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Abstract. We use wavelets to decompose the volatility (standard deviation) of intraday (S&P500) return
data across scales. We show that when investigating two-point correlation functions of the volatility log-
arithms across different time scales, one reveals the existence of a causal information cascade from large
scales (i.e. small frequencies) to fine scales. We quantify and visualize the information flux across scales.
We provide a possible interpretation of our findings in terms of market dynamics.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.+j Fluctuation phenomena,
random processes, and Brownian motion – 89.90.+n Other areas of general interest to physicists

1 Introduction

Modelling accurately financial price variations is an es-
sential step underlying portfolio allocation optimization,
derivative pricing and hedging, fund management and
trading. The observed complex price fluctuations guide
and constraint our theoretical understanding of agent in-
teractions and of the organization of the market.

A word of caution is called for with respect to the
meaning of “model” in this context and for this audience.
In its broadest sense, a model (usually formulated using
the language of mathematics) is a mathematical repre-
sentation of a condition, process, concept, etc., in which
the variables are defined to represent inputs, outputs, and
intrinsic states and equations or inequalities are used to
describe interactions of the variables and constraints on
the problem. In theoretical physics, models take a nar-
rower meaning, such as in the Ising, Potts, ..., percolation
models. In economy and finance, the term model is usually
used in the broadest sense. Most of the works we refer to,
including the cascade of correlations across scales found in
this work, belong to this first class of models. We shall not
discuss the second class of “micro-economic” models that
have been developed by economists and more recently by
some physicists [1], to construct artificial stock markets.
In this respect, the situation is similar to a branch of the
study of hydrodynamical turbulence in which “models” in
the first sense aim at representing as faithfully and parsi-
moniously as possible the observed anomalous scaling and
intermittency.
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The Gaussian paradigm of independent normally dis-
tributed price increments [2,3] has long been known to
be incorrect with many attempts to improve it. Mandel-
brot first proposed to use Lévy distributions [4], which
are characterized by a fat tail decaying as a power law
with index between 0 and 2. His suggestion arrived at
an epoch when Markovitz famous mean-variance portfolio
and Black-Scholes option pricing theories were being de-
veloped and widely applied. For main stream economists,
the econometric nonlinear autoregressive models with con-
ditional heteroskedasticity (ARCH) [5] and their general-
izations [6] are more natural because they keep the volatil-
ity (standard deviation of price variations) as the main de-
scriptor. Recall that heteroskedasticity refers to the fact
that the variance (or volatility) is itself a stochastic vari-
able [7]. These models address volatility clustering and
partly the observed “fat tails” of distributions. The prob-
lem however is that these ARCH models capture only
imperfectly the volatility correlations and the fat tails of
the probability density function (pdf) of price variations.
Moreover, as far as changes in time scales are concerned,
the so-called “aggregation” properties of these models are
not easy to control.

Recently, physicists have characterized more precisely
the distribution of market price variations [8,9] and found
that a power law truncated by an exponential provides
a reasonable fit at short time scales (less than one day),
while at larger time scales the distributions may cross over
progressively to the Gaussian distribution which becomes
approximately correct for monthly and larger scale price
variations. Alternatively, Ghashghaie et al. [10] proposed
a “multiplicative” cascade model based on an analogy be-
tween price dynamics and hydrodynamic turbulence. They
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fitted the distributions of the price variations to a super-
position of Gaussians, with a log-normal distribution of
the Gaussian widths.

2 Multiplicative cascade in the stock market

The controversial [9,11] analogy developed by Ghashghaie
et al. [10] implicitly assumes that price fluctuations can
be described by a multiplicative cascade along which the
return r at a given time scale a < T , is given by:

ra(t) ≡ lnP (t+ a)− lnP (t) = σa(t)u(t), (1)

where u(t) is some scale independent random variable, T
is some coarse “integral” time scale and σa(t) is a positive
quantity that can be multiplicatively decomposed, for any
decreasing sequence of scales {ai}i=0, ..,n with a0 = T and
an = a, as [12,13]

σa =
n−1∏
i=0

Wai+1,aiσT. (2)

Equation (1) together with (2) shows that the logarithm
of the price is a multiplicative process. But, this is dif-
ferent from the simple multiplicative processes studied in
[14] due to the tree-like structure of the correlations that
are added by the hierarchical construction of the multipli-
cands.

In turbulence the field σ is related to the energy while
in finance σ is called the volatility. Recall that the volatil-
ity has fundamental importance in finance since it pro-
vides a measure of the amplitude of price fluctuations,
hence of the market risk. Using ωa(t) ≡ lnσa(t) as a nat-
ural variable, if one supposes that Wai+1,ai depends only
on the scale ratio ai+1/ai, one can easily show, by choosing
the ai as a geometric series Tsi (s < 1), that equation (2)
implies that the pdf of ω at scale a = Tsn can be written
as [12,13]

pa(ω) = (G⊗ns ⊗ pT)(ω) , (3)

where ⊗ means the convolution product, Gs is the pdf of
lnWsa,a and pT is the pdf of ωT. The symbol G⊗ns ⊗ pT

means that Gs has been convoluted with itself n times
before being convoluted with pT. This equation (3) is the
exact reformulation (in log variables) of the paradigm that
Ghashghaie et al. [10] used to fit foreign exchange (FX)
rate data at different scales. Recall that it simply means
that the distributions of the logarithm of the absolute
value of the price variations can be represented by a super-
position of elementary laws Gs. In this formalism, G can
be proven to be the pdf of an infinitely divisible random
variable [13] (hence σ is called “log-infinitely divisible”).
In reference [10], G is assumed to be Normal (the cascade
is called “log-normal”) of variance −λ2 ln s.

First, let us comment on the criticisms raised by Man-
tegna and Stanley [11]. Note that equation (3) does not
determine the shape of the pdf of the returns ra(t) at
a given scale but specifies how this pdf changes across

scales. For a fixed scale, the precise form for the pdf de-
pends on both pT and on the law of the variable u(t)
(which determines notably the sign of ra(t)). Therefore,
nothing prevents the pdf of ra(t) to having fat tails at
small scales as observed in financial time series [10]. A cas-
cade model actually accounts for the distribution of the
volatility of returns across scales and not for the precise
fluctuations of ra(t). The behavior, for τ > a, of the auto-

correlation function r̃a(t)r̃a(t+ τ) (where r̃a stands for the
corresponding centered variable r̃a(t) = ra(t)−〈ra(t)〉) in-
deed depends on both the cascade variables and u(t). For
example, if u(t) is a white noise, there will be no correla-
tion between the returns while their absolute values (or the
associated volatilies) are strongly correlated (see below).
This is why the shape of the power spectrum of financial
time series cannot be invoked as an argument against a
cascade model. Moreover, as far as scaling properties of
price fluctuations are concerned, it is easy to deduce from
equation (3) that, if H ln s is the mean of Gs and −λ2 ln s
its variance, then the maximum of the pdf of σa(t) varies

as aH−λ
2/2 (H plays the same role as the Lévy index in

TLF models [8,9] with H = 1/µ), while its standard de-

viation behaves as a(H−λ2)/2; these features are observed
in both turbulence (H ' 0.33 and λ2 ' 0.03) [12] and
finance (H ' 0.6 and λ2 ' 0.015) [10]. Therefore, as ad-
vocated in reference [10], equation (3) accounts reasonably
well for one-point statistical properties of financial times
series. However, because of the relatively small statistics
available in finance, it is very difficult to demonstrate that
equation (3) is more pertinent to fit the data than a “trun-
cated Lévy” distribution [8,9,11].

At this point, let us emphasize that equation (2) im-
poses much more constraints on the statistics than equa-
tion (3) that only refers to one point statistics. The main
difference between the multiplicative cascade model and
the truncated Lévy additive model is that the former pre-
dicts strong correlations in the volatility while the latter
assumes no correlation. It is then tempting to compute
the correlations of the log-volatility ωa at different time
scales a. For that purpose, we use a natural tool to perform
time-scale analysis, the wavelet transform (WT). Wavelet
analysis has been introduced as a way to decompose sig-
nals in both time and scales [15]. The WT of f(t) = lnP (t)
is defined as:

Tψ[f ](t, a) ≡
1

a

∫ +∞

−∞
f(y)ψ

(
y − t

a

)
dy, (4)

where t is the time parameter, a (>0) the scale param-
eter and ψ the analyzing wavelet. Note that for ψ(t) =
δ(t− 1)− δ(t), Tψ[f ](t, a) is nothing but the return ra(t).
However, in general, ψ is chosen to be well localized in
both time and frequency, so that the scale a can be inter-
preted as an inverse frequency. Moreover, if ψ has at least
two vanishing moments and χ is a bump function with
||χ||1 = 1, then, the local volatility at scale a and time t
can be defined as σ2

a(t) ≡ a−2
∫
χ((b − t)/a)|Tψ(b, a)|2db

[16]. Actually, thanks to the time-scale properties of the
wavelet decomposition [15], when summing σ2

a(t) over
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Fig. 1. a) Time evolution of lnP (t), where P (t) is the S&P500 index, sampled with a time resolution δt = 5 min in the period
October 1991-February 1995. The data have been preprocessed in order to remove “parasitic” daily oscillatory effects [29]. b)
The corresponding “centered log-volatility walk”, va(t) =

∑t
i=0 ω̃a(i), as computed with the derivative of the Haar function

as analyzing wavelet [15] for a = 4 (' 20 min). c) va(t) computed after having randomly shuffled the increments of the signal
in (a). (a’) The 5 min (a = 1) return correlation coefficient Cr1(∆t) versus ∆t. (b’) The correlation coefficient Cωa (∆t) of the
log-volatility of the S&P500 at scale a = 4 (' 20 min); the solid line corresponds to a fit of the data using equation (5) with
λ2 ' 0.015 and T ' 3 months. (c’) same as in (b’) but for the randomly shuffled S&P500 signal. In (a’-c’) the dashed lines
delimit the 95% confidence interval.

time and scale, one recovers the total square derivative
of f : Σ =

∫ ∫
σ2
a(t)dtda =

∫
|df/dt|2dt.

In Figure 1 are shown 3 time series for which we study
the increment time correlations. Figure 1a represents the
logarithm of the S&P500 index. The corresponding “cen-
tered log-volatility walk”, va(t) =

∑t
i=0 ω̃a(i) is repre-

sented in Figure 1b, where the symbol ω̃ refers to the “cen-
tered log-volatility”. Figure 1c is the same as Figure 1b
but after having randomly shuffled the increments lnP (i+
1)− lnP (i) of the signal in Figure 1a. The Figure 1b with
the genuine data clearly demonstrates the existence of im-
portant long-range positive temporal correlations in the
log-volatility of S&P500 returns. Moreover, the statistics
of ωa(t) are found to be nearly Gaussian. However, the
log-volatility walk for the “shuffled S&P500” looks very
much like a Brownian motion with uncorrelated incre-
ments. This observation is sufficient to discard any addi-
tive (like TLF) model which intrinsically fails to account
for the strong correlations observed in ωa(t). The corre-

lation coefficient Cr1 (∆t) = r̃1(t)r̃1(t+ ∆t)/var(r1) shown
in Figure 1a’, confirms the well-known fact that there are
no correlations between the returns (except at a very small
time lag as illustrated in the inset). The difference is strik-
ing in Figure 1b’ where the correlation coefficient of the

log-volatility walk Cωa (∆t) = ω̃a(t)ω̃a(t+ ∆t)/var(ωa) re-
mains as large as 5% up to time lags corresponding to
about two months. In contrast, the correlation coefficient
associated to the shuffled time series in Figure 1c’ is within
the noise level. In sum, yesterday’s or last week losses do
not tell us whether we will win or lose tomorrow; but if
last week, the prices changed a lot, they will on average
change more than usual also tomorrow.

From the modelling of fully developed turbulent flows
and fragmentation processes, random multiplicative cas-
cade models are well known to generate long-range correla-
tions [17–19]. We now explore whether this concept could
be useful for understanding the observed long-range cor-
relations of the volatility (and not of the price increments,
which makes turbulence and financial markets drastically
different in this respect). To fix ideas, let us consider a
specific realization of a process satisfying equation (2).
Consider the largest time scale T of the problem. We then
assume that the volatility at time scale T influences the
volatility of the two subperiods of length T

2 by random
factors equal respectively to W0 and W1. In turn, each
volatility over T

2 influences the two subperiods of length
T
4 by random factors W00 and W10 for the first sub-period
and W01 and W11 for the second one. The cascade pro-
cess is assumed to continue along the time scales until
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Fig. 2. The correlation function Γωa (∆t) of the log-volatility
of the S&P500 index is plotted versus ln ∆t for various scales
a corresponding to 30 (◦), 120 (×) and 480 (4) minutes. All
the data collapse on a same curve which is almost linear up to
an integral time scale T ' 3 months (lnT = 8.6). According
to equation (5), from the slope of this straight line, one gets
an estimate of the parameter λ2 ' 0.015.

the shortest tick time scale (see Ref. [13] for rigourous def-
initions and properties). The simplest assumption is that
the factors W are i.i.d. variables with log-normal distribu-
tion of mean −H ln 2 and variance λ2 ln 2. It is then easy
to show that the correlation function averaged over a pe-

riod of length T , Γωa (∆t) = T−1
∫ T

0 〈ω̃a(t)ω̃a(t+ ∆t)〉 dt,
can be written as [20]:

Γωa (∆t) = λ2

(
log2

T

∆t
− 2 + 2

∆t

T

)
+ λ2

T , (5)

for a ≤ ∆t ≤ T (〈.〉 means mathematical expectation
and λ2

T is the variance of ωT). Here, our goal is to show
that the basic ingredients of this simple cascade model are
sufficient to rationalize most of the features observed on
the log-volatility correlations at different scales (note that
one could improve this description by taking into account
mutual influences of volatilities at a given scale and the
possible “inverse cascade” influence of fine scales on larger
ones). For λ2 ' 0.015 that can be obtained independently
from the fit of the pdf’s, equation (5) provides a very
good fit of the data (Fig. 1b’) for the slow decay of the
correlation coefficient with only one adjustable parameter
T ' 3 months. Let us note that Cωa (∆t) can be equally
well fitted by a power law ∆t−α with α ≈ 0.2. In view
of the small value of α, this is undistinguishable from a
logarithmic decay. Moreover, equation (5) predicts that
the correlation function Γωa (∆t) should not depend of the
scale a provided ∆t > a. In Figure 2, Γωa (∆t) is plotted
versus ln(∆t) for various scales a corresponding to 30, 120
and 480 min. As expected, all the data collapse on a single
curve which is nearly linear up to some integral time of
the order of 3 months.

Let us point out that volatility at large time intervals
that cascades to smaller scales cannot do so instanta-
neously. From causality properties of financial signals,

(a)

(b)

0 2048-2048

∆
a

∆
a

∆t (5 min)

Fig. 3. The mutual information Ia(∆t,∆a) (Eq. (6)) of the
variables ωa(t+∆t) and ωa+∆a(t) is represented in the (∆t,∆a)
half-plane (5 min units); the time lag ∆t spans the interval
[−2048, 2048] while the scale lag ∆a ranges from ∆a = 0 (top)
to 1024 (bottom). The small scale a = 4 (20 minutes) is fixed.
Following the horizontal axis at the top of Figure 3a, the self-
information Ia(∆t, 0) of the small scale volatility with itself is
shown. At the base of Figure 3a, the mutual information be-
tween the largest scale and the small scale at a time ∆t later
is shown. The amplitude of Ia(∆t,∆a) is coded from black for
zero values to red for maximum positive values (“heat” code),
independently at each scale lag ∆a. (a) S&P500 index; (b)
its randomly shuffled increment version. Note that, for mid-
dle scale lag values, the maxima (red spots) of the mutual
information in (a) are 2 orders of magnitude larger than the
corresponding maxima in (b).

the “infrared” towards “ultraviolet” cascade must man-
ifest itself in a time asymmetry of the cross-correlation
coefficients Cωa1,a2

(∆t) ≡ var(ωa1)−1var(ωa2)−1ω̃a1(t)

×ω̃a2(t+ ∆t); in particular, one expects that
Cωa1,a2

(∆t) > Cωa1,a2
(−∆t) if a1 > a2 and ∆t > 0.

From the near-Gaussian properties of ωa(t), the mean
mutual information [21] of the variables ωa(t + ∆t) and
ωa+∆a(t) reads:

Ia(∆t,∆a) = −0.5 log2

(
1− (Cωa,a+∆a(∆t))2

)
. (6)

Since the process is causal, this quantity can be inter-
preted as the information contained in ωa+∆a(t) that
propagates to ωa(t+ ∆t). In Figure 3, we have computed
Ia(∆t,∆a) for the S&P500 index (top) and its randomly
shuffled version (bottom). One can see on the bottom pic-
ture that there is no well defined structure that emerges
from the noisy background. Except in a small domain at
small scales around ∆t = 0, the mutual information is in
the noise level as expected for uncorrelated variables. In
contrast, two features are clearly visible on the top repre-
sentation. First, the mutual information at different scales
is mostly important for equal times. This is not so surpris-
ing since there are strong localized structures in the signal
that are “coherent” over a wide range of scales. The ex-
traordinary new fact is the appearance of a non symmetric
propagation cone of information showing that the volatil-
ity a large scales influences causally (in the future) the
volatility at shorter scales. Although one can also detect
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some information that propagates from past fine to future
coarse scales, it is clear that this phenomenon is weaker
than past coarse/future fine flux (the fact that the former
one exists anyway suggests that a more realistic cascading
process should include the causal influence of short time
scales on larger ones). Figure 3 is thus a clear demonstra-
tion of the pertinence of the notion of a cascade in market
dynamics. Similar features have been found on FX rates.

3 Discussion

There are several mechanisms that can be invoked to ra-
tionalize our observations, such as the heterogeneity of
traders and their different time horizon [22] leading to
an “information” cascade from large time scales to short
time scales, the lag between stock market fluctuations and
long-run movements in dividends [23], the effect of the reg-
ular release (monthly, quarterly) of major economic in-
dicators which cascades to fine time scale. Correlations
of the volatility have been known for a while and have
been partially modelled by mixtures of distributions [24],
ARCH/GARCH models [5] and their extensions [6]. How-
ever, as pointed out in the introduction, because they are
constructed to fit the fluctuations at a given time interval,
these models are not adapted to account for the above de-
scribed multi-scale properties of financial time series. We
have performed the same correlation analysis for simu-
lated GARCH(1,1) processes and obtained structureless
pictures similar to the one corresponding to the shuffled
S&P500 in Figure 3b. Recently, Muller et al. [22] have pro-
posed the HARCH model in which the variance at time t is
a function of the realized variances at different scales. By
construction, this model captures the lagged correlation of
the volatility from the large to the small time scales. How-
ever, it does not contain the notion of cascade and involves
only a few time scales. Moreover, it suffers from the same
deficiencies as ARCH-type models concerning the difficul-
ties to control and interpret parameters at different scales.
Let us also mention three recent working papers by Man-
delbrot et al. [4,25] that introduce and test a multifractal
model of asset prices. Their key idea is that trading time is
the cumulative (in order to be increasing) of a multifractal
cascade model. In this sense, there is a strong similarity
with our approach. However, in their empirical tests with
real data, they do not analyze the price variations (which
are the correct approximately stationary quantities) but
the price itself. In our opinion, this leads to a severe loss
of information and to potential distorsions, since the sta-
tistical tests become strongly perturbed by the artifical
correlations produced by the cumulative process. Indeed,
if x(t) is a Brownian motion, x(t) and x(t+τ) are strongly
correlated for all τ ’s since they have a common history for
all innovations prior to time t; this shows that the cor-
rect quantity to analyze are the price variations, as done
in the present paper. Even if they construct their mul-
tifractal model by multiplicative cascades, they have not
found empirically the correlation cascade that we report.
In their mathematical construction, the key element is not

the cascade structure but the multifractal time while the
cascade is our fundamental message.

Putting together the evidence provided by the log-
arithmic decay of the log-volatility correlations and the
volatility cascade from the infrared to the ultraviolet, we
have revisited the analogy with turbulence, albeit on the
volatility and not on the price variations. The big surprise
of our work comes from the exhibition of this information
cascading process: the fact that variations of prices over a
few month scale influence in the future the daily price vari-
ations is extraordinarily rich of consequences. This is not
so only for the fundamental understanding of the nature
of financial markets but also, and maybe more important,
for practical applications. Indeed, the nature of the cor-
relations that are implied by this cascade across scales,
has profound implications on the market risk, a problem
of upmost concern for all financial institutions as well as
individuals. In particular, these correlations are likely to
have strong consequences on derivative pricing and hedg-
ing. Another very promising prospect consists in building
ARCH-type processes on orthogonal wavelets basis. This
work is in current progress. The present understanding
with such models will allow us to calculate improved risk
prices such as options, for instance using the functional
formalism of reference [26] well-adapted to deal with pdf’s
satisfying equation (3).

It has not escaped our attention that the cascade of
volatility correlations across scales discovered here has
similarities to the log-periodic structures found to precede
and follow large market crashes [27]. Both signatures sug-
gest that the stock market prices are likely to display an
underlying ultrametric structure. The challenge is to de-
termine whether this results from a hierarchical structure
of organization of the market or from market dynamics or
both [28].

We acknowledge useful discussions with E. Bacry and U. Frisch
and thank D. Stauffer for useful comments. The data have been
provided by Science & Finance.
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21. E. Ventcel, Théorie des probabilités (MIR, Moscou, 1973).

22. U. Muller, M.M. Dacorogna, R.D. Davé, R.B. Olsen, O.V.
Pictet, J.E. von Weizsacker, First International Conference
on High Frequency Data in Finance, HFDF-I (29-31 March
1995, Zurich).

23. R.B. Barsky, J.B. De Long, The Quarterly Journal of Eco-
nomics CVIII, 291 (1993).

24. S.J. Kon, J. Finance 39, 147 (1984).
25. B.B. Mandelbrot, A. Fisher, L. Calvet, A multifractal

model of asset returns, working paper 1997; L. Calvet,
A. Fisher, B.B. Mandelbrot, Large deviations and the
distribution of price changes, working paper 1997; A.
Fisher, L. Calvet, B.B. Mandelbrot, Multifractality of
Deutschemark/US dollars exchange rates, working paper
1997.

26. J.-P. Bouchaud, D. Sornette, J. Phys. I France 4, 863
(1994); J.-P. Bouchaud, G. Iori, D. Sornette, Risk 9, 61-65
(March 1996); J.-P. Bouchaud, D. Sornette, M. Potters,
in Mathematics of Derivative Securities, edited by M.A.H.
Dempster and S.R. Pliska (Cambridge University Press,
1997), p. 112; J.-P. Bouchaud, M. Potters, Théorie des
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