ,  !) and IGARCH(I ,  1) DGP,  respectively. 

'°As an alternative to fixing the pre-sample values at their unconditional sample analogues 
backcasting procedures could be employed. The pre-sample values could also be simulated, and the 
parameter estimates then averaged over a number of such replications until convergence is achieved. 
Interestingly, however, Diebold and Schaermann (1996) on using nonparametric density estimation 
techniques in evaluating the exact likelihood function for low-order ARCH models find that for 
sample sizes of fifty of larger, the exact results are almost identical to the estimates based on the 
conditional likelihood function used here. 
t J For 0 < d < I and £ = ~, the true value of ~(!) = I. For a fixed value of J, the magnitude of the 
truncation bias is decreasing in d. With 3 = 1000 and d = 0.5 as studied in the simulations below, 
~o.s(I) = 0.982, whereas for the estimate of d from the FIEGARCH model reported in Section 5, 
($0.,s~(I) = 0.995. 
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The length of all of the simulated time series is T = 3,000. The other parameter 
values are given in the first column of the tables. A total of 500 replications were 
generated for each simulation, lz 

Turning to the results, it is immediately clear from Table 1, that the approx- 
imate maximum likelihood method for the FIGARCH model outlined above 
works reasonably well for the sample sizes typically encountered with high- 
frequency financial data. In particular, let dN denote the sample mean of d~across 
the N = 500 replications; i.e., aTs - N-  1 ~ =  LN~, where ~ refers to the estimate 
of d from the ith replication. By a standard law of large numbers, the bias, 
E(d ~) - d, is then consistently estimated by JN - d. For the FIGARCH(1, d, 0) 
model in Table 1, this bias equals 0.513 - 0.500 = 0.013. Also, bya  central limit 
theorem argument, Nl/2[d/v- E(d-)] ~N(0 ,  a2(d~)), where o2(d) denotes the 
variance of d. Following Cheung and Diebold (1994), the Monte Carlo standard 
error associated with djv as an estimator for E(d) may therefore be consistently 
estimated by N-lntb¢, where e~ 2 - N - ~ i =  LN(~ -- tiN) 2" For the results re- 
ported here ar N 7 0.513 and 8t¢ = 0.075, so that a symmetric 95% confidence 
interval for E(di), that takes into account the Monte Carlo sampling error, 
equals [0.506, 0.520]. Similarly, the 95% confidence intervals for E (/~), E(cb), and 
E(~l) for the FIGARCH(I,  d, 0) model in Table 1 are [-0.002,0.004], 
[0.111, 0.119], and [0.454, 0.468], respectively. Although the individual 95% 
confidence intervals only include the true value of to, it is evident that the 
estimation procedure tend to produce fairly reliable estimates. Note also, that 
the Monte Carlo standard errors for the parameter estimates reported in 
parentheses are generally close to the mean values of the asymptotic robust 
standard error estimates given in square brackets. Interestingly, the estimates for 
d = 1 for the FIGARCH(I,  d, 0) model reported in Table 3 appear eq~l ly  
precise but slightly downward biased, with a 95% confidence band for E(d) of 
[0.991, 0.999]. Similar results are reported in Baillie, Bollerslev, and Mikkelsen 
(1996) for a FIGARCH model with d = 0.75. Table 1 also illustrates that the 
estimation of a misspecified GARCH(I, 1) model for the FIGARCH(I,d,  0) 
DGP tend to produce IGARCH type estimates. The mean value of 
&l + ]~l = ~ for the estimated GARCH(I, 1) models is 0.983. This is in direct 
accordance with the results for the conditional mean reported in Diebold and 
R udebusch ( 1991). 

The results in Tables 2 and 3 indicate that the bias in the estimated para- 
meters for the correctly specified covariance-stationary GARCH(I,  1) model 
and the IGARCH(I, 1) model are of the same order of magnitude as for the 
FIGARCH(1, d, 0) estimates reported in Tables 1 and 3. Thus, the truncation 

12A total of 10,000 observations were gcncratcd for each replication, discarding the first 7,000 
realizations of each to avoid start-up problems. The normal random variables wcrc gc.~:. ~I~ b:/the 
RNDIqS subroutine in GAUSS. 
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Table I 
Finite-sample distribution for the FIGARCH(I, d, O) DGP 

y t = l l + e z ,  e~q -I i.i.d. N(0,1) 

a, z = e ~ ( I - / / I ) - ' + { l - [ I - f l l L ] - ' ( I - ~ b , L ) ( 1 - L ) a } r . ~ ,  t = ! , 2  . . . . .  3000 

163 

DGP OLS GARCH 1GARCH FIGARCH 

/~ 0.00 0.002 O.O01 0.0Ol O.001 
(0.053) (0.039) (0.039) (0.039) 
[0.053] [0.040] [0.040] [0.039] 

to 0.10 9.448 0.141 0.085 0.115 
(7.675) (0.072) (0.046) (0.044) 
[0.384] [0.039] [0.024] [0.036] 

fll 0.45 - -  0.867 0.875 0.461 
tO.OI 8) (0.016) (0.077) 
[0.017] [0.017] [0.068] 

01 - -  --  0.983 1.00O .... 
(0.01 I) ( ) 
[0.0o7] [ ] 

d 0.50 0.513 
(0.075] 
[o.065] 

AIC ..... 0.000 0.018 0.00O 0.982 
SIC --  0.00O 0.012 0.024 0.964 

Q, o 0.458 0.056 0.050 0.048 
Q,oo --  0.634 0.066 0.066 0,070 
Qi~o - -  1.00o 0.732 0.670 0.070 
Q~oo 1.00o 0.342 0.374 0.066 
Q~o 1.00o 0.792 o. 702 0.054" 
Q~oo - 1.000 0.354 0.378 0.070 

The table reports the means across the 500 Monte Carlo replications for the Quasi Maximum 
Likelihood Estimates (QMLE) under the FIGARCH(I, d, 0) Data Generating Process (DGP). The 
Monte Carlo root mean square error of the parameter estimates are given in parentheses, with the 
mean of the QM LE-based standard error estimates in square brackets. The rows labelled AIC and 
SIC report the proportion of times that the different models were favored by the Akaike and the 
Schwarz Information Criterion. Simulated rejection frequencies based on the adjusted nominal 5% 
level for the Ljung-Box portmanteau tests for up to Kth-order serial correlation in the standardized 
residuals, ~,#i", the absolute standardized residuals, l~,6,-~1, and the squared standardized resid- 
uals, ~,:bf 2, are denoted by QK, Q~, and Q~, respectively. 

bias for the FIGARCH model with J = 1,000 seems rather inconsequential. 
For instance, the 95% confidence bands for E(/~), E(&), E(~l), and E ( ~ )  
for the correctly specified covariance-stationary GARCH(I, 1) model in 
Table 2 are [, - 0.002, 0.002], [0.105, 0.109], [..0.847, 0.849], Rnd [0.972, 0.974], 
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Table 2 
Finite-sample distribution for the GARCH(I ,  I) DGP  

yt= p + er, ctcrf -l i.i.d.N(0,1) 

~,: = , , , ( l  - f l , ) - '  + { I  - [I - IJ, L ] - : { I  - ~ , L ) ( I  -L)q~.:, t = 1 ,2  . . . . .  300O 

DGP OLS GARCH IGARCH F1GARCH 

It 0.000 ~.001 -- 0.000 -- 0.000 -- 0.000 
(0.036) (0.027) (0.027) (0.027) 
[0.035] [0.029] [0.029] [0.029] 

to 0. ! 00 4.004 0.107 0.055 0. ! 38 
(0.888) (0.024) (0.013) (0.076) 
[0.156] [0.024] [0.013] [0.039] 

Ill 0.850 - 0.848 0.860 0.552 
(0.017) (O.O171 (0.2651 
[0.0163 [0.015] [0.0843 

~b, 0.975 0.973 1.000 
{0.009) { -- ) 

[ o . o o 9 ]  [ ~- ] 

0.675 
{0.273] 

[0.085] 

AIC 0.000 0.980 0.000 0.020 
SIC 0.000 0.790 0.202 0.008 

Q,o -- 0.480 0.068 0.068 0.070 
Qioo ..... 0.552 0.070 0.060 0.060 
Qi% 1.000 0.088 0.088 0. i 08 
Qfoo .... 1.000 0.058 0.098 0.086 
Q~o 1.000 0.088 0.088 0.108 
Q~oo - 1.000 0.062 0.090 0.084 

See footnote to Table 1. The true data-generating process is GARCH(I ,  I). 

respectively, la Note also that, in contrast to the fairly tight confidence bands for 
the parameter estimates for the correctly specified FIGARCH models in 
Tables 1 and 3, the estimates for d and/~t for the misspecified FIGARCH(1, d, 0) 
model in Table 2 are very imprecisely determined. 

Even though standard statistical model selection criteria such as the Akaike 
(1973) (AIC) or the Schwarz (1978) (SIC) information criteria are commonly 

taA finite-sample correction for the asymptotic Op(T -I)  bias in the GARCH(I,  I) parameter 
estimates has recently been developed by Linton 11994). 
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Table 3 
Finite-sample distributions for the IGARCH(I, !) DGP 

y, =/~ + e.,, ~,~,- i i.i.d. N(0, !) 

,,: = ,,,(I -/~, )-, + { I - [I - & t.] - ' (I - ~, L)(l - L)'~}r., ~, t = l. 2 ..... 3000 

DG P OLS GARCH IGARCH FIGARCH 

# 0.00 - 0.003 - 0.003 - 0.003 - 0.003 

(o.lol) (0.040) (0.040) (0.040) 
[0.0963 [0.0423 [0.0421 1"0.042] 

ttl 0.10 43.7 0.113 0.107 0.108 
(191.3) (0.031) (0.026) (0.030) 

[4.2] [0.029] [0.024] [0.027] 

fll 0.85 - -  0.847 0.848 0.843 
(0.013) (0.013) (0.037) 
[0.013] [0.0133 [0.029] 

01 1.00 0.998 1.080 - -  
(0.006) ( - -  ) 
[o.o06] [ - ]  

0.995 
(0.05 ~ ] 
[o.o43] 

AIC -- 0.000 0.128 0.730 0.142 
SIC .... 0.000 0.008 0.984 0.008 

Q, o - 0.804 0.042 0.042 0.044 
Q,oo 0.960 0.060 0.062 0.058 
Q~o 1.000 0.090 0.060 0.080 
Q~oo -- 1.000 0.070 0.070 0.064 
Q~o .... 1.000 0.082 0.052 0.070 
Q~oo 1.000 0.074 0.062 0.068 

See footnote to Table I. The true data generating process is IGARCH(I, !) or, equivalently, 
FIGARCH( I, !, 0). 

used in  the  speci f ica t ion  of  A R C H  models ,  l i t t le is k n o w n  a b o u t  the i r  s ta t is-  
t ical p roper t i e s  in this  context ,  t4 T a b l e s  1, 2, a n d  3 d e m o n s t r a t e  h o w  these  

cr i ter ia  m a y  be  effectively used  in  d i s c r i m i n a t i n g  be tween  the  G A R C H ( 1 ,  1), 
I G A R C H ( 1 ,  1), a n d  F I G A R C H ( I , d ,  0) a l t e rna t ives  a n a l y z e d  here. F r o m  
T a b l e  1, the correc t  F I G A R C H ( I ,  d, 0) m o d e l  is chosen  98 . 2% a n d  96 . 4% of  the  

14The AIC criteria to be maximized is defined by 21ogL(~) - 2k where k denotes the number of 
estimated model parameters. The SIC criteria to be maximized is given by 2 IogL(~) - k-logT. 
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times by the AIC and SIC criteria, respectively. For  the covariance-stationary 
G A R C H ( I ,  l) model in Table 2, the AIC criteria correctly identifies this model 
98.0% of the times. Interestingly, for the IGARCH(1 ,  1) D G P  in Table 3 the 
AIC criteria selects the G A R C H ( I ,  l) and F I G A R C H ( I ,  d, (3) formulations, both 
of  which nest the true IGARCH(1,  I) model, 12.8% and 14.2% of the times, 
respectively. The more parsimonious SIC criteria correctly identifies the 
IGARCH(1,  1) model in Table 3 in 492 out of  the 500 replications, however. 

Residual autocorrelations are also commonly employed in the specification and 
diagnostic checking of  ARCH-type models. As for the model selection criteria 
discussed above, relatively little is known about the sampling distributions of 
these test statistics in an ARCH context. The last six rows of  Tables l, 2, and 
3 therefore report the simulated rejection frequencies for the Ljung and Box (1978) 
portmanteau tests for up to Kth-order serial correlation in the standardized 
residuals, 40 , - t ,  the absolute standardized residuals, I~,O,-'l, and the squared 
standardized residuals, ~,20;-2, for the different estimated models. The three tests 
statistics are denoted by Q•, Q~, and Q~, respectively. The simulated rejection 
frequencies for the Qr test are based on the nominal 5% critical value in the 
chi-square distribution with K degrees of freedom. McLeod and Li (1983) have 
shown, that the asymptotic distribution of  the squared-residual autocorrelations 
does not depend on the parameter estimates for the conditional mean under the 
null hypothesis of homoskedasticity. The usual T-1/2 asymptotic standard errors 
do not apply to the squared standardized residuals from estimated ARCH 
models, however. In the results reported on here the nominal 5% critical values 
for the Qar and Q~ test statistics were approximated by the corresponding fractiles 
in the chi-square distribution with K - k degrees of freedom, where k denotes the 
number of estimated A R C H  parameters; i.e., k = 2 for the G A R C H ( I ,  1) and 
FIGARCH(1,  1) models and k = 1 for the IGARCH(I ,  1) model. Is 

It is well-known that the presence of  heteroskedasticity invalidates the 
usual asymptot ic  distributions for the sample autocorrelat ions for the mean.16 

is The residual autocorrelations from estimated ARMA-type models for the conditional mean may 
be approximated by a singular linear transformation of the true disturbance autocorra!adons; see 
Durbin (1970). in particular, as shown by Box and Pierce (1970), when testing the residuals from an 
estimated ARMA model, the portmanteau test is asymptotically chi-square distributed with K - k 
degrees of freedom, where k denotes the number of estimated ARMA parameters. Following this 
logic, we simply adjust the degrees of freedom for the Q~ and Q~ tests by the number of estimated 
ARCH parameters. A more complicated exact adjustment procedure that takes account of the 
ARCH parameter estimation error uncertainty has rccontly been developed by Li and Mak (1993). 
i s For instance, Stambaugh (I 993} shows that with symmetrically distributed GA RCH ( I, I ) errors, 
the asymptotic variance for the first-order at:tocorrelation for the mean, p, equals 
T- I(I - pZ)[l + ~bl(! - pZ)(K + 2)0 - p2~1 }- i l, where ~¢ denotes the unconditional excess kur- 
tosis. In particular, with conditionally normal errors r = 6(q~l -/~l )z [i - ~z _ 2(~ - fll)z] - i. 
Note that for #1 = 0 the expression reduces to the conventional T-I(I - p 2 )  Bartlett (1946) 
standard error; s¢¢ also Milhoj (I 985). 
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This result is immediately evident from the second row of all three tables. The 
empirical rejection frequencies for the Qto and Qloo tests for the mean-adjusted 
series dramatically exceed the 5% nominal significance levels, thus illustrating 
how the presence of ARCH may give rise to spurious significance of portman- 
teau type tests for serial correlation in the mean. ~7 This effect is especially 
pronounced under the IGARCH(I, 1) D O E  for which the nominal 5% Qloo 
test statistic for no serial correlation in the mean falsely rejects 96.0% of the 
times. Interestingly, the actual significance levels for the QK tests based on 
the standardized residuals from the estimated ARCH models are all close to 
the 5% nominal size. Note, by a standard binomial type argument a 95% 
confidence interval for the true significance level may be estimated by 
[/~s - 1.96 (/~s(l - pN)/N)  I/2, PN + 1.96(p~v ( 1 -- pN)/N)II2],  where el equals one 
or zero depending upon whether the null hypothesis is rejec'~ed or not for the ith 
simulation, and P n -  N-~)-'~= LnPl denotes the rejection frequency across all 
N replications. For/~s = 0.05 and N = 500 this 95% confidence interval covers 
[0.031, 0.069]. 

When testing for serial correlation in the absolute or the squared OLS 
residuals, the null hypothesis of homoskedasticity is uniformly rejected for all 
three different DGP's. The actual size of the Q~ and Q~ tests based on the 
adjusted degrees of freedom is fairly close to the nominal size for the correctly 
specified models; i.e., the FIGARCH(I,  d, 0) model in Table 1, the GARCH(I,  I) 
model in Table 2, and all three models in Table 3. At the 3ame time, the re- 
sults also indicate that these portmanteau tests do have some power in 
detecting fractionally integrated variance processes. For instance, under the 
FIGARCH(I,  d, 0) DGP in Table 2 1, the Q~o test for the estimated GARCH(I,  1) 
model rejects the null hypothesis of no remaining heteroskedastieity 79.2% of 
the times. The distribution of this Q2o test statistic is further illustrated in Fig. 4, 
which graphs the simulated distributions for the estimated FIGARCH(I,  d, 0), 
GARCH(1, 1), and IGARCH(I,  1) models, together with the density for the X~ 
distribution. 18 it is obvious that the Z 2 distribution provides a very close 
approximation to the distribution of the test statistic under the true null 
hypothesis of FIGARCH(1, d, 0). The simple ad hoc adjustment procedure for 
the degrees of freedom in the asymptotic chi-square distribution, obtained by 

17 A simple correction to take account of heteroskedasticity within the context of a particular ARCH 
model has been suggested by Diebold (1988). The Cumby and Huizinga (1992)/-test for models 
estimated by instrumental variables procedures also has the correct size in the presence of ARCH. 
Is The smooth densities were calculated by an Epanechnikov kernel, 

f(Q)=O.75.(N'h) -~ ~ [I - ( (Q-Qi )h - ' ) 2 ] ' l ( l (Q-O, )h - l l  <. II, 
i = l . N  

where {~, denotes the value of the test statistic from the ith Monte Carlo replication, and the 
bandwidth, h, was chosen by formula (3.3 I) in Silverman (I 986). We thank Bo Honor6 for sharing his 
GAUSS computer program for carrying out this kernel estimation. 
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Fig. 4. Finite-sample distributions of the Q~o portmanteau tests. 

The ligure graphs the kernel estimates of the simulated small sample distributions of the Ljung-Box 
2 2 portmanteau tests for up to tenth-order serial correlation in the squarcd standardized residuals ~, # f  , 

from the estimated FIGARCH(I ,d ,  0), GARCH(I ,  I), and IGARCH(I,  I) models. The data generat- 
ing process is FIGARCH(I,  d, 0) with/z = 0.0, oJ = 0.1, d = 0.5, fl = 0.45, and T = 3,0(10. The dotted 
line gives the density for a chi-square distribution with eight degrees of freedom. 

subtracting the number of estimated ARCH parameters from the number of 
autocorrelations be,ing tested equal to zero, apparently gives rise to fairly 
accurate nominal significance levels. Note also that the power functions for the 
GARCH(I, 1) and IGARCH(I, 1) alternatives are almost identical. 

In summary, the results discussed in this section illustrate how the approxi- 
mate maximum likelihood procedure may be used in estimating fractional 
integrated variance models. Our findings also show how the AIC and SIC model 
selection criteria and the portmanteau tests for residual autocorrelation may be 
used effectively in deciding on the correct conditional variance specification. In 
the next section we shall rely extensively on these tools in the formulation and 
estimation of conditional variance models for the return on the aggregate U.S. 
stock market. 

4. Long-memory models of stock market volatility 

Numerous recent studies have been directed at modeling the temporal vari- 
ation in stock market volatility, the characteristics of which have very important 
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implications for most modern asset pricing paradigms. Most of these studies 
using the ARCH methodology have found the volatility process to be highly 
persistent and possibly not covariance-stationary; see, for instance, Baillie and 
DeGennero (1990), Bollerslev, Engle, and Nelson (1994), Chou (1988), Engle and 
Lee (1992), French, Schwert, and Stambaugh 0987), and Nelson 0989, 1991). 
However, the new class of fractionally integrated variance models discussed 
above provides an added flexibility that may be important in properly under- 
standing the long-run dependencies in the volatility process. 

The data set analyzed here consists of daily prices on the Standard and Poor's 
500 composite stock index from January 2, 1953 through December 31, 1990, for 
a total of T = 9,559 observations, t9 Following standard practice, we trans- 
formed the price index into a continuously compounded capital gains series, 
y, =- i o g ( P f f l ~ _  1), t = 1, 2 . . . . .  T. The time t subscript refers to trading days. 

As argued by Scholes and Williams (1977) and Lo and MacKinlay 0990) 
discontinuous trading in the stocks that make up the index may result in 
significant serial dependence in the index returns. The exact structure of this 
autocorrelation will depend on the specific features uf the nonsynchroneity. In 
order to take account of such serial dependence, we here parameterized the 
mean for all the estimated models as an unrestricted AR(3) model. More 
complicated parametric formulations for the conditional mean in which the 
magnitude of the serial correlation depends on the level of the volatility has 
recently been investigated by LeBaron (1992) and Boilerslev, Engie, and Nelson 
(1994). The degree of predictability in the mean is very minor and inconsequen- 
tial for the conditional variance formulations. We shall therefore not pursue any 
of these more complicated structures any further here. 

The variance of returns tend to be higher following weekend and holiday 
nontrading periods, although the increase is proportionally less than the length 
of the nontrading period; see, e.g., French and Roll (1986). To capture this effect 
we included an N, indicator variable, which gives the number of nontrading 
days between day t and t - 1, in all the conditional variance equations. 

The estimates from the AR(3) model with the no-trade dummy included in the 
variance are reported in the first column of Table 4. The evidence for conditional 
heteroskedasticity is overwhelming. The Q2o portmanteau test for up to tenth- 
order serial correlation in the squared residuals, ~ ,  equals 1697.0. Interestingly, 
the Q t00 portmanteau test for no remaining serial correlation in ~t is also highly 
significant when judged by the nominal significance level in the corresponding 

tgThe Standard 90 index was replaced by the broader Standard and Poor's 500 index in January 
1953, corresponding to the start of our data. The properties of these indexes are discussed further in 
Schwert (1990), who kindly provided the Standard and Poet's 500 data from 1953 through 1962. For 
a more detailed description of the data set see Bollerslev, Engle, and Nelson (1994), where the same 
data are analyzed from a different perspective. 
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Table 4 
AR(3)-FIGARCH(I ,  d, 2) models for daily stock returns 

Yc --- log(P,/Pt- I ) = ~/0 + i[/I Yt- I + /~2Yt- Z + /g3Yf- 3 + Cl 

~2 = ~ ( I  - - / ~  ) - '  + [1 -- ( !  -- 8 ,  L ) - ' ( I  - -  ~ L ) ( I  - ~2 L ) ( I  - L )  a ]  [~,2 _ 6N,} + 6N, 
z º -E,a: ' ,  E,_ , (z , )=O,  E, , ( z 2 ) = l  

AR A R - G A R C H  AR-IGARCH AR FIGARCH 

/~o 4.04" 10 -4 4.62' 10 -4 4.57' 10 -4 4.80" 10 -4 
(0.92' 10 -4) (0.70' 10 4) (0.70" 10 4) (0.69" 10 -4) 

/~1 0.120 0.179 0.179 0.182 
(0.032) (0.012) (0.0 i 1 ) (0.012) 

#,  - 0.068 - 0.060 - 0.060 - 0.061 
(0.028) (0.011 ) (0.011 ) (0.012) 

t~3 0.002 0.028 0.028 0.026 
(0.024) (0.012) (0.011 ) (0.012) 

to 6.15' I0 - s  4.49' 10 -7 3.40" ' 0  -7 1.27- i0 -*  
(0.20' 10 - s )  (I .26.10 -7) (0.88' 10 -7) (0.39" I0-*)  

8 2.28' 10 - s  5.58. I0 -6 5.22.10 -~' 5.63.10 -6 
(!.22' 10 -5 ) (!.59' 10-°)  (I.45' 10 -6) (I.59" 10 -6) 

81 - 0.933 0.934 0.669 
(0.012) (0.011 ) (0.058) 

~, -- 0.995 1.000 0.365 
(0.003) (0.052) 

~2 .... 0.083 0.089 
(0.034) {0.032) 

d . . . .  0.447 
(0.071) 

AIC 64351.0 67168.4 67164.8 67212.0 
SIC 64308.0 67103.9 67107.5 67147.5 

Q,o 15.8 14.9 15.7 15A 
Qtoo 176.4 I00.1 100.7 102.7 
Q~o 1697.0 7 1 6.5 10.5 
Q~oo 2281.1 73.4 72.3 78.3 

The table reports Quasi Maximum Likelihood Estimates (QMLE} for the daily returns on the 
Standard and Poor+s 500 composite index from January 2, 1953 through December 31, 1990, for 
a total of 9,558 observations. Robust standard errors are reported in parentheses. N, gives the 
number  of nontrading days between day t and t -- I. AIC aad  SIC refer to the Akaike and the 
Schwarz Information Criterion, respectively. The values of the Ljung Box portmanteau tests for up 
to Kth-order serial correlation in the standardized residuals, +~ ~,- ' ,  and the squared standardized 
residuals, ~ f 2 ,  are denoted by QK and Q~, respectively. 
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X927 distribution. However, as the results in Tables 1, 2, and 3 demonstrate, the 
nominal size of the Qio and Qloo tests are grossly misleading in the presence of 
persistent conditional heteroskedasticity. 

Following French, Schwert, and Stambaugh (1987)and Pagan and Schwert 
(1990). the second row in Table 4 presents the results from estimating 
a GARCHt2, 1) model for the conditional variance, in all of the ARCH models 
analyzed below the lag polynomials were factorized to allow for the direct 
estimation of the inverse real roots. The no-trade dummy was entered in the 
conditional variance to allow for an impulse effect of the market closures, 
~ = [1 - fl(1)]- ~ + A(L)(~ - ¢5N,) + 6N,; see Baillie and Bollerslev {1989). 
The estimated AR, GARCH, and no-trade dummy parameters are all statist- 
ically significant at conventional levels. Interestingly, the Qloo test for any 
remaining serial correlation in the conditional mean beyond the estimated 
AR(3) model is no longer significant. The largest root in the AR-type representa- 
tion for the conditional variance is very close to unity, with an estimated 
half-line in excess of halfa year. Indeed, the t-test for ~t = 1 does not reject the 
null hypothesis of an IGARCH model at the usual 5% significance level. 

The estimates from the AR(3)-IGARCH(2, 1) model, with ~t - 1 are re- 
ported in the third column of the table. Not surprisingly, the results are very 
close to the estimates from the unrestricted model. Whereas the AIC criteria 
selects the unrestricted AR(3)-GARCH(2, 1) model, the more parsimonious SIC 
criteria comes out in favor of the AR(3)-iGARCH(2, 1) formulation. Motivated 
by the classical Beveridge and Nelson (1981) decomposition for the conditional 
mean of a time series, Engle and Lee (1992) recently proposed a perma- 
nent-transitory components model for stock market volatility. The reduced 
form of this components model for the conditional variance is an unrestricted 
IGARCH(2, 2) model. It is interesting to note, that on estimating this AR(3)- 
IGARCH(2, 2) components model for the present data set, the IGARCH(2, 1) 
model in Table 4 is not rejected against this more general specification) ° 

The more conventional ARCH type models which imply either exponential 
decay or infinite persistence may be overly restrictive, however. Thus, the 
estimates for the new AR(3)-FIGARCH(1, d, 1) model are reported in the final 
row of Table 4. The estimate for the fractional differencing parameter is striking. 
Judged by standard significance levels, d is statistically very different from both 
zero and one. z~ Also, the AIC and the SIC model selection criteria 
strongly favor the FIGARCH(I, d, 1) formulation over the GARCH(2, 1) and 

2°The rubust t-test for/~2 = 0 equals - !.452. In their preferred representation, Engle and Lee 
(1992) also include asymmetric terms to capture the leverage effect. 

21 Note, that the parameter estimates, ~t = 0.669, at  = 0.365, and d '= 0.447, satisfy the sufficient 
conditions in Footnote 7 for the conditional variances for the FIGARCH{I,d, 1) model to be 
positive almost surely for all t. 



172 F. Bollerslev. H.O. Mikkelsen/Journal of  Econometrics 73 (1996) 151 -184 

the IGARCH(2, I) models. Even though a shock to the volatility proccss 
eventually does die out in a forecasting sense, the decay occurs at a slow 
hyperbolic rate. This is consistent with the conditional volatility profiles in 
Gallant, Rossi, and Tauchen (1993), which suggest that shocks to the variance 
are very slowly damped, but do die out, Similarly, Ding, Granger, and Engle 
(1993) find that the empirical autocorrelations of absolute returns exhibit fairly 
rapid decay at short lags, while the rate of decay for longer lags is much slower. 

As noted above, stock market volatility tend to increase proportionally more 
for negative than for positive innovations. Several recent studies have proposed 
various extensions of the GARCH formulations estimated in Table 4 to take 
account of such asymmetries. We shall here rely on the EGARCH model 
of Nelson (1991) discussed in Section 2 above. The estimates for this 
AR(3)-EGARCH(2, 1) model reported in the second column of Table 5 corres- 
pond very closely to the findings in Nelson (1991). 22 Although the individual 
asymptotic standard errors suggest a possible cancellation of (1 + ~bt L) and 
( 1 -  ~btL), it is worth noting that the portmanteau tests for the squared 
standardized residuzls for this AR(3)-EGARCH(i, 0) modal clearly reject the 
null hypothesis of no remaining serial correlation. Also, the conservative SIC 
criteria for this restricted model is 67265.3, much lower than .'_he value of 67355.5 
obtained for the EGARCH(2, 1) formulation. Note also, that the asymmetric 
relation between past returns and changes in volatility, as represented by 0, is 
highly significant. The importance of allowing for asymmetries is further under- 
scored by the large increase in the value of the two model selection criteria from 
the symmetric GARCH formulations Table 4. The estimated half-life of the 
largest autoregressive root in the logarithmic conditional variance equation is 
close to one year. 23 Consequently, the results for the AR(3)-IEGARCH(2, 1) 
model in the third column correspond very closely to the estimates for the 
unrestricted AR(3)-EGAECH(2, 1) tnodel. This finding of an approximate unit 
root in the EGARCH formulation "s in direct accordance with the result for the 
GARCH model. 

Similarly, a much better fit for the EGARCH model is obtained by replacing 
the polynomial corresponding to the largest root, (1 - q)t L), with the fractional 
differencing operator, (1 - L) d. The values of both model selection criteria are 
clearly maximized for this fractional integrated AR(3)-FIEGARCH(I,d, 1) 

• 2 When maximizing the normal quasi-likelihc.od function in Eq. ( 12), the E(I-',I) term in the news 
impact function, O(z,), in Eq. (10) was replaced by the sample mean of the absolute standardized 
residuals; i.e., T t~ ,=  i.rl:~,l ' 

23 It is worth noting, that when estimating the same AR(3)EGARCH(2,  I ) model for the 8,651 daily 
observations up until June I, 1987, i.e., excluding the stock market crashes of October 1987 and 
October 1989, the estimate for the largest root is virtually unaltered compared to the full sample; 
at  = 0.996 versus e~l = 0.997. 
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"fable 5 
AR(3) -FIEGARCH(2 ,  d, I) models  for daily stock returns 

Yt = log( P,/Pt - I ) = lio + #1Yt-  J +/-/2Yf- 2 +/~3Yl - 3 + ~:t 

In(o'S) = w + In(!  + 6Nt)-  t + (I + ~OiL)(I - ~ 1 L ) -  t(! - ddzL)- t(I -- L ) - J g ( z , - I )  

O(z , )= Oz, + )'llz, I -  Ellz, l)], z, --- e.,a, - I ,  E,_ ,lz,) --- O, E,_dz,2) = ! 

AR AR- E G A R C H  A R - I E G A R C H  AR-FIEGARCH 

~Uo 4.04- 10 -4 3.42" I0- '* 2.98" I0- '* 3.48" 10 -4  
(0.92' I0 -'~) (0.73" I0 -4)  (0.82" 10 -4)  (0.72" 10 -4)  

gt 0.120 0.186 0.185 0.184 
(0.032) (0.011 ) (0.012) (0.01 i ) 

P2 - 0.068 - 0.056 - 0.053 - 0.057 
(0.028) (0.012) (0.010) (0.012) 

#3 0.002 0.019 0.020 0.021 
(0.024) (O.O1 I) (0.009) (0.01 I) 

m - - 9 . 6 9 6  - 10.117 - 10.997 - 10.273 
(0.032) (0.312) (0.413) i0.41~) 

0.372 0.212 0.214 0.217 
(0.199) (0.057) (0.057) (0.058) 

0 - 0.103 - 0.098 - 0.118 
(0.021 ) (0.020) (0.023) 

y 0.203 0.197 0.231 
(0.033) (0.033) (0.030) 

~P2 - - 0.948 - 0.974 - 0.717 
(0.036) (0.016) (0.142) 

q~ t 0.997 1.000 0.774 
(0.002) (0.124) 

02 0.838 0.894 - -  
(0.092) (0.053) 

d ~ 0.633 
(O.063) 

AIC 64351.0 67434.3 67426.0 67459.9 
SIC 64308.0 67355.5 67354.3 6738 I. ! 

Q t o 15.8 9.4 9.9 I 0.0 
Qtoo 176.4 99.6 i01.1 100.5 
Q~o 3877.0 18.7 18.5 15. i 
Q~oo ! 2621.8 133.2 132.7 122.7 

See footnote to Table 4. The O~ row gives the L j u n g B o x  por tmanteau  test for up to Kth-order  
serial correlation in the absolute standardized residuals, l~6"7 t l. 
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model. The estimated value of d~= 0.633 is almost six asymptotic standard 
errors away from unity. As discussed in Section 2, the EGARCH model is 
readily interpreted as an ARMA model for {In {a~)}. It is therefore interesting to 
note that the p-value for the corresponding Q~oo portmanteau test for up to 
100th-order autocorrelation in the absolute standardized residuals, ]~tO711, 
reported in Table 5 is also the lowest for the FIEGARCH model. 

In concluding our discussion of the GARCH and EGARCH estimation 
results, we note that Engle and Lee (1992) and Gallant, Rossi, and Tauchen 
(1993) have recently argued that the so-called leverage effect is primarily a short- 
run phenomenon. This might explain why the results for the EGARCH formula- 
tions in Table 5 pertaining to the long-run features and the finding of highly 
significant fractional integration in the stock market volatility process corres- 
pond so closely to the results for the symmetric GARCH models reported in 
Table 4. The practical importance of modeling these long-run volatility charac- 
teristics is illustrated in the next section through the pricing of long-term stock 
index options. 

5. Simulated option prices 

A call option gives the owner the right, but not the obligation, to buy 
a particular security at a pre-specified price within a pre-specified time period. 
The value of such an option will therefore be intimately related to the distribu- 
tion of the price of the underlying instrument at the time of maturity. Specifi- 
cally, the more volatile the underlying price process, the more valuable the 
option. Organized trading in long-term options, or leaps, with maturity times of 
one year or longer has increased dramatically in recent years. In this section, we 
present various simulation based results for the pricing of such hypothetical 
long-term options on the Standard and Poor's 500 composite stock index. 

The standard approach for pricing option,s rely oa risk-neutral valuation 
methods; see, e.g., Brennan (1979), Lo and Wang (1995), and Rubinstein (1976). 
In this risk-neutralized probability measure, the price of a call option, that does 
not allow for early exercise and pays no dividends, will be equal to the 
discounted expected value of the payoffs at the maturity date. Harrison and 
K reps (1979) derive sufficient conditions for the existence of such an equivalent 
martingale measure. Unfortunately, as shown recently by Amin and Ng (1993), 
preference-free option valuation is not available under general ARCH-type 
volatility processes. Thus, rather than actual minimizing the pricing errors from 
a particular preference-dependent pricing formula, our analysis below is meant 
primarily to illustrate the practical importance of correctly modeling long-run 
volatility dependencies when calculating option prices. To that end we will 
compare the price paths of options with different maturity times for three 
alternative pricing schemes. Based on the in-sample analysis in the previous 
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section we shall restrict our analysis to the forecasts from the four different 
EGARCH data-generating mechanisms for the underlying Standard and Poor's 
index estimated in Table 5. 24 

To set up the notation, let T refer to the time that the option is written; i.e., 
December 31, 1990 in the experiments reported on below. The maturity time of 
the option in days Js denoted by z. Thus, the results for r = 70 and z = 260 
correspond to roughly three-month and one-year maturity times, respectively. 
An option is said to be at-the-money if the exercise price, K, equals the current 
value of the underlying security; i.e., here K = Pr where P,, = 330.2 refers to the 
value of the index on December 31, 1990. Similarly, the index option is in-the- 
money if K < Pr and out-of-the money if K > Pr.  We shall here concentrate on 
the results for K = PT and K = 1.25- PT- A more detailed investigation of the 
pricing biases would be interesting but beyond the scope of the present explora- 
tory analysis. The risk-free interest rate over the life of the option is denoted by r. 
In all of the experiments we took r = 0.07 per year. Some informal analysis 
revealed little sensitivity to this choice. 

The celebrated Black and Scholes (1973) option pricing formula for the 
price of a call option, C(a, z, K, PT, r), is derived under the assumption 
that the underlying price process, {Pr+t}, 0 ~< t ~< T, follows a continuous- 
time random walk with instantaneous variance a z. As the results in the previous 
section illustrates, this assumption is deafly at odds with the actual time 
series properties of the Standard and Poor's 500 composite index. The three 
alternative pricing schemes analyzed here have all been used elsewhere in the 
literature to value options in the presence of time-varying volatility. For a more 
thorough discussion of option pricing issues in the presence of stochastic 
volatility we refer to Amin and Ng (1993), Day and Lewis (1992), Engle and 
Mustafa (1992), Engle, Hong, Kane, and Noh (1993), Hull and White (1987), 
Lamoreux and Lastrapes (1993), Melino and Turnbull (1990), Scott (1987), and 
Wiggins (1987). 

Our first pricing equation simply evaluates the Black-Scholes formula with 
the average time-varying conditional variance of the index over the life of the 
option in place of tr z. Denote this expected average per period volatility by 
aas(x) z. The resulting option prices are then given by 

CaS(¢, K) = C(a's(z),  ~, K, PT, r). (13) 

24Using U.S. stock return data up until 1937 only, Pagan and Schwcrt 0990) found the 
EGARCH(2, 1) model to be superior in a simple out-of-sample forecast comparison with other 
parametri c and nonparametric models. In their analysis of actual option pricing errors, Amin and 
Ng (1993) also find that allowing for asymmetries in the volatility process, as in an EGARCH(I, 1) 
formulation, tend to produce the most accurate prices. 
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An estimate of the z-period volatility was obtained by calculating the sample 
variance over N = 1000 simulations of the future price paths, ( )2 

~stT)~ = [~Pg(N - 1)] - i  ~ en.r+, - Pr - N - '  ~ [P~.r+, - er]  
n---1 ,N i~  l ,N  

= [ ~ P ~ ( N - 1 ) ]  -1 Y'. , % . r + ~ - N - '  Y'. P~.r+, , (14) 
f l=  I . N  i =  ! , N  

where Pn, T+t refers to the simulated value ofth¢ index at time T + t for the nth 
replication. 

Each of the N replications were generated by sampling randomly from the 
T in-sample standardized residuals for the particular model under study; 
i.e., ~t - e~7 ~, t = 1, 2, . . . ,  T. This bootstrap procedure takes account of the 
conditional nonnormality in the returns distribution, a feature which may be 
especially important for far out-of-the-mouey or in-the-money options; see 
Baillie and Bollerslev (1992) for a general discussion of prediction error distribu- 
tions in ARCH models. 2s As would be the case with any other simulation 
approach based on an ARCH model for the conditional mean and variance, this 
bootstrap procedure necessarily destroys any higher-order conditional moment 
dependencies in the standardized residuals. The existence of such higher-order 
moment dependencies in the returns is at best very weak, however; s¢¢, e.g., 
Hansen (1994). 

As noted above, no closed form option pricing formula is generally available 
in the presence of time-varying volatility. However, Hull and White (1987) show 
that if the continuous-time volatility process is instantaneously uncorrelated 
with the aggregate consumption in ti~e economy, the theoretical price of a call 
option is equal to the expected Black Scholes price integrated over the average 
instantaneous variance during the life of the option. Our second pricing formula 
is motivated by this idea. Specifically, we calculate the prices, 

CUW(z, K) = N -  1 ~.. c(aUW(z),, z, K, Pr,  r), (15) 
n = I , N  

where au'(~)~ denotes the volatility per period for the nth simulation. In 
practice, 6uw(~)~ is estimated by 

t = , t  i = l . t  

= [P~-(z - 1)'1 -s ~.. (3Pn. r+, - z - l [P~.r+,  - P T ] )  2, (16) 
I = l , g  

2s For the AR, EGARCH, IEGARCH, and FIEGARCH models in Table 5, the sample kurtosis for 
the standardized residuals, ,~, equal 31.98, 7.62, 7.77, and 7.69, respectivdy. Th0 sample skewness 
coeflicienls are - 1.05, - 0.43, - 0.43. and - 0.44, respectively. 
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where AP, ,  T +, - P, .  T +, - in .  T + , -  ~. This estimator of the per-period variance is 
based directly on the discretized version of the stochastic differential equation in 
Hull and White (1987). This volatility estimate takes into account the drift but 
not the autocovariances of the underlying price process. 26 

Under the equivalent martingale measure discussed above, the price of 
an option is simply equal to the discounted present value of the payoffs at 
expiration. The final set of option prices that we consider approximates this 
theoretical price by replacing the risk-neutralized probability measure with the 
simulated sampling distribution for PT+ 3. The resulting Present Value prices are 
denoted by 

C P V ( z , K ) = e - ' ~ N  - l  ~ max{0, Pn,~+~-K}. (17) 
n = l . N  

Options prices based on this approach have previously been studied within an 
ARCH context by Engle and Mustafa (1992). 

Before discussing the actual prices obtained by the three alternative op- 
tion valuation methods, Table 6 briefly summarizes the simulated predictive 
distributions for PT+7o and PT+26o for each of the four different DGP's. 
The confidence bands from the homoskedastic AR(3) model are the most 
narrow. Among the three EGARCH models, the AR(3)-EGARCH(2, 1) model 
always results in the nlost conservative confidence bands, while the 
AR(3)-IEGARCH(2~ l) model yields the most dispersed predictions. This is 
especially pronounced for the one-year-aheo,d predictions. 27 As the owner of an 
option has the right, but not the obligation to exercise the option, the simulated 
options prices should reflect this ranking. It is worth noting, that the conditional 
variances at the origin ofthe forecasts are above average by historical standards. 
Judged by the in-sample distribution of the 9558 conditional ~,afiance estimates 
from the EGARCH, IEGARCH, and FIEGARCH models, the conditional 
variances on December 31, 1990, correspond to the 0.872, 0.864, and 0.853 
fractiles, respectively. It would be interesting, but beyond the scope of the 
present analysis, to investigate the pricing behavior in less as well as even more 
volatile periods, also. 

The first set of results reported in Table 7 give the simulated prices for at-the- 
money options with 70 days until maturity. As expected, the IEGARCH model 
results in the highest prices for all three different pricing schemes, whereas the 
homoskedastic AR model uniformly produces the lowest valuations. The prices 

26 We also experimented with an alternative estimator which takes into account both the drift and 
the autocovariances; i.e., [P~(~--!)] -! (Pn.T+,- N-I~_ ! ~P~.r+~) 2- The simulated options 
prices obtained with this estimator were generally very close to t'fie results from the CUW(r, K) prices 
using ~nw(T, K)n in Eq. (16). 
27 The Standard and Poor's 500 index was equal to 417.1 on December 31, 1992; well within the 90% 
confidence bands for all four models. 
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Table 6 
Simulated predictive price distributions 

Fractile AR AR-EGARCH AR-IEGARCH AR-FIEGARCH 

PT + "70 

0.025 290.6 268. I 260.0 266.4 
0.050 298.0 284.0 279.6 283.0 
0.500 339.5 341.6 342.3 341.5 
0.950 382.3 387.3 393. I 386.2 
0.975 390.4 :398.5 406.3 400. ! 

PT+2oo 

0.025 270.4 225.1 199.7 220.5 
0.050 288.4 255.9 240.8 251.4 
0.500 361.1 362.7 365.5 362.5 
0.950 458.8 464.3 487.1 471.9 
0.975 477.7 482.7 516.0 492.6 

The table reports the simulated fractiles of the predictive distribution for the Standard and 
Poor's 500 composite index based on the four EGARCH models estimated in Table 5. The origin 
of the forecasts is December 31, 1990, corresponding to PT = 330.2. All the simulated forecast 
distributions are based on N = 1,000 replications. The first group of numbers give the fractiles 
for predictions 70 days ahead, while the second group of numbers are for predictions 260 days 
ahead. 

Table 7 
Simulated options prices 

AR AR-EGARCH AR-IEGARCH AR-FIEGARCH 

cBs( 70, PT) 13.6 16.2 17.5 16.2 
Cnw(70,PT) 12.6 14.0 15.1 14.1 
CeV( 70, Pr) 15.6 17.5 19.1 17.5 

CBs(260, PT) 33.2 37.5 41.8 38.6 
CnW(260, PT) 31.4 33.2 36.8 34.2 
CeV(260, PT) 39.8 40.9 46.1 41.6 

CBs(260, 1.25. Pr) 4.9 8.5 12.4 9.5 
CnW(260,1.25" PT) 3.8 5.3 8.2 6.0 
Cnv(260, 1.25" PT) 5.8 6.4 10.3 7.3 

The table reports the simulated call option prices for the Standard and Poor's 500 composite index 
based on the four EGARCH models estimated in Table 5, The simulations are based on N = 1,009 
replications. The prices labelled CaS(r, K) refer to the Black-Scholes prices in Eq. (15), COW(r, K) 
gives the Hull-White prices computed from Eq. (17), while CeV(¢, K) gives the discounted Present 
Value prices in Eq. {19). The options are all written at time T corresponding to December 31, 1990 
and expire r days later. The value of the index at time T is denoted by PT. The second argument in 
the option pricing formulas, K, refers to the exercise price. The other parameter settings are as 
discussed in the text. 
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Fig. 5. At-tbe-money options prices. 

The figure graphs the Black-Scholes prices, CaS(¢, Pr), for at-the-money call options on the 
Standard and Poet's 500 composite index as a function of the number of days to maturit:; All the 
options are written on December 31, 1990. The four different price paths are calculated irom the 
AR(3), AR(3)-EGARCH(2, I), AR(3)-IEGARCH(2, 1), and AR(3)-FIEGARCH(I, d, !) estimates 
reported in Table 5. 

for the EGARCH and the FIEGARCH models are very close. As argued above, 
the practical importance of the fractional integrated variance formulations 
stems primarily from the added flexibility when modeling long-run volatility 
features. Indeed, for the one-year at-the-money options, reported in the second 
group of numbers in Table 7, the FIGARCH prices are very clearly between the 
EGARCH and the IEGARCH valuations. This clearcut ranking as the maturity 
time increases is also evident from Fig. 5, which graphs the Black-Scholes prices 
cBs(z, PT), • = 1, 2 . . . . .  260, for all four DGP's. 

Of course, the tail behavior of the predicted price distibutions will be more 
important the further apart the current price of the underlying asset, PT, and the 
exercise price, K. To illustrate this effect, the last set of numbers in Table 7 
reports the results for one-year out-of-the-money options with an exercise price 
25% above the current value of the index; i.e., K -- 1.25. PT. Trading in long- 
term options that are much further out-of-the-money is quite common. The 
results for these options are even more illuminating. The prices based on 
the IEGARCH model are roughly double the homoskedastic AR prices. The 
FIEGARCH model again yield valuations that are between the EGARCH and 
the !EGARCH models, but the relative differences are much greater than for the 
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Fig. 6. Out-of-the-money options prices. 

The figure graphs the Hull--White prices, CUW(x, 1.25-PT), for out-of-the-money call options on 
the Standard and Poor's 500 composite index as a function of the number of days to maturity. All 
tbe options are written on December 31, 1990. The four different price paths are calculated from the 
AR(3), AR(3[ EGARCH(2, I), AR(3yIEGARCH(2, I), and AR(3)-FIEGARCH(I, d, I) estimates 
reported in Table 5. 

at-the-money options. This is also i!!ustraled in Fig. 6, which graphs the 
Hull-White prices CUW(~, 1.25- PT), ~ = 2, 3 . . . . .  260. :8 It would be interesting, 
but beyond the scope of the present paper, to further explore the economic 
implicatioins of these fairly large price differentials. One possible route would be 
to formulate trading strategies based on the various pricing formulas as in 
Engle, H ong, Kane, and Noh (1993). We are currently pursuing these ideas using 
actual leaps, or long-term options, prices for a number of individual stocks as 
well as the Standard and Poor's 500 stock index. Along these lines, it is 
interesting to note that Amin and Ng (1993) on simulating an EGARCH(1, 1) 
model for the returns on individual stc, cks, find that the corresponding longer 
maturity options tend to be underpriced relative to short term options. The 
results presented here suggest that correctly modeling the long-run depend- 
encies in the volatility process of the underlying asset may be as important as the 
choice of approximate option valuation method when pricing long maturity 
contracts. 

2a Note, the per period volatility in Eq. (16) i,,, not defined for ~ = I. 
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6. Conclusion 

A new class of more flexible fractionally integrated EGARCH models for 
characterizing the long-run dependencies in U.S. stock market volatility was 
proposed. Strong evidence was uncovered that the conditional variance for the 
Standard and Poor's 500 composite index is best modeled as a mean-reverting 
fractionally integrated process. The practical importance of this finding was 
illustrated via the simulation of hypothetical prices for long-term options on the 
index. New simulatio~ results o n  the finite-sample distributions of maximum 
likelihood estimation procedures, model selectioin criteria, and portmanteau 
diagnostic checking for the fiactional integrated and general ARCH-type 
models for the conditional variance were also presented. 

It would be interesting to extend the empirical analysis for the Standard 
and Poor's 500 composite index presented here to individual stock and other 
more broadly defined asset categories. Along these lines, we note that Baillie, 
Bollerslev, and Mikkelsen (1996) also report significant evidence for the presence 
of fractional integrated behavior in the conditional variance of nominal U.S, 
dollar-Deutschmark exchange rates. These findings of long-memory compo- 
nents in the volatility processes of asset returns have important implications 
for many paradigms in modern financial economics. In addition to the pricing 
of long-term options as discussed above, optimal portfolio allocations may 
become extremely sensitive to the investment horizon if the volatility of the 
returns are long-range dependent. Simi|~rly, optimal hedging decisions must 
take itito account any such long-run dependencies. A more formal and detailed 
empirical investigation of these issues would be an important task for future 
research. 
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