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Summary. The availability of intraday data on the prices of speculative assets means that
we can use quadratic variation-like measures of activity in financial markets, called realized
volatility, to study the stochastic properties of returns. Here, under the assumption of a rather
general stochastic volatility model, we derive the moments and the asymptotic distribution of the
realized volatility error—the difference between realized volatility and the discretized integrated
volatility (which we call actual volatility). These properties can be used to allow us to estimate
the parameters of stochastic volatility models without recourse to the use of simulation-intensive
methods.

Keywords: Kalman filter; Leverage; Lévy process; Power variation; Quadratic variation;
Quarticity; Realized volatility; Stochastic volatility; Subordination; Superposition

1. Introduction

1.1. Stochastic volatility
In the stochastic volatility (SV) model for log-prices of stocks and for log-exchange-rates a basic
Brownian motion is generalized to allow the volatility term to vary over time. Then the log-price
y*.t/ follows the solution to the stochastic differential equation (SDE)

dy*.t/ = {µ+ β σ2.t/} dt + σ.t/ dw.t/; (1)

where σ2.t/, the instantaneous or spot volatility, will be assumed (almost surely) to have locally
square integrable sample paths, while being stationary and stochastically independent of the
standard Brownian motion w.t/. We shall label µ the drift and β the risk premium. Over an
interval of time of length ∆ > 0 returns are defined as

yn = y*.∆n/ − y*{.n − 1/∆} ; n = 1; 2; : : : ; (2)

which implies that, whatever the model for σ2, it follows that

yn|σ2
n ∼ N.µ∆ + βσ2

n;σ2
n/;

where

σ2
n = σ2*.n∆/ − σ2*{.n − 1/∆}
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and

σ2*.t/ =
∫ t

0
σ2.u/ du:

In econometrics σ2*.t/ is called integrated volatility, whereas we call σ2
n actual volatility. Both

definitions play a central role in the probabilistic analysis of SV models. Reviews of the literature
on this topic are given in Taylor (1994), Shephard (1996) and Ghysels et al. (1996), whereas
statistical and probabilistic aspects are studied in detail in Barndorff-Nielsen and Shephard
(2001a). One of the key results in this literature (Barndorff-Nielsen and Shephard, 2001a) is that
if we write (when they exist) ξ,ω2 and r respectively as the mean, variance and the autocorrelation
function of the process σ2.t/ then

E.σ2
n/ = ξ∆,

var.σ2
n/ = 2ω2 r**.∆/;

cov.σ2
n;σ2

n+s/ = ω2 ♦r**.∆s/;

 (3)

where

♦r**.s/ = r**.s + ∆/ − 2 r**.s/ + r**.s − ∆/; (4)

and

r*.t/ =
∫ t

0
r.u/ du;

r**.t/ =
∫ t

0
r*.u/ du;

(5)

i.e. the second-order properties of σ2.t/ completely determine the second-order properties of
actual volatility.

One of the most important aspects of SV models is that σ2*.t/ can be exactly recovered using
the entire path of y*.t/. In particular, for the above SV model the quadratic variation is σ2*.t/,
i.e. we have

[y*].t/ = plim
q→∞

[∑{y*.t
q
i+1/ − y*.t

q
i /}2

]
= σ2*.t/ (6)

for any sequence of partitions t
q
0 = 0 < t

q
1 < : : : < t

q
mr = t with supi.t

q
i+1 − t

q
i / → 0 for

q → ∞. Here plim denotes the probability limit of the sum. This is a powerful result for it does
not depend on the model for instantaneous volatility nor the drift terms in the SDE for log-prices
given in equation (1). The quadratic variation estimation of integrated volatility has recently
been highlighted, following the initial draft of Barndorff-Nielsen and Shephard (2001a) and
the concurrent independent work of Andersen and Bollerslev (1998a), by Andersen, Bollerslev,
Diebold and Labys (2001) and Maheu and McCurdy (2001) in foreign exchange markets and
Andersen, Bollerslev, Diebold and Ebens (2001) and Areal and Taylor (2002) in equity markets.
See also the contribution of Comte and Renault (1998).

In practice, although we often have a continuous record of quotes or transaction prices, at
a very fine level the SV model is a poor fit to the data. This is due to market microstructure
effects (e.g. discreteness of prices, bid–ask bounce, irregular trading etc.; see Bai et al. (2000)). As
a result we should regard the above quadratic variation result as indicating that we can estimate
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actual volatility, e.g. over a day, reasonably accurately by sums of squared returns, say, by using
periods of 30 min but keeping in mind that taking returns over increasingly finer time periods
will lead to the introduction of important biases. Hence the limit argument in quadratic variation
is interesting but of limited direct practical use on its own. Suppose instead that we have fixed
M intraday observations during each day; then the sum of squared intraday changes over a day
is

{y}n =
M∑

j=1

[
y*

{
.n − 1/∆ + ∆j

M

}
− y*

{
.n − 1/∆ + ∆.j − 1/

M

}]2

; (7)

which is an estimate ofσ2
n. It is a consistent estimate as M → ∞, while it is unbiased whenµ andβ

are 0. In econometrics {y}n has recently been labelled realized volatility, and we shall follow that
convention here. Andersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev, Diebold
and Ebens (2001) and Andersen et al. (2000) have empirically studied the properties of {y}n in
foreign exchange and equity markets (earlier, less formal work on this topic includes Poterba and
Summers (1986), Schwert (1989), Taylor and Xu (1997) and Christensen and Prabhala (1998)).
In their econometric analysis they have regarded {y}n as a very accurate estimate of σ2

n. Indeed
they often regard the estimate as basically revealing the true value of actual volatility so that
yn=

√{y}n is virtually Gaussian. So far no measure of error has been obtained which indicates
the difference between {y}n and σ2

n. We shall show that this difference is approximately mixed
Gaussian, can be substantial and that more accurate estimates ofσ2

n are readily available if we are
willing to use a model for σ2.t/. Andreou and Ghysels (2001) have independently approximated
the properties of realized volatility using the methods of Foster and Nelson (1996) in their study
of rolling estimators of the spot volatility σ2.t/.

In this paper we shall discuss a simple way of formally bridging the gap between realized and
actual volatility, providing a discussion of the properties of {y}n which has so far been lacking
in the literature. Inevitably for finite M these properties will depend on the dynamics of the
instantaneous volatility as well as the drift term in the SDE for log-prices. This must be the case,
for the shorthand of ignoring the small sample effects of estimating σ2

n with the consistent {y}n

is only valid for infeasibly large values of M.
In particular the contribution of our paper will be to allow us

(a) to derive the asymptotic distribution of .{y}n − σ2
n/

√
M for large M, showing that this

does not depend on µ and β, and is statistically sensible,
(b) to analyse the properties of realized volatility by assuming that µ = β = 0 as the cor-

responding error has been shown to be small,
(c) to understand the exact second-order properties of {y}n when µ = β = 0,
(d) to use the models for instantaneous volatility to provide model-based estimates of actual

volatility (rather than model-free estimates which assume M → ∞) using the series of
realized volatility measurements when µ = β = 0 (these model-based estimates can be
based on past, current or historical sequences of realized volatilities) and

(e) to estimate the parameters of SV models by using simple and rather accurate statistical
procedures when µ = β = 0.

1.2. Empirical example
To illustrate some of the empirical features of realized volatility we have used the same return
data as employed by Andersen, Bollerslev, Diebold and Labys (2001), although Appendix A
will describe the slightly different adjustments that we have made to deal with some missing
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data. This US dollar–German Deutschmark series covers the 10-year period from December
1st, 1986, until November, 30th, 1996. Every 5 min it records the most recent quote to appear
on the Reuters screen. It has been kindly supplied to us by Olsen and Associates in Zurich and
preprocessed by Tim Bollerslev. It will be used throughout our paper to illustrate the results that
we shall develop. In Fig. 1(a) we have drawn the correlogram of the squared 5-min returns over
the 10 years’ sample. It shows the well-known very strong diurnal effect (the x-axis is drawn in
days). This will be discussed in detail in Section 6 but for now will be ignored entirely. Fig. 1(b)
shows the correlogram of realized volatility, {y}n, computed using M = 288 (i.e. based on
5-min data) and again using the whole 10 years of data. The graph starts out at around 0.6,
decays very quickly for a number of days and then decays at a slower rate. Fig. 1(c) shows a
cumulative version of the squared 5-min returns drawn on a small scale, while in Fig. 1(d) the
same cumulative function is drawn over a larger timescale. It is the daily increments of this
process which make up realized volatility.

1.3. Outline of the paper
The outline of the rest of the paper is as follows. In Section 2 we discuss the basic approach
in the most straightforward set-up where µ and β are 0, providing the second-order properties
of realized volatility. These can be used in estimating the value of actual volatility from a time
series of realized volatilities. This is discussed in Section 3, which also contains a discussion of
using the realized volatilities to provide estimates of continuous SV models. Section 4 gives an

(a) (b)

(d)(c)

Fig. 1. Summary statistics for Olsen group’s 5-min changes data: (a) autocorrelation function of 5-min
returns; (b) autocorrelation function of realized volatility; (c) cumulative sum of squared 5-min changes over
a short interval; (d) cumulative sum of squared 5-min changes over a long interval
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empirical illustration of the methods developed in the previous two sections. Section 5 provides
the asymptotic distribution of .{y}n − σ2

n/
√

M, covering the case where there is drift and a
risk premium. This section shows that the effect on realized volatility of the drift and the risk
premium is extremely small. Section 6 studies diurnal effects and leverage extensions. Section 7
concludes, whereas Appendix A contains a discussion of the data set that is used in this paper
together with a proof of lemma 1 and theorem 1.

2. Relating actual to realized volatility

2.1. Generic results
Actual volatility σ2

n plays a crucial role in SV models. It can be estimated using realized volatility
{y}n, given in equation (7). Here we discuss this in the simplest context where µ = β = 0,
delaying our discussion of the effect on {y}n of the drift and risk premium until Section 5. In
that section we shall show that the effect is minor and so the results that we develop here will
still be important in that wider case.

In SV models we can always make the decomposition

{y}n = σ2
n + un; where un = {y}n − σ2

n: (8)

Here we call un the realized volatility error, which has the property that E.un|σ2
n/ = 0. Hence

realized volatility is an unbiased estimator of actual volatility. We know that as M → ∞ then
{y}n → σ2

n, almost surely, so it is also consistent. However, the purpose of this section is to
discuss the properties of {y}n for finite M. We can see that

E.{y}n/ = ∆ξ; var.{y}n/ = var.un/ + var.σ2
n/; cov.{y}n; {y}n+s/ = cov.σ2

n;σ2
n+s/:

Further, writing

σ2
j;n = σ2*

{
.n − 1/∆ + ∆j

M

}
− σ2*

{
.n − 1/∆ + ∆.j − 1/

M

}
we have that

un
L=

M∑
j=1

σ2
j;n."2

j;n − 1/;

where "j;n ∼IID N.0; 1/ and independent of {σ2
j;n}. It is clear that {un} is a weak white noise

sequence which is uncorrelated with the actual volatility series {σ2
n}.

Now, unconditionally,

var.un/ = 2M E{.σ2
1;n/2} (9)

= 2 M{var.σ2
1;n/ + E.σ2

1;n/2};

for σ2
1;n has the same marginal distribution as each element of {σ2

j;n}. In general we have from
equations (3) that

E.σ2
1;n/ = ∆M−1ξ;

var.σ2
1;n/ = 2ω2 r**.∆M−1/:

(10)



258 O. E. Barndorff-Nielsen and N. Shephard

Hence we can compute var.un/ for all SV models when µ = β = 0. In turn, having established
the second-order properties of σ2

n and un, we can immediately use the results in Whittle (1983)
to provide best linear prediction and smoothing results for the unobserved actual volatilities
σ2

n from the time series of realized volatilities {y}n. The only issues which remain on this front
are computational. Otherwise this covers all covariance stationary models for σ2.t/—including
long memory processes.

One of the implications of the result given above is that

corr.{y}n; {y}n+s/ = cov.σ2
n;σ2

n+s/

var.un/ + var.σ2
n/

= ω2 ♦r**.∆s/

2M−1{2ω2 M2 r**.∆M−1/ + .∆ξ/2} + 2ω2 r**.∆/
:

Notice that

corr.y2
n; y2

n+s/ = ω2 ♦r**.∆s/

2{2ω2 r**.∆/ + .∆ξ/2} + 2ω2 r**.∆/

can be derived from this result, for {y}n = y2
n when M = 1. Hence the decay rates in the

autocorrelation function of {y}n, σ2
n and y2

n are the same in general but the correlation
varies considerably, being the highest for σ2

n, followed by {y}n and lowest for y2
n.

In practice we tend to use realized volatility measures with M being moderately large. Hence it
is of interest to think of a central limit approximation to the distribution of un. This will depend
on the limit of t−2 r**.t/ as t → 0 from above. Now, by Taylor series expansion

r**.t/ = r**.0+/ + t r*.0+/ + 1
2 t2 r.0+/ + o.t2/ = 1

2 t2 r.0+/ + o.t2/:

This means that the limit of t−2 r**.t/ is 1
2 . A consequence of this is that

lim
M→∞{M2 var.σ2

1;n/} = ∆2ω2; (11)

implying that, as M → ∞,

var.un
√

M/ = var{.{y}n − σ2
n/

√
M} → 2∆2.ω2 + ξ2/:

This is an important result. We have moved away from the standard consistency result of {y}n →
σ2

n in probability as M → ∞, which follows from familiar quadratic variation results. Now we
have the more refined measure of the uncertainty of this error term.

2.2. Simple example
Suppose that the volatility process has the autocorrelation function r.t/ = exp.−λ |t|/. Here we
recall two classes of processes which have this property. The first is the constant elasticity of
variance (CEV) process which is the solution to the SDE

dσ2.t/ = −λ{σ2.t/ − ξ} dt + ω σ.t/η db.λt/; η ∈ [1; 2];

where b.t/ is standard Brownian motion uncorrelated with w.t/. Of course the special case
of η = 1 delivers the square-root process, whereas when η = 2 we have Nelson’s generalized
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(a) (b)

(c) (d)

Fig. 2. Actual σ2
n ( ) and realized {y}n (+) (with M varying) volatility based on a Γ(4, 8) OU process

with λ= –log(0.98) and ∆ = 1 (this implies ξ = 0.5 and ξω–2 = 8): (a) M = 1; (b) M = 12; (c) M = 48; (d) M = 288

autoregressive conditional heteroscedastic diffusion. These models have been heavily favoured
by Meddahi and Renault (2002) in this context. The second process is the non-Gaussian
Ornstein–Uhlenbeck (OU) process which is the solution to the SDE

dσ2.t/ = −λ σ2.t/ dt + dz.λt/; (12)

where z.t/ is a Lévy process with non-negative increments. These models have been developed
in this context by Barndorff-Nielsen and Shephard (2001a). In Fig. 2 we have drawn a curve
to represent a simulated sample path of σ2

n from an OU process where σ2.t/ has a Γ.4; 8/

stationary distribution, λ = − log.0:98/ and ∆ = 1, along with the associated realized volatility
(depicted by using crosses) computed using a variety of values of M. We see that as M increases
the precision of realized volatility increases, whereas Fig. 2(d) shows that the variance of the
realized volatility error increases with the volatility, a result which we shall come back to in
Section 5 where the asymptotic distribution that we develop for un

√
M will reflect this feature.

For both CEV and OU models

r**.t/ = λ−2{exp .−λ |t|/ − 1 + λt}
and

♦r**.∆s/ = λ−2{1 − exp .−λ∆/}2 exp {−λ∆.s − 1/}; s > 0:
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This implies that

E.σ2
n/ = ∆ξ;

var.σ2
n/ = 2 ω2

λ2 {exp.−λ∆/ − 1 + λ∆}
and

corr.σ2
n;σ2

n+s/ = d exp t{−λ∆.s − 1/}; s = 1; 2; : : : ; (13)

where

d = {1 − exp.−λ∆/}2

2 {exp.−λ∆/ − 1 + λ∆} � 1:

Finally

var.un/ = 2M{var.σ2
1;n/ + E.σ2

1;n/2}
= 2M[2ω2 λ−2{exp.−λ∆=M/ − 1 + λ∆M−1} + .∆M−1/2ξ2]: (14)

Importantly this analysis implies that actual volatility has the autocorrelation function of an
autoregressive moving average (ARMA) model of order .1; 1/. Its autoregressive root is
exp.−λ∆/, which will be typically close to 1 unless ∆ is very large, whereas the moving
average root is also determined by exp.−λ∆/ but must be found numerically. A graph of the
moving average root against exp.−λ∆/ is given in Fig. 3(a) and shows that for a wide range
of the autoregressive root the moving average root is around 0:265. Likewise Fig. 3(b) shows a
plot of d against exp.−λ∆/ and indicates a rapid decline in this coefficient as the autoregressive
root falls. In particular, in financial econometrics the literature suggests that volatility is quite
persistent, which would imply that d should be close to 1. Thus, if t is recorded in days and ∆
is set to 1 day, then empirically reasonable values of λ will imply that d should be close to 1.

In turn the autocorrelation function for σ2
n implies that the squares of returns have autocor-

relations of the form

corr.y2
n; y2

n+s/ = c′ exp{−λ∆.s − 1/}; (15)

(a) (b)

Fig. 3. (a) Moving average root plotted against autoregressive root exp(–∆λ) for the ARMA(1, 1)
representation and (b) d in the expression for corr(σ2

n ,σ2
n + s) against autoregressive root exp(–∆λ)
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where

1
3

� 1
3

d � c′ = {1 − exp.−λ∆/2}
6 {exp.−λ∆/ − 1 + λ∆} + 2.λ∆/2 .ξ=ω/2 � 0:

This means that y2
n also has a linear ARMA(1, 1) representation. Further, it has the same

autocorrelation function as the familiar generalized autoregressive conditional heteroscedastic
model that is used extensively in econometrics (see, for example, Bollerslev et al. (1994)). Finally,
the autoregressive root of the ARMA representation is the same for y2

n as for σ2
n; however, the

moving average root of the square changes is much larger in absolute value. The implication is
that the correlograms for y2

n will be less clear than if we had observed the correlograms of the
σ2

n. This can be most easily seen by noting that for small λ

c′ � 1 − λ∆

3 + 2 .ξ=ω/2 ;

which is much smaller than d which is approximately 1 − λ∆. For example, if ξ = ω, then c′
will be approximately 0:2 for daily data.

2.3. Extension of the example: superpositions
The OU or CEV volatility models are often too simple to fit accurately the types of dependence
structures that we observe in financial economics. This can be seen Fig. 1(b) which displays
the autocorrelation function of realized volatility for the Olsen group’s 5-min data. This graph
shows a relatively quick initial decline in the autocorrelation function, followed by a slower
decay. This single observation is sufficient to dismiss the OU and CEV models.

One mathematically tractable way of improving the flexibility of the volatility model is to let
the instantaneous volatility be the sum, or superposition, of independent OU or CEV processes.
As the processes do not need to be identically distributed, this offers plenty of flexibility while
still being mathematically tractable. Superpositions of such processes also have potential for
modelling long-range dependence and self-similarity in volatility. This is discussed in the OU
case in Barndorff-Nielsen and Shephard (2001a) and in more detail by Barndorff-Nielsen (2001)
who formalizes the use of superpositions as a way of modelling long-range dependence. This
follows earlier related work by Granger (1980), Barndorff-Nielsen et al. (1990), Cox (1991),
Ding and Granger (1996), Engle and Lee (1999), Shephard (1996), pages 36–37, Andersen and
Bollerslev (1997a), Barndorff-Nielsen (1998) and Comte and Renault (1998).

Consider volatility based on the sum of J independent OU or CEV processes,

σ2.t/ =
J∑

i=1
τ .i/.t/;

where the τ .i/.t/ process has the memory parameter λi. We assume that

E{τ .i/.t/} = wiξ;

var{τ .i/.t/} = wiω
2;

where {wi � 0} and ΣJ
i=1wi = 1, implying that E{σ2.t/} = ξ and var{σ2.t/} = ω2. The implica-

tion is that

cov{σ2.t/;σ2.t + s/} =
J∑

i=1
cov{τ .i/.t/; τ .i/.t + s/} = ω2

J∑
i=1

wi exp.−λi |s|/ :
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Hence the autocorrelation function of instantaneous volatility can have components which are
a mix of quickly and slowly decaying components. For fixed J the statistical identification of
this model (imposing a constraint like λ1 < : : : < λJ ) is a consequence of the form of the
autocorrelation function and the uniqueness of the Laplace transformation.

The linearity of the superposition of OU processes means that actual volatility has the form
σ2

n = ΣJ
i=1τ

.i/
n where

τ .i/
n = τ .i/*.n∆/ − τ .i/* {.n − 1/∆}

and

τ .i/*.t/ =
∫ t

0
τ .i/.u/ du:

The key feature is that each τ .i/
n has an ARMA(1; 1) representation of the type discussed

earlier. As the autocovariance function of a sum of independent components is the sum of
the autocovariances of the terms in the sum, we can compute the autocorrelation function of
σ2

n without any new work. Computationally it is helpful to realize that the sum of uncorrelated
ARMA(1; 1) processes can be fed into a linear state space representation when combined with
decomposition (8). The only new issue is computing

var.ut/ = 2M{var.σ2
1;n/ + E.σ2

1;n/2}:

Clearly E.σ2
1;n/ = ξ∆M−1 whereas

var.σ2
1;n/ =

J∑
i=1

var.τ .i/
1;n/ = 2ω2

J∑
i=1

wi ri**.∆M−1/

= 2ω2
J∑

i=1

wi

λ2
i

{exp.−λi∆M−1/ − 1 + λi∆M−1}

= 2ω2
J∑

i=1

wi

2λ2
i

.λi∆M−1/2 + o.M−2/:

Importantly, for large M this expression simplifies and so we again obtain

var.un
√

M/ → 2∆2.ω2 + ξ2/; as M → ∞:

3. Efficiency gains: model-based estimators of volatility

3.1. State space representation
If σ2.t/ is an OU or CEV process then σ2

n has an ARMA(1; 1) representation and so it is
computationally convenient to place decomposition (8) into a linear state space representation
(see, for example, Harvey (1989), chapter 3, and Hamilton (1994), chapter 13). In particular we
write α1n = σ2

n − ∆ξ and un = σuv1n; then the state space representation is explicitly

{y}n = ∆ξ + .1 0/αn + σuv1n;

αn+1 =
(
φ 1
0 0

)
αn +

(
σσ
σσθ

)
v2n;

(16)
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where vn is a zero-mean, white noise sequence with an identity covariance matrix. The parameters
φ, θ and σ2

σ represent the autoregressive root, the moving average root and the variance of
the innovation to this process, whereas σ2

u is found from equations (9) and (10). Software for
handling linear state space models is available in Koopman et al. (1999). Having constructed
this representation we can use a Kalman filter to estimate unbiasedly and efficiently (in a linear
sense) σ2

n by prediction (i.e. the estimate of σ2
n, using {y}1; : : : ;{y}n−1) and smoothing (i.e. the

estimate of σ2
n, using {y}1 ; : : : ; {y}T where T is the sample size). By-products of the Kalman

filter are the mean-square errors of these model-based (i.e. they depend on the assumption that
σ2

n has an ARMA(1; 1) representation) estimators.
Table 1 reports the mean-square error of the model-based predictor and smoother of actual

volatility, as well as the corresponding result for the model-free raw realized volatility (the mean-
square errors of the model-based estimators will be above the figures quoted towards the very
start and end of the sample, for we have quoted steady state quantities). The results in the left-
hand block of Table 1 correspond to the model which was simulated in Fig. 2, whereas the other
blocks vary the ratio of ξ to ω2. The exercise is repeated for two values of λ.

The main conclusion from the results in Table 1 is that model-based approaches can poten-
tially lead to very significant reductions in mean-square error, with the reductions being highest
for persistent (low value of λ) volatility processes with high values of ξω−2. Even for moder-
ately large values of M the model-based predictor can be more accurate than realized volatility,
sometimes by a considerable amount. This is an important result from a forecasting viewpoint.
However, when there is not much persistence and M is very large, this result is reversed and
realized volatility can be moderately more accurate. The smoother is always substantially more
accurate than realized volatility, even when M is very large and there is not much memory in
volatility. This suggests that model-based methods may be particularly helpful in estimating his-
torical records of actual volatility. Finally, we should place some caveats on these conclusions.
These results represent a somewhat favourable set-up for the model-based approach. In these
calculations we have assumed knowledge of the second-order properties of volatility whereas in

Table 1. Exact mean-square error (steady state) of the estimators of actual volatility†

M Results for Results for Results for
ξ = 0.5 and ξω−2 = 8 ξ = 0.5 and ξω−2 = 4 ξ = 0.5 and ξω−2 = 2

Smoother Predictor {y}n Smoother Predictor {y}n Smoother Predictor {y}n

exp(− ∆λ) = 0.99
1 0.0134 0.0226 0.624 0.0209 0.0369 0.749 0.0342 0.0625 0.998

12 0.00383 0.00792 0.0520 0.00586 0.0126 0.0624 0.00945 0.0211 0.0833
48 0.00183 0.00430 0.0130 0.00276 0.00692 0.0156 0.00440 0.0116 0.0208

288 0.000660 0.00206 0.00217 0.000967 0.00343 0.00260 0.00149 0.00600 0.00347

exp(− ∆λ) = 0.9
1 0.0345 0.0456 0.620 0.0569 0.0820 0.741 0.0954 0.148 0.982

12 0.0109 0.0233 0.0520 0.0164 0.0396 0.0624 0.0259 0.0697 0.0832
48 0.00488 0.0150 0.0130 0.00707 0.0260 0.0156 0.0108 0.0467 0.208

288 0.00144 0.00966 0.00217 0.00195 0.0178 0.00260 0.00280 0.0338 0.00347

†The first two estimators are model based (smoother and predictor) and the third is model free (realized
volatility {y}n). These measures are calculated for different values of ω2 = var{σ2.t/} and λ, keeping
ξ = E{σ2.t/} fixed at 0.5.
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practice we shall have to build such a model and then to estimate it, inducing additional biases
that we have not reported on.

3.2. Estimating parameters: a numerical illustration
Estimating the parameters of continuous time SV models is known to be difficult owing to our
inability to compute the appropriate likelihood function. This has prompted the development
of a sizable collection of methods to deal with this problem. A very incomplete list of references
includes Gourieroux et al. (1993), Gallant and Long (1997), Kim et al. (1998), Elerian et al.
(2001) and Sørensen (2000). Here we study a simple approach based on the realized volatilities.
The closest reference to ours in this respect is Bollerslev and Zhou (2001) who use a method-
of-moments approach based on assuming that the actual volatility process {σ2

n} is observed via
the quadratic variation estimator, i.e. they assume that there is no realized volatility error.

Table 2 shows the result of a small simulation experiment which investigates the effectiveness
of the quasi-likelihood estimation methods based on the time series of realized volatility. The
quasi-likelihood is constructed using the output of the Kalman filter. It is suboptimal for it does
not exploit the non-Gaussian nature of the volatility dynamics, but it provides a consistent and
asymptotically normal set of estimators. This follows from the fact that the Kalman filter builds
the Gaussian quasi-likelihood function for the ARMA representation of the process, where the
noise in the representation is both white and strong mixing (strong mixing follows from Sørensen
(2000) and Genon-Catalot et al. (2000) who showed that if the volatility is strong mixing then
squared returns are strong mixing). This means that we can immediately apply the asymptotic
theory results of Francq and Zakoı̈an (2000) in this context so long as σ2.t/ is strong mixing.
Further the estimation takes only around 5 s on a Pentium III notebook computer.

The set-up of the simulation study uses 500 daily observations where the volatility is an
OU process with a gamma marginal distribution. Table 2 varies the value of M. When M = 1
this corresponds to using the classical approach of squared daily returns. When M is higher

Table 2. Monte Carlo estimates of the 0.1- and 0.9-quantiles of the maximum quasi-likelihood estimator of
an SV model with OU volatility†

M Quantiles for the following parameter values:

λ = 0.01 ξ = 0.5 ω2 = ξ=8 = 0.0625 λ = 0.01 ξ = 0.5 ω2 = ξ=4 = 0.125

1 0.00897, 1.76 0.318, 0.659 0.00751, 0.152 0.00750, 0.400 0.272, 0.752 0.0172, 0.225
12 0.00891, 0.0409 0.341, 0.669 0.0130, 0.0759 0.00789, 0.0367 0.265, 0.751 0.0197, 0.168
48 0.00920, 0.0348 0.339, 0.672 0.0134, 0.0715 0.00920, 0.0320 0.266, 0.727 0.0199, 0.149

288 0.00928, 0.0336 0.334, 0.674 0.0130, 0.0755 0.00906, 0.0299 0.269, 0.731 0.0207, 0.152

λ = 0.1 ξ = 0.5 ω2 = ξ=8 = 0.0625 λ = 0.1 ξ = 0.5 ω2 = ξ=4 = 0.125

1 0.0451, 1.57 0.400, 0.573 0.0271, 0.151 0.0505, 0.312 0.374, 0.599 0.0548, 0.226
12 0.0725, 0.165 0.420, 0.572 0.0383, 0.0847 0.0713, 0.158 0.397, 0.593 0.0717, 0.170
48 0.0748, 0.152 0.421, 0.566 0.0397, 0.0829 0.0754, 0.148 0.398, 0.592 0.0763, 0.163

288 0.0792, 0.141 0.425, 0.572 0.0410, 0.0788 0.0755, 0.136 0.403, 0.619 0.0774, 0.176

†The volatility model has σ2.t/ ∼ Γ.ν; a/ with 500 daily observations, which implies ξ = νa−1 and ω2 = νa−2.
The true value of ξ is always fixed at 0.5, while ω2 and λ vary. M denotes the number of intraday observations
used. 1000 replications are used in the study.
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we are using intraday data. The results suggest that the intraday data allow us to estimate the
parameters much more efficiently. Indeed when M is large the estimators have very little bias
and turn out to be quite close to being jointly Gaussian. The experiment also suggests that when
λ is larger, which corresponds to the process having less memory, then the estimates of ξ and ω2

are sharper. Taken together the results are quite encouraging for they are based on only 2 years
of data but suggest that we can construct quite precise estimates of these models with this.

4. Empirical illustration

To illustrate some of these results we have fitted a set of superposition-based OU or CEV SV
models to the realized volatility time series constructed from the 5-min exchange rate return data
discussed in Section 1. Here we use the quasi-likelihood method to estimate the parameters of
the model: ξ, ω2, λ1; : : : ;λJ and w1; : : : ; wJ . We do this for a variety of values of M, starting
with M = 6, which corresponds to working with 4-h returns. The resulting parameter estimates
are given in Table 3. For the moment we shall focus on this case.

The fitted parameters suggests a dramatic shift in the fitted model as we go from J = 1 to
J = 2 or J = 3. The more flexible models allow for a factor which has quite a large degree of
memory, as well as a more rapidly decaying component or two. A simple measure of fit of the
model is the Box–Pierce statistic, which shows a large jump from a massive 302 when J = 1,
down to an acceptable number for a superposition model.

To provide a more detailed assessment of the fit of the model we have drawn a series of graphs
in Fig. 4. Except where explicitly noted we have computed the graphs using the J = 3 fitted
model, although there would be very little difference if we had taken J = 2. Fig. 4(a) draws the
computed realized volatility {y}n, together with the corresponding smoothed estimate of actual
volatility using the fitted SV model. We can see that realized volatility is much more jagged than
the smoothed quantity. In Fig. 4(b) we have drawn a kernel-based estimate of the log-density of
log(realized volatility). The bandwidths were taken to be 1:06σ̂T −1=5, where T is the sample size
and σ̂ is the empirical standard deviation of log(realized volatility) (this is an optimal choice
against a mean-square error loss for Gaussian data, e.g. Silverman (1986)) while we have chosen
the range of the display to match the upper and lower 0.05% of the data—so trimming very little
of the data. Andersen, Bollerslev, Diebold and Labys (2001) have suggested that the marginal

Table 3. Fit of the superposition of J volatility processes for an SV model based on realized volatility com-
puted using M = 6, M = 18 and M = 144†

M J ξ ω2 λ1 λ2 λ3 w1 w2 Quasi-likelihood BP

6 3 0.4783 0.376 0.0370 1.61 246 0.212 0.180 −113258 11.2
6 2 0.4785 0.310 0.0383 3.76 — 0.262 — −113261 11.3
6 1 0.4907 0.358 1.37 — — — — −117397 302

18 3 0.460 0.373 0.0145 0.0587 3.27 0.0560 0.190 −101864 26.4
18 2 0.460 0.533 0.0448 4.17 — 0.170 — −101876 26.5
18 1 0.465 0.497 1.83 — — — — −107076 443

144 3 0.508 4.79 0.0331 0.973 268 0.0183 0.0180 −68377 15.3
144 2 0.509 0.461 0.0429 3.74 — 0.212 — −68586 23.3
144 1 0.513 0.374 1.44 — — — — −76953 765

†We do not record wJ as this is 1 minus the sum of the other weights. The estimation method is quasi-likelihood
using output from a Kalman filter. BP denotes the Box–Pierce statistic, based on 20 lags, which is a test of serial
dependence in the scaled residuals.
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(a) (b)

(c) (d)

Fig. 4. Results from the SV model using M = 6 (4-h returns): (a) first 150 observations of {y}n (+)
and smoothed estimates of σ2

n ( ); (b) kernel-based estimates of the density of log({y}n) (+) and
log-smoothed log(σ2

n ) (4), and the log-normal ( ) and inverse Gaussian (� � � � � � �) fits; (c) QQ-plot for
yn scaled by estimated σn, using

p{yn} (4), predicted (ı) and smoothed ( ) volatility (� � � � � � �, 45ı line);
(d) autocorrelation function of {yn} (+) and the fit of OU SV models with J = 1 (ı), J = 2 ( ) and J = 3
(� � � � � � �)

distribution of realized volatility is closely approximated by a log-normal distribution when M

is high, and that this would support a model for actual volatility which is log-normal. Such
models go back to Clark (1973) and Taylor (1986). However, when we draw the correspond-
ing fitted log-normal log-density, choosing the parameters by using maximum likelihood based
on the smoothed realized volatilities as data, we see that the fit is poor. The same holds for
the inverse Gaussian log-density. This is also drawn on Fig. 4(b), but is so close to the fit of
the log-normal curve that it is extremely difficult to tell the difference between the two curves.
Inverse Gaussian models for volatility were suggested by Barndorff-Nielsen and Shephard
(2001a). The rejection of the log-normal and inverse Gaussian marginal distributions for
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realized volatility itself seems conclusive here. However, when we carry out the same action
on the smoothed realized volatilities this rejection no longer holds, implying that the realized
volatility error matters greatly here. The kernel-based estimate of the log-density of the logarith-
mic smoothed estimates is very much in line with the log-normal or inverse Gaussian hypothesis.
This seems to extend the observations of Andersen, Bollerslev, Diebold and Labys (2001) in at
least two directions:

(a) our model-based estimated actual volatility is fitted well, not just by the log-normal
distribution, but equally well by the inverse Gaussian distribution;

(b) by using a model-based smoother the above stylized fact can be deduced using quite a
low value of M.

Of course we have yet to see whether these results continue to hold as M increases.
Fig. 4(c) draws a QQ-plot of returns yn divided by a number of estimates of σn. If the

SV model holds correctly and there is no measurement error then these variables should be
Gaussian and the QQ-plot should appear on a 45◦ line. Fig. 4(c) indicates that when we scale
returns by realized volatility the returns are highly non-Gaussian, whereas when we use the
smoothed estimate then the model seems to fit extremely well. If we replace the smoothed
estimate by the predictor of actual volatility, then we see that the fit is as poor as the plot
based on the realized volatility. Overall, Fig. 4(c) again confirms the fit of the model, which
suggests that when M = 6 the difference between realized and smoothed volatility is impor-
tant.

Fig. 4(d) shows the corresponding autocorrelation function for the realized volatility series
together with the corresponding empirical correlogram. We see from Fig. 4(d) that when J = 1
we are entirely unable to fit the data, as its autocorrelation function starts at around 0.6 and
then decays to 0 in a couple of days. A superposition of two processes is much better, picking
up the longer-range dependence in the data. The superpositions of two and three processes give
very similar fits; indeed in the graph they are hardly distinguishable.

We next ask how these results vary as M increases. We reanalyse the situation when M = 144,
which corresponds to working with 10-min returns. Table 3 contains the estimated parameters for
this problem. They suggest that moving to a superposition of three processes has an important
effect on the fit of the model. Again the fitted models indicate that the volatility has elements
which have a substantial memory, whereas other components are much more transitory. An
important feature of Table 3 is the jump in the value of the estimated ω2 when we move to
having J = 3. This is caused by the third component which has a very high value of λ, which
does not overly change the variance of the actual volatility.

The fit of the model can also be seen from Fig. 5. This broadly shows the same results as
Fig. 4 except for the following. Realized volatility is now less jagged, and so the smoothed
estimator of actual volatility and realized volatility are much more in line. The plots of the
estimated log-densities show that realized and smoothed volatilities are again closer, with both
being quite well fitted by the log-normal and inverse Gaussian distributions. The smoothed
estimators are still more closely approximated than the realized volatilities, however. The QQ-
plots for realized and smoothed volatility are roughly similar, whereas the plot for prediction
is still not satisfactory. This indicates that the uncertainty of predicting volatility 1 day ahead
is substantial. Finally, the autocorrelation functions show an improvement in fit as we go from
J = 2 to J = 3 in the SV model.

We finish this section by briefly repeating this exercise with an intermediate value of M, taking
M = 18, which corresponds to working with returns calculated over 80-min periods. The results
are given in Table 3. They, and the corresponding plots not reproduced here, are very much in
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(a) (b)

(c) (d)

Fig. 5. Results from the fit of the SV model using M =144 (10-min returns): (a) {yn} (+) together with the
smoothed estimator of σ2

n ( ); (b) estimates of the log-density log({y}n) (–––) and smoothed estimates
of log(σ2

n) (4), and the log-normal ( ) and inverse Gaussian (� � � � � � �) fits; (c) QQ-plot for the standardized
returns ( , smoothed; �, prediction; 4, {y}n; � � � � � � �, 45ı line); (d) autocorrelation function of {y}n (+)
and the fit of OU SV models with J = 1 (ı), J = 2 ( ) and J = 3 (� � � � � � �)

line with the previous graphs with the smoothed estimates of actual volatility performing well,
although the QQ-plot is not as good as it was when we used 4-h data.

5. Asymptotic distribution of realized volatility error

5.1. The theory
In Section 2 we derived the mean and variance of the realized volatility error for a continuous
time SV model when µ = β = 0. Although it is possible to derive the corresponding result
when µ �= 0 but β = 0, adapting to the risk premium case seems difficult. Instead we take an
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asymptotic route. In this section we obtain a limit theory for

.{y}n − σ2
n/

√
M;

which covers the case of a drift and risk premium.

Theorem 1. For the SV model (1) suppose that the volatility process σ2 is of locally bounded
variation (i.e. with probability 1 the paths of σ2 are of bounded variation on any compact
subinterval of [0;∞/). Then, for any positive ∆ and M → ∞

.{y}n − σ2
n/

/√{
2

M∑
j=1

.σ2
j;n/2

}
L→ N.0; 1/; (17)

where

σ2
j;n = σ2*

{
.n − 1/∆ + ∆j

M

}
− σ2*

{
.n − 1/∆ + ∆.j − 1/

M

}
:

Furthermore,

∆−1M
M∑

j=1
.σ2

j;n/2→ σ[4]
n almost surely (18)

where

σ[4]
n =

∫ n∆

.n−1/∆
σ4.s/ ds

In particular, then, the limiting law of
√

M.{y}n − σ2
n/ is a normal variance mixture.

Proof. The proof of theorem 1 is given in Appendix A.

This theorem implies that

√
M.{y}n − σ2

n/|σ[4]
n

L→ N.0; 2∆σ[4]
n /; (19)

which has the important implication that we can strengthen the usual quadratic variation result
that the drift and risk premium has no effect on the limit of {y}n to the result that the asymptotic
distribution of .{y}n −σ2

n/
√

M does not depend on µ or β. Thus the effect on realized volatility
of the drift and risk premium is of only third order, which suggests that it may be safe to ignore
it in many cases.

Theorem 1 also implies that we would expect the variance of the realized volatility error
to depend positively on the level of volatility. We have already seen an example of this in the
simulated data in Fig. 2. Further, the marginal distribution of the realized volatility error should
be thicker than normal owing to the normal variance mixture (19) averaged over the random
σ

[4]
n . We call σ[4]

n the actual quarticity, whereas the associated σ4.t/ is the spot quarticity.
We should note that

M∑
j=1

.σ2
j;n/2
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is the realized volatility of σ2*.t/. Of course the limit, as M → ∞, of this realized volatility is 0;
however, theorem 1 shows that the scaled

M
M∑

j=1
.σ2

j;n/2

has a stochastic limit. This is a special case of a more general lemma that we prove in Appendix
A on what we call power variation.

Lemma 1. Assume that τ .t/ is of locally bounded variation. Then, for M → ∞ and r a positive
integer,

∆−r+1Mr−1
M∑

j=1
τ r

j → τ r*.∆/ almost surely (20)

where

τj = τ*.jM−1∆/ − τ*{.j − 1/M−1∆}
and

τ r*.t/ =
∫ t

0
τ r.s/ ds:

The proof of lemma 1 is given in Appendix A.
We report fully on the implications of this result, and various possible extensions, in Barndorff-

Nielsen and Shephard (2001c). One of these extensions is that, again writing

yj;n = y*{.n − 1/∆ + j∆M−1} − y*{.n − 1/∆ + .j − 1/ ∆M−1};

it can be shown that the realized quarticity

1
3

M∆−1
M∑

j=1
y4

j;n → σ[4]
n almost surely;

which is also the limit for M → ∞ of M∆−1 ΣM
j=1 .σ2

j;n/2. Consequently, the former—known—
sum can be used instead of the latter—unknown—sum in the denominator on the left-hand side
of the key limiting result (17). In particular

.{y}n − σ2
n/

/√(2
3

M∑
j=1

y4
j;n

) L→ N.0; 1/:

Following the first draft of this paper we have used Monte Carlo methods to study the finite sam-
ple behaviour of this asymptotic approximation. Results are reported in Barndorff-Nielsen and
Shephard (2001b). These experiments suggest that we need quite large values of M for the result
to be reliable; however, a better performance is obtained by transforming the approximation on
to the log-scale. Then the approximation becomes

{log.{y}n/ − log.σ2
n/}

/√
2
3

M∑
j=1

y4
j;n( M∑

j=1
y2

j;n

)2


L→ N.0; 1/:
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This seems to be quite accurate even for moderate values of M. Following the developments of
this paper, our further work on power variation has recently been reported in Barndorff-Nielsen
and Shephard (2001c).

Finally we note that theorem 1 requires that τ is of locally bounded variation. In the OU case
this is easily checked for we know that

τ .t/ = exp.−λt/ τ .0/ +
∫ t

0
exp {−λ.t − s/} dz.λs/:

5.2. Application
Suppose that our interest is in estimating µ and β, knowing that

yn|σ2
n ∼ N.µ+ βσ2

n;σ2
n/:

A naı̈ve approach would be to regress returns on a constant and the sequence of feasible realized
volatilities to produce a simple regression-based estimator. Such an estimator will be both biased
and inconsistent owing to an errors-in-variables effect of mismeasuring actual volatility by using
realized volatility (see Hendry (1995), chapter 12, for a discussion of this in a historical context).
The bias is determined by the variance of {y}n − σ2

n, which we have seen is O.M−1/ even in
the presence of drift and risk premium. A smaller bias would result if we use a model-based
estimator of actual volatility, instead of the simpler realized volatility. We saw in Section 2 that
this can substantially reduce the variance, and this will carry over to the bias reduction of the
regression-based estimator.

An alternative strategy is to employ an instrumental variable approach. This requires us
to find an estimator of σ2

n which does not rely on data at time n but is correlated with σ2
n.

A model-free candidate for this task is

σ̂2
n = 1

2 .{y}n−1 + {y}n+1/;

the average of contiguous realized volatilities. If actual volatility is temporally dependent,
the theory developed in Section 2 shows that σ̂2

n will be correlated with σ2
n and so is a valid

instrument. Of course, within the context of a model, the best instrument will be the jack-
knife estimator, which is the best linear estimator of σ2

n given

{y}1 ; {y}2 ; : : : ; {y}n−1 ; {y}n+1 ; : : : ; {y}T :

This is readily computed for models which can be placed within a linear state space form.
A final approach to dealing with this issue is to append an extra measurement equation to
the linear state space form (16) and to estimate µ and β at the same time as other parameters
in a fully specified model.

6. Extensions

6.1. Diurnal effects and actual volatility
An important aspect of the realized volatility series is that it is not very sensitive to the substan-
tial and complicated intraday diurnal pattern in volatility that is found in many empirical studies
(e.g. Andersen and Bollerslev (1997b, 1998b)) as well as being clear from Fig. 1(a). To understand
this it is helpful to think of the spot volatility as the sum of a (potentially unknown) deterministic
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diurnal component σ2
ψ {mod.t;∆/} where ∆ represents a day, plus a stochastic process σ2

λ.t/;
then we have

σ2.t/ = σ2
ψ {mod.t;∆/} + σ2

λ.t/:

Hence in this model the spot volatility has a repeating intraday (i.e. diurnal) component, but
does not have a day of the week or monthly seasonal component. As a result

σ2
n = c + σ2

n; λ;

where

c =
∫ ∆

0
σ2
ψ {mod.u;∆/} du

and

σ2
n; λ = σ

2*
λ .n/ − σ

2*
λ .n − 1/;

and

σ
2*
λ .t/ =

∫ t

0
σ2
λ.u/ du:

In this structure the dynamics of realized volatility are unaffected by a diurnal effect. Of course,
in practice this additive structure should be regarded as holding only approximately, in which
case the diurnal effect may not be completely ignorable. However, in this paper we shall neglect
this deficiency.

6.2. Leverage
This analysis has not included a leverage term in the model. This can be added in various ways.
We follow Barndorff-Nielsen and Shephard (2001a) in parameterizing the effect as

dy*.t/ = {µ+ β σ2.t/} dt + σ.t/ dw.t/ + ρ dz.λt/;

where we assume that z.t/ = z.t/−E{z.t/} and z.t/ is a Lévy process potentially correlated with
σ2.t/. The corresponding quadratic variation for this process is

[y*].t/ = σ2*.t/ + ρ2[z].λt/;

whereas the realized volatility error

un = .{y0}n − σ2
n/ + ρ2.{z}n − [z]n/ + 2ρcn;

where

y0.t/ =
∫ t

0
σ.t/dw.t/;

cn =
M∑

j=1
zj;n"j;nσj;n
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{y0}n − σ2
n =

M∑
j=1

σ2
j;n."2

j;n − 1/;

using the generic realized volatility notation that was developed in Section 2. Here the three
terms which make up un are zero meaned and uncorrelated when we assume that µ = β = 0.
The only task is to calculate the variances of each of the terms.

The new terms are straightforward to study once we have the following lemma which relates
a Lévy process to its quadratic variation and realized volatility.

Lemma 2. Let t be fixed and let z.t/ be a Lévy process with finite fourth cumulant. Then,
defining

{z} .t/ =
M∑

j=1
[z.jtM−1/ − z{.j − 1/tM−1}]2;

we have that

E

 z.t/

{z}.t/

[z].t/

 = t

κ1
κ2
κ2

 ;

cov

 z.t/

{z}.t/

[z].t/

 = t

 κ2 κ3 κ3
κ3 κ4 + 3κ2

2tM−1 κ4
κ3 κ4 κ4

;

where κr denotes the rth cumulant of z.1/. An implication is that {z}.t/ − [z].t/ has zero mean,
whereas

var
〈{z}.t/ − [z].t/

〉 = 3κ2
2t2M−1:

Proof. Most of the results follow immediately, recognizing that the rth cumulant of z.t/ is
tκr. This is a consequence of the Lévy–Khintchine representation. The only piece of this result
which is not trivial is

var[{z}.t/] = M µ4{z.tM−1/}
= M[κ4{z.tM−1/} + 3 κ2{z.tM−1/}2]

= M.tM−1κ4 + 3t2M−2κ2
2/:

Here µ4{·} and κ4{·} denote the fourth centred moment and cumulant respectively. ✷

We achieve our desired result immediately for

M cov

 {z}n − [z]n
{y0}n − σ2

n

cn

 → ∆2

 3κ2
2 0 0

0 2.ω2 + ξ2/ 0
0 0 κ2ξ

;

as M → ∞. Repeating the pattern we had before, no new issues arise when we allow for a
drift or a risk premium for their effect will be small compared with the other terms. Of course,
the central limit theory that we developed in Section 5 will apply to .{y0}n − σ2

n/
√

M not to
.{y}n − [y]n/

√
M.

Trivially this analysis also deals with the situation of a model which is an SV process plus
jumps, where the volatility is not correlated with the jumps.
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7. Conclusion

In this paper we have studied the statistical properties of realized volatility in the context of SV
models. Our results are entirely general, providing both a central limit theory approximation as
well as an exact second-order analysis. These results can be used, in conjunction with a model
for the dynamics of volatility, to produce a more accurate estimate of actual volatility. Further,
a simple quasi-likelihood results which could be used to perform computationally quite simple
estimation. Potentially they allow us to exploit the availability of high frequency data in financial
economics, giving us relatively simple and efficient ways of estimating these stochastic processes.

Finally, in our empirical work we have taken ∆ to be 1 day. This choice is entirely ad hoc.
Another possibility is to look simultaneously at several different ∆-values. This may have virtue
as a way of checking the fit of the model, as well as allowing potentially more efficient estimation.
However, we have yet to explore this issue. To do so it would be convenient to have a functional
limit theorem for .{y}n − σ2

n/.
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Appendix A

This appendix has three subsections. First we discuss some of the aspects of the data that we use in the
paper. Second we give a proof of lemma 1, whereas in the third subsection we prove theorem 1.

A.1. Data appendix
The Olsen group have kindly made available to us a data set which records every 5 min the most recent
quote to appear on the Reuters screen from December 1st, 1986, until November 30th, 1996. When prices
are missing they have interpolated them. Details of this processing are given in Dacorogna et al. (2001).
The same data set was analysed by Andersen, Bollerslev, Diebold and Labys (2001). We follow the exten-
sive work of Torben Andersen and Tim Bollerslev on this data set, who removed much of the times when
the market is basically closed. This includes almost all of the week-ends, and they have taken out most US
holidays. The result is what we shall regard as a single time series of length 705313 observations. Although
many of the breaks in the series have been removed, sometimes there are sequences of very small price
changes caused by, for example, unmodelled non-US holidays or data feed breakdowns. We deal with this
by adding a Brownian bridge simulation to sequences of data where at each time point the absolute change
in a 5-min period is below 0.01%, i.e., when this happens, we interpolate prices stochastically, adding a
Brownian bridge with a standard deviation of 0.01 for each time period. By using a bridge process we are
not affecting the long run trajectory of prices, and the effect on realized volatility is very small indeed.
We have used this stochastic method here to be consistent with our other work on this topic where this
effect is important. It is illustrated in Fig. 6, which shows the first 500 observations in the US dollar–
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a) Raw yen–dollar data; (b) interpolated yen–dollar data; (c) raw Deutschmark–dollar data; (d)
interpolated Deutschmark–dollar data; (e) returns for the raw yen–dollar data; (f) returns for the inter-
polated yen–dollar data; (g) returns for the raw Deutschmark–dollar data; (h) returns for the interpolated
Deutschmark–dollar data (interpolation is by a Brownian bridge interpolator; the x-axes are in days)

Deutschmark series that we have used in this paper and another series which is for the yen–dollar com-
parison. Later stretches of the data have fewer breaks in them, but this graph illustrates the effects of our
intervention. Clearly our approach is ad hoc. However, a proper statistical modelling of these breaks is
very complicated because of their many causes and the fact that our data set is enormous.

A.2. Proof of lemma 1
Recall for the process τ that we use the notation

τ*.t/ =
∫ t

0
τ .s/ ds

and

τj = τ*.jM−1∆/ − τ*{.j − 1/M−1∆}:

Proof. By the definition of τj , for every j there is a cj such that

inf
.j−1/M−1∆�s�jM−1∆

{τ .s/} � cj � sup
.j−1/M−1∆�s�jM−1∆

{τ .s/}

and

τj = cj∆M−1: (21)
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The local bounded variation of τ implies that τ r is locally bounded and Riemann integrable. Consequently

∆−r+1Mr−1
M∑

j=1
τ r

j =
M∑

j=1
cr

j∆M−1 →
∫ ∆

0
τ r.s/ ds = τ r*.∆/: �

The fact that τ r is Riemann integrable is perhaps not immediately obvious. However, we recall that a
bounded function f is Riemann integrable on an interval [0; t] if and only if the set of discontinuity points
of f has Lebesgue measure 0 (see Hobson (1927), pages 465–466, Munroe (1953), page 174, theorem 24.4,
or Lebesgue (1902)). In our case the latter property follows immediately from the bounded variation of τ
(any function of bounded variation is the difference between an increasing and a decreasing function and
any monotone function has at most countably many discontinuities).

A.3. Proof of theorem 1
We first recall some definitions. Consider the SV model

y*.t/ = µt + β τ*.t/ +
∫ t

0
τ 1=2.s/ dw.t/;

with τ positive, stationary and independent of w (we have switched our notation for the volatility as it
simplifies our later derivation). Now writing u and {y} for u1 and {y}1 we have

u = {y} − τ*.∆/ =
M∑

j=1
y2

j − τ*.∆/

where

yj = y*.jM−1∆/ − y*{.j − 1/M−1∆}:

Conditionally on τ1; : : : ; τM , the increments y1; : : : ; yM are independent, and

yj
L= N.µM−1∆ + βτj; τj/:

Thus, conditionally, y2
j is non-central χ2 distributed with cumulant function

C{ζ‡y2
j |τj} = − 1

2 log.1 − 2iτjζ/ + iνjζ.1 − 2iτjζ/
−1

where i = √− 1 and

νj = .µM−1∆ + βτj/
2: (22)

Consequently

C{ζ‡u|τ1; : : : ; τM} = −
M∑

j=1
{ 1

2 log.1 − 2iτjζ/ − iνjζ.1 − 2iτjζ/
−1 + iτjζ}:

By Taylor’s formula with remainder (see, for instance, Barndorff-Nielsen and Cox (1989), formula
6.122) we find, provided that

2|ζ| max
1�j�M

.τj/ < 1;

that

1
2 log.1 − 2iτjζ/ − iνjζ.1 − 2iτjζ/

−1 + iζτj = ζ2{τ 2
j Q0j.ζ/ + 2νjτj Q1j.ζ/} − iνjζ;

where

Q0j.ζ/ = 2
∫ 1

0

1 − s

.1 − 2iτjζs/2
ds
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and

Q1j.ζ/ = 2
∫ 1

0

1 − s

.1 − 2iτjζs/3
ds:

Hence

C{ζ‡u|τ1; : : : ; τM} = iζ
M∑

j=1
νj − ζ2

M∑
j=1

{τ 2
j Q0j.ζ/ + 2νjτj Q1j.ζ/}: (23)

Proof. Note first that expression (18) follows from lemma 1. Next, rewrite equation (23) as

C{ζ‡u|τ1; : : : ; τM} = iζ
M∑

j=1
νj − ζ2

M∑
j=1

.τ 2
j + 2νjτj/ − ζ2

M∑
j=1

[τ 2
j {Q0j.ζ/ − 1} + 2νjτj{Q1j.ζ/ − 1}]

= 1
2
ζ2 × 2

M∑
j=1

τj + R.ζ/;

where

R.ζ/ = iζ
M∑

j=1
νj − 2ζ2

M∑
j=1

νjτj − ζ2
M∑

j=1
[τ 2

j {Q0j.ζ/ − 1} + 2νjτj{Q1j.ζ/ − 1}]:

Thus, to verify expression (17) we must show that

M∑
j=1

νj

/√
M∑

j=1
τ 2

j → 0;

M∑
j=1

νjτj

/
M∑

j=1
τ 2

j → 0;

M∑
j=1

τ 2
j

[
Q0j

{
ζ
/√(

2
M∑

j=1
τ 2

j

)}
− 1
]/ M∑

j=1
τ 2

j → 0

and

M∑
j=1

νjτj

[
Q1j

{
ζ
/√(

2
M∑

j=1
τ 2

j

)}
− 1
]/ M∑

j=1
τ 2

j → 0

or, equivalently, by expression (20), that

√
M

M∑
j=1

νj → 0;

M
M∑

j=1
νjτj → 0;

M
M∑

j=1
τ 2

j

[
Q0j

{
ζ

/√(
2

M∑
j=1
τ 2

j

)}
− 1
]

→ 0 (24)

and
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M
M∑

j=1
νjτj

[
Q1j

{
ζ

/√(
2

M∑
j=1
τ 2

j

)}
− 1
]

→ 0: (25)

We have

√
M

M∑
j=1

νj = M−1=2

(
∆2µ2 + 2µ∆β

M∑
j=1

τj + β2M
M∑

j=1
τ 2

j

)
;

which tends to 0 on account of expression (20). Furthermore, also by expression (20) we find that

M
M∑

j=1
νjτj = M−1µ2∆2

M∑
j=1

τj + 2µ∆β
M∑

j=1
τ 2

j + β2M
M∑

j=1
τ 3

j → 0:

Finally, to show expressions (24) and (25) we first note that, by equation (21), the local boundedness
of τ and expression (20),

τj

/√
M∑

j=1
τ 2

j = √
Mτj

/√(
M

M∑
j=1
τ 2

j

)
= M−1=2∆cj

/√(
M

M∑
j=1
τ 2

j

)
= O.M−1=2/

uniformly in j. Hence

Q0j

{
ζ

/√(
2

M∑
j=1
τ 2

j

)}
− 1 → 0 (26)

and

Q1j

{
ζ

/√(
2

M∑
j=1
τ 2

j

)}
− 1 → 0 (27)

uniformly in j. Moreover, again using expression (20), we have

M
M∑

j=1
.τ 2

j + νjτj/ = .1 + ∆2µ2/M
M∑

j=1
τ 2

j + 2∆µβM
M∑

j=1
τ 3

j + β2M
M∑

j=1
τ 4

j = O.1/

and expressions (24) and (25) follow from this and expressions (26) and (27).
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