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Abstract

Using non-parametric estimation methods, various authors have shown distinct
non-linearities in the drift and volatility function of the US short rate, which are
inconsistent with standard a2ne term structure models. We document how a regime-
switching model with state-dependent transition probabilities between regimes can
replicate the patterns found by the non-parametric studies. To do so, we use data
from the UK and Germany in addition to US data and include term spreads in some
of our models. We also examine the drift and volatility function of the term spread.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent years have seen a proliferation of work on the stochastic properties
of interest rates. In a number of in:uential articles, A;<t-Sahalia (1996a,b),
Stanton (1997), Conley et al. (1997) and Boudoukh et al. (1999) use non-
parametric techniques to show distinct non-linearities in the drift function
of the short rate. The non-parametric studies show mean reversion at high
rates to be much stronger than in normal ranges of the short rate, where
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the mean reversion is close to zero. The conditional volatility estimated by
these authors also takes on a convex shape which increases with the level
of the short rate. This Ending is very important for the modeling of the
term structure and related derivatives pricing, since many models typically
use linear drift and volatility models (such as the Du2e and Kan (1996)
a2ne class of term structure models). Nevertheless, these Endings are still
somewhat controversial and this line of research has been criticized from a
number of directions.
First, non-parametric models in general are over-parameterized and may

have poor small sample properties. In fact, with a Vasicek (1977) model,
Pritsker (1998) Ends that 2755 years of data are required to obtain the ac-
curacy of the kernel estimator implied by the asymptotic estimation using
A;<t-Sahalia’s (1996a) sample length of 22 years. Worse, Chapman and Pear-
son (2000) show that A;<t-Sahalia’s Endings may be entirely spurious, pri-
marily because of the lack of data at the extremes of the interest rate ranges
(where the non-linearities are found). They show that in small samples, an
a2ne parameterization of the short rate conditional mean may produce the
non-linearities in non-parametric estimations. However, Jones (2000) uses a
Bayesian setting to show that rejections of linear drifts may be driven by
implicit prior beliefs that contain a non-trivial amount of information about
the shape of the drift function. Under the JeKreys prior, a non-informative
prior robust to reparameterization, the non-linear results disappear. Down-
ing (1999) shows that while Enite sample bias of the non-parametric kernel
estimators may account for apparent non-linearities in conditional means,
he strongly rejects the null hypothesis of linear volatilities.
Second, the lack of a parametric model is of course problematic in terms

of further modeling of the term structure. In fact, these articles generally
ignore information in term spreads. 1 This is surprising since the inclusion
of term spreads both from an econometric perspective (they are known to
Granger-cause short rates) and from a modeling perspective (they are closely
linked to short rate dynamics in most term structure models) would help
identiEcation tremendously. Some progress has been made here. Ahn and Gao
(1999) provide an interesting non-linear term structure model that captures
some of the dynamics found by A;<t-Sahalia (1996a). Unlike the other extant
non-a2ne term structure models (see Beaglehole and Tenney (1992), and
in particular Constantinides (1992)), in Ahn and Gao’s model the factors
which drive the short rate are the same factors which completely determine
the dynamics of the entire yield curve, as in the a2ne term structure models.
Ahn and Gao’s short rate model has a quadratic conditional mean and a cubic
conditional variance. Their model matches the non-parametric shapes of the

1 With the exception of Boudoukh et al. (1999).
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conditional variance very accurately, but captures less adequately the sharp
downward slope of the non-parametric conditional mean at high interest rates.
In this article, we contribute to this debate in a number of ways. First, we

provide an alternative, parametric model that can match the non-linear patterns
detected before. Our model is a regime-switching model which Gray (1996)
and Ang and Bekaert (1998) have shown to forecast interest rates well. In
such a model there is an unobserved state (a regime variable) that follows
a Markov chain and governs the switching between two potentially linear
processes (see Hamilton, 1989). Second, we explicitly incorporate information
in term spreads, which not only leads to more e2cient estimation but also
allows us to derive drift functions for the term spread. Moreover, we show
that the probability of the transition of one regime to another regime depends
on the spread, and that the short rate and spread Granger-cause each other.
Third, we use information from short rates and spreads in three diKerent

countries. Because of the extremely high persistence of short rates, using
information from other countries is a much more eKective way to increase
the sample size than lengthening the sample itself. The various experiences
of diKerent countries are particularly helpful to give us more observations
of the distribution of interest rates near very low and very large short rates.
In particular, in addition to interest rates from the US we use data from
Germany and the UK.
Fourth, most term structure models treat the stochastic volatility of the short

rate as a function of the short rate itself, but only a few papers allow for time
variation in the coe2cients of the volatility function. While Ball and Torous
(1999) model stochastic interest rate volatility using an exponential GARCH
model, we let the short rate volatility depend only on the prevailing regime.
Our model also generates stochastic volatility, in a diKerent form: conditional
on the regime, the interest rate is homoskedastic, but stochastic volatility
is generated by the switching of regimes. 2 As the probability of being in
a particular regime conditional on past information varies through time, the
conditional moments of the short rate also vary through time. However, more
rapid mean reversion presumably occurs during much more volatile periods,
and hence allowing for a link between volatility and mean dynamics may
improve identiEcation. Our model accomplishes this.
Finally, regime-switching models can accomodate unit root regimes and

still remain covariance stationary (see Ang and Bekaert, 1998; Holst et al.,
1994). This makes regime-switching models ideal models to capture the
non-linearities of short rates. In particular, they can capture the unit root (or

2 Bekaert et al. (2001) combine regime-switching volatility with volatility depending on the
level of the interest rates within the regime. In a three-state model applied to interest rates from
seven countries they End signiEcant within-regime heteroskedasticity. Gray (1996) combines
GARCH and regime-switching variances in a univariate model.
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near-unit root) behavior at normal levels of the short rate by having a unit
root regime. A second regime can have a higher conditional mean with much
higher mean reversion and higher volatility. This enables higher short rates
to be associated with higher mean reversion and higher conditional volatility.
Our paper is related to Brandt (1999) who Ends that a regime-switching

model is a good auxiliary model to estimate continuous-time short rate
dynamics with non-linear drifts and volatilities in an E2cient Method of
Moments setting. Using this process he cannot reject the A;<t-Sahalia (1996a)
and Conley et al. (1997) speciEcations of the short rate. In contrast, we work
directly with regime-switching processes and investigate their implied drift
and volatility functions. We also use term spread and international cross-
sectional data.
This paper is organized as follows. Section 2 sets out the various regime-

switching models we estimate. Section 3 brie:y describes the data and pro-
vides parameter estimates and some simple hypotheses tests for the various
models. We show how the parameter estimates reveal an economically in-
tuitive model that could be the result of an interaction between fundamen-
tal shocks to in:ation or real rates and monetary policy action. Section 4
provides the main empirical results graphing and discussing the drift and
volatility functions implied by the main models. We End that when we allow
the probability of transitioning from one regime to another to depend on the
short rate or spread, we obtain plots of the conditional means and volatilities
of short rate dynamics which closely mimic the non-parametric estimations.
Section 5 concludes.

2. Models

We consider univariate short rate models and bivariate models which con-
tain the short rate and spread. 3 In each regime the short rate (and spread)
process is a linear function, and the regime variable itself follows a Markov
chain with possibly time-varying transition probabilities. In Section 2.1 we
describe the univariate short rate models and in Section 2.2 we describe the
bivariate term spread models.
We estimate the models by maximum likelihood using the recursive algo-

rithm developed by Hamilton (1989) (see also Hamilton, 1994; Gray, 1996).
We estimate the models for US data, and also estimate the models jointly over
three countries (US, UK and Germany) using the cross-sectional approach of
Bekaert et al. (2001). For the three-country cross-sectional estimation we

3 Hamilton (1988), Lewis (1991), Evans and Lewis (1995), Sola and Dri2ll (1994), Gray
(1996), Evans (1999), Ang and Bekaert (1998), Bansal and Zhou (1999), Veronesi and Yared
(1999) and Bekaert et al. (2001) all examine empirical models of regime switches in interest
rates.
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assume the innovations and regimes are independent across countries. Al-
though pair-wise interest rate correlations across countries are non-zero, Monte
Carlo results in Bekaert et al. (2001) suggest that the assumption of inde-
pendence is not rejected by the data.

2.1. Short rate univariate model

The dynamics of the short rate rt in the univariate model are given by

rt =�(st) + �(st)rt−1 + �(st)�t ; (1)

where the IID errors �t ∼ N(0; 1). 4 Equivalently we can write the model as
a function of Rrt:

Rrt =�(st)− (1− �(st))rt−1 + �(st)�t :

Conditional on the regime st the short rate is a Vasicek (1977) model and
has drift �(st)− (1− �(st))rt−1 and volatility �(st).
The regime variable st is either 1 or 2 and following Diebold et al. (1994)

has transition probabilities

p(st = j | st−1 = j;It−1)=
eaj+bjrt−1

1 + eaj+bjrt−1
; j=1; 2; (2)

where It−1 is the information set. In this model It−1 = {rt−1; rt−2; : : : ; r0}.
We consider two cases. The Erst case has constant transition probabilities
(bj =0) where we denote p(st =1 | st−1 = 1;It−1)=P and p(st =2 | st−1 = 2;
It−1)=Q. The second case has time-varying transition probabilities (bj �=0).
This model is similar to the model in Bekaert et al. (2001) with the excep-

tion that Bekaert et al. allow for within-regime heteroskedasticity. By keeping
our within-regime processes linear, the non-linearities are entirely driven by
regime-switching, not by other features of the model.

2.2. Term spread bivariate model

The term spread model is a switching bivariate Erst-order VAR of the short
rate rt and spread zt:

Yt =�(st) + A(st)Yt−1 + �1=2(st)�t ; (3)

where Yt =(rt zt)′ and �t ∼ N(0; I). We estimate the Cholesky decomposition
R(st) of �(st) where �(st)=R(st)R(st)′.

4 We will denote the regime variable by subscripts, so �(st = i)= �i , �(st = i)= �i and
�(st = i)= �i .
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The transition probabilities are logistic functions of both lagged short rates
and spreads:

p(st = j | st−1 = j;It−1)=
exp(aj + bjrt−1 + cjzt−1)

1 + exp(aj + bjrt−1 + cjzt−1)
; j=1; 2; (4)

where It−1 = {Yt−1; Yt−2; : : : ; Y0}. As with the univariate case, we consider
the case of constant transition probabilities (bj = cj =0) and time-varying
transition probabilities (bj �=0, cj �=0).

2.3. Drift and volatility functions

In a simple AR(1) speciEcation of the short rate rt =� + �rt−1 + ��t , the
conditional drift of Rrt is given by �−(1−�)rt−1 and the conditional volatility
is given by �. In a regime-switching model, such as our short rate univariate
model, the conditional drifts and volatilities will be functions of the ex-ante
probability of being in a regime p(st |It−1). In this model, the conditional
drift f(rt−1;It−1) is given by

f(rt−1;It−1)=E(Rrt |It−1)=
2∑
i=1

pi; t−1(�i − (1− �i)rt−1); (5)

where pi; t−1 = p(st = i |It−1) is the ex-ante probability and subscripts on �i
and �i denote the regime. Eq. (5) shows that the conditional drift is a
weighted average of the drifts conditional on the regime.
In contrast, the conditional volatility in the regime-switching short rate

model is not simply an average of the regime-dependent volatilities, as pointed
out by Gray (1996). The conditional volatility g(rt−1;It−1) is given by

g(rt−1;It−1)2

=E(r2t |It−1)− [E(rt |It−1)]
2

=

[
2∑
i=1

pi; t−1[(�i + �irt−1)2 + �2
i ]

]
−
[

2∑
i=1

pi; t−1(�i + �irt−1)

]2

=

[
2∑
i=1

pi; t−1�2
i

]
+ p1; t−1p2; t−1[(�1 − �2) + (�1 − �2)rt−1]

2: (6)

The Erst term is the average of the regime-dependent variances, and the
second term adds a jump component to the variance due to the switching
eKect of moving from one regime to another.
Note that the conditional mean f(rt−1;It−1) and volatility g(rt−1;It−1)

are functions of both the lagged short rate and the information set at t − 1
through the ex-ante probabilities pi; t−1. Through time, the ex-ante probabilities
are updated through a ratio of likelihoods which also depends on the transition
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probabilities (which can be functions of It−1 as in our time-varying transition
probability models). The ex-ante probability can be written as

pi; t−1 = p(st = i |It−1)=
2∑

j=1

p(st = i | st−1 = j;It−1)p(st−1 = j |It−1);

(7)

where the Erst term in the sum is the transition probability which can be state
dependent. For the univariate model the second term may be decomposed by
Bayes’ Rule as

p(st−1 = j |It−1) =
�(rt−1; st−1 = j |It−2)

�(rt−1 |It−2)

=
�(rt−1 | st−1 = j;It−2)p(st−1 = j |It−2)∑2

m=1 �(rt−1 | st−1 =m;It−2)p(st−1 =m|It−2)
;

where �(rt−1 | st−1 = j;It−2) is the conditional density of rt−1 given st−1 = j.
As pi; t−1 varies through time, the regime-switching models produce both
stochastic means and stochastic volatilities.
To End the drift and volatility function of Rrt−1 as a function of rt−1

only, we must integrate the eKect of the path {rt−2; rt−3; : : : ; r0} out of the
functions f(rt−1;It−1) and g(rt−1;It−1). The conditional drift as a function
only of rt−1, denoted by f(rt−1), is given by

f(rt−1)=E(Rrt | rt−1)=
2∑
i=1

pi(�i − (1− �i)rt−1); (8)

where pi is the stable probability pi =p(st = i | rt−1). The stable probability is
a function of rt−1 and can be evaluated numerically. The conditional volatility
as a function only of rt−1, denoted by g(rt−1), is given by

g(rt−1)2 = E(r2t | rt−1)− [E(rt | rt−1)]
2

=

[
2∑
i=1

pi�2
i

]
+ p1p2[(�1 − �2) + (�1 − �2)rt−1]

2: (9)

The above two formulae show how the drift and volatility of Rrt in a
regime-switching model can potentially be non-linear functions of rt−1. Both
Eqs. (8) and (9) are functions of the regime-dependent parameters, and the
stable probability pi can depend on rt−1. In particular, for the conditional drift
in Eq. (8) the drift will be a weighted average of the drift in each regime,
with the weights being the stable probabilities pi. As pi changes across the
lagged short rate, the drift will also change.
We integrate out the path numerically as follows. We simulate out the

system recording rt−1 and rt . We divide the observations into bins of rt−1 of
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50 basis points. Within each bin we calculate the values

E(Rrt | rt−1)

which is an empirical estimate of the drift f(rt−1) and√
E[(Rrt − E(Rrt | rt−1))2 | rt−1]

which is an estimate of the volatility g(rt−1). We plot the average drift and
volatilities within each bin at the mid-point of the bin to obtain appropriate
drift and volatilities for the regime-switching models as a function of rt−1.
We also record the regime realizations to estimate E(st | rt−1), the average
regime. 5 We require over 20 million observations in the simulation to accu-
rately pin down the drifts and volatilities at very low and high interest rate
levels.
A similar analysis applies for the bivariate model, except in addition to

integrating out st , the spread zt must also be integrated out to obtain drift
and volatilities for the short rate as a function only of rt−1.

3. Data and estimation

3.1. Data

Our empirical work uses monthly observations on 3-month short rates and
5-year long rates of zero coupon bonds from the US, Germany and Great
Britain from January 1972 to August 1996. The data are an updated set of the
Jorion and Mishkin (1991) data series (see Bekaert et al. (2001) for further
details). Table 1 reports central moments and the Erst three autocorrelations
for short rates and spreads for each country and the correlations between these
variables. We note that short rates for Germany and short rates and spreads
for the UK do not show excess kurtosis. Short rates are very persistent, with
the UK showing the least persistence. Spreads are also highly autocorrelated
but less so than short rates. Spreads are on average lower in the UK and
Germany than in the US but they are more variable. The correlations between
short rates across countries range between 0.44 for the US and German rates
and 0.67 for the US and UK short rate.

5 We can equivalently calculate p1 =E(st =1 | rt−1) and then use Eqs. (8) and (9) to obtain
the drift and volatility. This still involves simulating a large number of interest rate paths. The
procedure taken here is easily adapted to integrating out zt in addition to the interest rate paths
in the bivariate systems.
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Table 1
Summary statistics of dataa

US GER UK

Short rate Spread Short rate Spread Short rate Spread

Central moments
Means 7.1104 1.2443 6.6350 0.6349 10.1008 0.2456
Stdev 2.8206 1.3776 2.6650 1.7285 3.0524 1.6802
Skew 0.9668 −0:7596 0.7878 −0:6988 −0:0076 −0:3503
Kurt 3.8689 3.7987 2.8478 3.5518 2.1834 2.7805

Autocorrelations
�1 0.9743 0.8689 0.9836 0.9670 0.9690 0.9380
�2 0.9411 0.7698 0.9552 0.9204 0.9318 0.8866
�3 0.9113 0.6982 0.9212 0.8708 0.8891 0.8351

Cross-correlations
US GER UK

Short rate Spread Short rate Spread Short rate

US spread −0:5838
GER short rate 0.4372 −0:3663
GER spread −0:2824 0.3350 −0:8861
UK short rate 0.6706 −0:4289 0.4590 −0:3066
UK spread −0:3101 0.3216 −0:3245 0.3372 −0:7891

aSample period January 1972 to September 1996. Short rates are 3-month short rates, spreads
are the diKerence between 5-year zero coupon bond long rates and the short rate. The ith
autocorrelation is denoted by �i .

3.2. Estimation results

We Erst discuss the parameter estimates for the various models in more
detail in Sections 3.2.1 and 3.2.2 and then provide an economic interpretation
of the main empirical patterns in Section 3.2.3.

3.2.1. Univariate short rate models
The univariate short rate model coe2cients are given in Tables 2, 3 and 4

for the joint, individual and US estimations, respectively. In Table 2 for the
time-varying transition probability estimation, the Erst regime has a near-unit
root (�1 = 0:9896) with a constant within-regime mean of 0.0502 and within-
regime volatility of 0.2180. In contrast, the second regime is much more
mean-reverting (�2 = 0:9315), with a higher constant (�2 = 0:7284) and higher
regime-dependent volatility (�2 = 1:0441). Although the state-dependent tran-
sition probabilities make these numbers harder to interpret, the within-regime
means (�i=(1 − �i)) do not change very much relative to the constant
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Table 2
Univariate short rate model: joint estimationa

Constant probs. Time-varying probs.

Parameter Estimate Std error p-Value Parameter Estimate Std error p-Value

�1 0.0482 0.0274 0.0789 �1 0.0502 0.0274 0.0670
�2 0.7216 0.2188 0.0010 �2 0.7284 0.2276 0.0014
�1 0.9892 0.0004 0.0000 �1 0.9896 0.0004 0.0000
�2 0.9320 0.0055 0.0000 �2 0.9315 0.0056 0.0000
�1 0.2246 0.0122 0.0000 �1 0.2180 0.0111 0.0000
�2 1.0270 0.0500 0.0000 �2 1.0441 0.0513 0.0000
P 0.9128 0.0210 0.0000 a1 4.0530 0.5385 0.0000

b1 −0:2700 0.0655 0.0000
Q 0.8322 0.0411 0.0000 a2 −0:0124 0.0916 0.8920

b2 0.1182 0.0281 0.0000

aModel given by: rt = �(st) + �(st)rt−1 + �(st)�t ; �t ∼ IIDN(0; 1). The transition probabili-
ties are given by p(st =1 | st−1 = 1)=P and p(st =2 | st−1 = 2)=Q in the case of the con-
stant probability model, and p(st = i | st−1 = i;It−1)= eai+birt−1 =(1 + eai+birt−1 ); i=1; 2 for the
time-varying probability model. Subscripts in the table denote the regime. The models are esti-
mated cross-sectionally across the US, Germany and the UK. A likelihood ratio test for bi =0
yields a p-value of 0.0000.

Table 3
Univariate short rate model: diKerent parameters across countriesa

US results GER results UK results Wald test

Parameter Estimate Std error Estimate Std error Estimate Std error p-Value

�1 0.0426 0.0789 −0:0283 0.0135 −0:0106 0.0492 0.6579
�2 0.6847 0.5754 0.4157 0.2339 1.2308 0.4363 0.2544
�1 0.9980 0.0129 1.0000 0.0000 0.9926 0.0050 0.9897
�2 0.9265 0.0529 0.9536 0.0267 0.8956 0.0396 0.8006
�1 0.2849 0.0162 0.1677 0.0104 0.2019 0.0161 0.0000
�2 1.2552 0.1178 0.7114 0.0567 1.1435 0.0818 0.0000
P 0.9782 0.0112 0.9407 0.0237 0.6882 0.0524 0.8078
Q 0.9216 0.0371 0.8780 0.0514 0.5630 0.0812 0.7830

aModel is given by: rt = �(st)+�(st)rt−1+�(st)�t ; �t ∼ IIDN(0; 1). The transition probabilities
are given by p(st =1 | st−1 = 1)=P and p(st =2 | st−1 = 2)=Q. Each country has diKerent pa-
rameters. Subscripts in the table denote the regime. The models are estimated cross-sectionally
across the US, Germany and the UK. The last column lists a p-value of a Wald test of param-
eter equality across the US, Germany and the UK. A likelihood ratio test for parameters being
the same across the US, Germany and the UK yields a p-value of 0.0000.

transition probability model. They are 4.83% for the Erst and 10.63% for
the second regime.
Fig. 1 shows the transition probabilities from the joint univariate short

rate model with time-varying probabilities. The transition probabilities are
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Table 4
Univariate short rate model: US estimationa

Constant probs. Time-varying probs.

Parameter Estimate Std error p-Value Parameter Estimate Std error p-Value

�1 0.0426 0.0789 0.5135 �1 0.0364 0.0206 0.0776
�2 0.6847 0.5754 0.2341 �2 0.6291 0.6275 0.3161
�1 0.9980 0.0005 0.0000 �1 1.0000 0.0000 0.0604
�2 0.9265 0.0142 0.0000 �2 0.9306 0.0149 0.0000
�1 0.2849 0.0162 0.0000 �1 0.2863 0.0175 0.0000
�2 1.2552 0.1178 0.0000 �2 1.2869 0.1325 0.0000
P 0.9782 0.0112 0.0000 a1 7.4678 2.6077 0.0042

b1 −0:5590 0.2945 0.0577
Q 0.9216 0.0370 0.0000 a2 −7:1864 5.0917 0.1581

b2 1.1202 0.7292 0.1245

aModel is given by: rt = �(st) + �(st)rt−1 + �(st)�t ; �t ∼ IIDN(0; 1). The transition prob-
abilities are given by p(st =1 | st−1 = 1)=P and p(st =2 | st−1 = 2)=Q in the case of the
constant probability model, and p(st = i | st−1 = i;It−1)= eai+birt−1 =(1 + eai+birt−1 ); i=1; 2 for
the time-varying probability model. Subscripts in the table denote the regime. The models are
estimated on US data. A likelihood ratio test for bi =0 yields a p-value of 0.0001.

signiEcantly aKected by the lagged short rate. In particular, in the Erst regime
b1 is signiEcantly negative, so as interest rates rise in the Erst regime there
is an increased probability of transitioning to the second regime. In the sec-
ond regime, as short rates rise, there is an increased chance of remaining in
the higher volatile regime (b2¿ 0). A likelihood ratio test rejects the null
hypothesis of constant transition probabilities (p-value=0:0000). The other
parameters for the constant transition probability model are very similar to
the ones obtained in the time-varying transition probability model.
In Table 3 we show results for the joint constant probability model esti-

mated allowing for diKerent parameters across countries. The parameter pat-
terns across regimes are very similar, but we still strongly reject the overall
equality of the parameters across countries. Individual Wald tests for the dif-
ferent parameters suggest that the rejection is likely driven by the diKerent
volatility levels across countries. Nevertheless, given the qualitative analogy
between the parameters across countries, we will continue to focus most of
our attention on the joint model with equal parameters. Comparing the stan-
dard errors between Tables 2 and 3, the e2ciency gain in imposing equality
of parameters is clear. This e2ciency gain is even more apparent for the
time-varying probability model, as is illustrated for the US univariate model
reported in Table 4. The parameter patterns are again similar, but the tran-
sition probability parameters are estimated very imprecisely whereas in the
joint model we obtain signiEcance for both parameters capturing the state
dependence of the transition probabilities. We also note that the Erst regime
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Fig. 1. Transition probabilities.

in the US has a true unit root in the time-varying transition probability model,
but is also extremely persistent (�1 = 0:9980) in the constant transition prob-
ability model. Given the parameter diKerences we uncover across countries,
we will also report drift and volatility functions for the US estimation.

3.2.2. Bivariate term spread models
The bivariate term spread model coe2cients are listed in Tables 5 and 6.

The results share many characteristics with the univariate results. In addition
to the constant in the short rate equation being lower (higher) in the Erst
(second) regime, the constant in the spread equation is positive in the Erst
regime and negative in the second. The high short rate regime is associated
with negative term spreads. The persistence of the system in each regime
can be seen by looking at the moduli of the eigenvalues for the companion
matrices Ai. For the time-varying probability system estimated over the US,
UK and Germany in Table 5, the moduli of the eigenvalues for A1 are 0.9870
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Table 5
Bivariate spread model: joint estimationa

Constant probs. Time-varying probs.

Parameter Estimate Std error p-Value Parameter Estimate Std error p-Value

�11 −0:0985 0.0603 0.1024 �11 −0:0908 0.0620 0.1429
�12 0.2507 0.0700 0.0003 �12 0.2498 0.0709 0.0004
�21 0.8142 0.3013 0.0069 �21 0.9232 0.3395 0.0065
�22 −0:1649 0.2631 0.5308 �22 −0:2419 0.2877 0.4004
A1[1; 1] 1.0048 0.0074 0.0000 A1[1; 1] 1.0040 0.0077 0.0000
A1[1; 2] 0.0430 0.0136 0.0015 A1[1; 2] 0.0427 0.0136 0.0016
A1[2; 1] −0:0255 0.0086 0.0032 A1[2; 1] −0:0246 0.0088 0.0050
A1[2; 2] 0.9271 0.0156 0.0000 A1[2; 2] 0.9253 0.0156 0.0000
A2[1; 1] 0.9243 0.0281 0.0000 A2[1; 1] 0.9156 0.0309 0.0000
A2[1; 2] −0:0286 0.0438 0.5141 A2[1; 2] −0:0375 0.0473 0.4281
A2[2; 1] 0.0178 0.0247 0.4708 A2[2; 1] 0.0234 0.0265 0.3777
A2[2; 2] 0.9072 0.0385 0.0000 A2[2; 2] 0.9124 0.0411 0.0000
R1[1; 1] 0.2313 0.0119 0.0000 R1[1; 1] 0.2332 0.0137 0.0000
R1[1; 2] −0:1110 0.0153 0.0000 R1[1; 2] −0:1223 0.0166 0.0000
R1[2; 2] 0.2504 0.0111 0.0000 R1[2; 2] 0.2514 0.0096 0.0000
R2[1; 1] 1.0318 0.0529 0.0000 R2[1; 1] 1.0614 0.0531 0.0000
R2[1; 2] −0:6974 0.0491 0.0000 R2[1; 2] −0:7130 0.0508 0.0000
R2[2; 2] 0.5789 0.0274 0.0000 R2[2; 2] 0.5960 0.0289 0.0000
P 0.9017 0.0182 0.0000 a1 7.1210 1.2215 0.0000

b1 −0:6146 0.1283 0.0000
c1 −0:5885 0.2152 0.0062

Q 0.8068 0.0408 0.0000 a2 −1:1749 1.1249 0.2963
b2 0.2074 0.1077 0.0542
c2 0.2417 0.1541 0.1169

aModel is Yt =A(st)Yt−1 + Ut; Ut ∼ IIDN(0; �(st)) with Yt =(rt zt)′, the short
rate and spread, and R(st)= chol(�(st)); st =1; 2. For the constant probability model
p(st =1 | st−1 = 1)=P and p(st =2 | st−1 = 2)=Q. For the time-varying probability model,
p(st = i | st−1 = i;It−1)= exp(ai+birt−1+cizt−1)=[1+exp(1+ai+birt−1+cizt−1)]; i=1; 2. The
Erst subscript denotes the regime st , and the second subscript (or numbers in square brackets)
denote the matrix element. The models are estimated cross-sectionally across the US, Germany
and the UK. A likelihood ratio test for bi = ci =0 yields a p-value of 0.0000.

and 0.9423 and for A2 they are 0.9145 (repeated), showing the Erst regime
to be more persistent. In the Erst regime, both the short rate and spread
Granger-cause each other (signiEcant p-values for A1[1; 2] and A1[2; 1]), but
in the second regime we cannot reject the hypothesis that lagged short rates
and spreads do not aKect each other.
Table 5 also shows the conditional covariances to be larger in the sec-

ond regime. Pfann et al. (1996) show that the correlations between the
short rate and spread change as the level of the short rate changes. The
implied correlations conditional on the regime of the short rate and spread
are −0:4375 (−0:7673) in regime 1 (2) for the joint bivariate model with
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Table 6
Bivariate spread model: US estimationa

Constant probs. Time-varying probs.

Parameter Estimate Std error p-Value Parameter Estimate Std error p-Value

�11 −0:1140 0.1307 0.3831 �11 −0:1049 0.1236 0.3963
�12 0.5683 0.1142 0.0000 �12 0.6217 0.2746 0.0236
�21 1.3415 0.7799 0.0854 �21 1.0415 0.7398 0.1592
�22 −1:0236 0.8885 0.2493 �22 −0:8008 0.6406 0.2112
A1[1; 1] 1.0123 0.0156 0.0000 A1[1; 1] 1.0140 0.0154 0.0000
A1[1; 2] 0.0456 0.0266 0.0865 A1[1; 2] 0.0383 0.0367 0.2959
A1[2; 1] −0:0621 0.0137 0.0000 A1[2; 1] −0:0707 0.0369 0.0553
A1[2; 2] 0.8430 0.0271 0.0000 A1[2; 2] 0.8351 0.0531 0.0000
A2[1; 1] 0.8723 0.0647 0.0000 A2[1; 1] 0.8958 0.0695 0.0000
A2[1; 2] −0:1371 0.0886 0.1218 A2[1; 2] −0:1201 0.0823 0.1447
A2[2; 1] 0.1129 0.0735 0.1246 A2[2; 1] 0.0958 0.0616 0.1197
A2[2; 2] 0.9119 0.0890 0.0000 A2[2; 2] 0.9055 0.0820 0.0000
R1[1; 1] 0.2859 0.0135 0.0000 R1[1; 1] 0.2819 0.0202 0.0000
R1[1; 2] −0:1620 0.0239 0.0000 R1[1; 2] −0:1598 0.0252 0.0000
R1[2; 2] 0.2870 0.0139 0.0000 R1[2; 2] 0.2867 0.0194 0.0000
R2[1; 1] 1.1847 0.1065 0.0000 R2[1; 1] 1.1688 0.1381 0.0000
R2[1; 2] −1:0106 0.1197 0.0000 R2[1; 2] −0:9901 0.1477 0.0000
R2[2; 2] 0.6516 0.0577 0.0000 R2[2; 2] 0.6422 0.0719 0.0000
P 0.9691 0.0139 0.0000 a1 2.7599 0.8448 0.0011

b1
c1 0.7599 0.4368 0.0819

Q 0.9004 0.0423 0.0000 a2 3.5121 3.6956 0.3419
b2
c2 −0:6516 1.1189 0.5603

aModel is Yt =A(st)Yt−1 + Ut; Ut ∼ IIDN(0; �(st)) with Yt =(rtzt)′, the short
rate and spread, and R(st)= chol(�(st)); st =1; 2. For the constant probability model
p(st =1 | st−1 = 1)=P and p(st =2 | st−1 = 2)=Q. For the time-varying probability model,
p(st = i | st−1 = i;It−1)= exp(ai+birt−1+cizt−1)=[1+exp(1+ai+birt−1+cizt−1)]; i=1; 2. The
Erst subscript denotes the regime st , and the second subscript (or numbers in square brackets)
denotes the matrix element. The models are estimated using only US data. A full estimation
failed to converge, so we report a restricted estimation dependent only on the spread in the
time-varying probabilities. A likelihood ratio test for ci =0 yields a p-value of 0.0167.

time-varying probabilities. (For comparison the unconditional correlation from
the data is −0:5838.) A Wald test rejects the hypothesis that the correlations
are equal across regimes with a p-value of 0.0000.
Finally, the coe2cients in the transition probabilities are signiEcant at the

1% level in the Erst regime. As both short rates and spreads increase, the
probability of staying in the Erst regime decreases (negative b1 and c1). In
the second regime, only the coe2cient on the lagged short rate is border-line
signiEcant (p-value of 0.0542) and the p-value of the second coe2cient
is slightly over 0.11. However, the positive point estimates indicate that as
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both short rates and spreads increase the probability of staying in the second
regime increases. A likelihood ratio test rejects the null hypothesis of constant
transition probabilities with a p-value of 0.0000.
The US bivariate term spread model parameters are presented in Table 6.

The results are qualitatively similar to the joint estimation results. The time-
varying probability model failed to converge due to insu2cient data, espe-
cially at higher interest rates. Instead, we report a restricted model where
the transition probabilities depend only on the spread. A likelihood ratio test
for coe2cients on the lagged spread to be equal to zero in the transition
probabilities is rejected with a p-value of 0.0167.

3.2.3. Interpretation of the results
The estimation results are characterized by one regime producing unit root,

or near-unit root behavior with lower conditional volatility, and a second
regime which is more mean-reverting with higher conditional volatility. This
result is shared across the univariate short rate and bivariate term spread
models.
Economists such as Mankiw and Miron (1986) argue that the smoothing

actions of the US Fed make the short rate behave like a random walk, and
the Erst regime corresponds to ‘normal’ periods. When extraordinary shocks
occur, interest rates switch to the second regime and are driven up, volatility
becomes higher and interest rates become more mean-reverting. In the second
regime, policy makers switch from interest rate smoothing to in:ation Eghting.
This economic underpinning of the estimation results is particularly plausible
for the US. One of the marked high in:ation rate episodes was 1979–1982,
and the high interest rates were clearly partially caused by high in:ation. This
logic could also motivate the dependence of the transition probability on the
level of the short rate. Since short rates re:ect expected in:ation, they signal
to the authorities that a high in:ation regime is likely to occur.
To show the plausibility of this economic rationale for the regime switch-

ing model, Fig. 2 shows the smoothed probabilities (the probability of the
high interest rate regime) for the three countries over the sample period
together with short rates and in:ation rates. The model used is the spread
model jointly estimated over the US, UK and Germany, because the cross-
sectional estimation allows more power to pin down the coe2cients of the
non-linear regime-switching models, particularly the coe2cients of the tran-
sition probabilities.
For the US, the major in:ationary periods around 1975 and 1979–1982

indeed coincide with high probabilities for the high interest rate regime. The
Et is not perfect, as was also pointed out by Evans and Lewis (1995), and the
correlation between in:ation and smoothed probabilities is 0.54 in the US. At
0.50, this correlation is very similar in Germany. Apart from the mid-1970s
and early 1980s, Germany also witnessed a relatively high-in:ation period
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Fig. 2. In:ation and smoothed probabilities.
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after the uniEcation with East Germany in the early 1990s. All of these
periods coincide with high probabilities for the high interest rate regime. The
worst Et is for the UK. The regime-switching model switches regimes so
often that it is di2cult to distinguish high interest rate episodes. This being
said, in:ation is also more variable and higher in the UK than in the US or
Germany, and the correlation between in:ation and the high interest regime
smoothed probability remains solidly positive at 0.36.

4. Implied nonlinearities of regime-switching models

We organize our discussion into four subsections. The Erst subsection re-
views the results reported in the previous literature. Section 4.2 discusses our
results for the drift and volatility functions for the short rate from our mod-
els estimated using data from all countries. Section 4.3 reports the drifts and
volatility functions for the spread. Finally, in Section 4.4 we check robustness
by graphing the drift and volatility functions for the models estimated using
US data only.

4.1. Literature review

There is now a large literature documenting empirical non-linearities in in-
terest rates. A;<t-Sahalia (1996a) parametrically speciEes the drift and volatility
functions for US 7-day Eurodollar spot rate changes using non-linear func-
tions. A;<t-Sahalia Ends a highly non-linear drift with strong mean reversion
at very low and high interest rates but the drift is essentially zero in the
middle region. The volatility function assumes a J-shape so the spot rate
is more volatile outside the middle region, with the highest volatility oc-
curring at very high interest rates. We reproduce his Endings in Fig. 3. 6

A;<t-Sahalia uses the following parameterizations for the drift and volatility
functions:

fA(rt−1)= �0 + �1rt−1 + �2r2t−1 + �3=rt−1;

gA(rt−1)=
√
 0 +  1rt−1 +  2r

 3
t−1: (10)

The inverse �3=rt−1 in the conditional mean imparts an asymptote of the short
rate drift at zero. A;<t-Sahalia estimates  3 as approximately 2, which imparts
a quadratic shape to the conditional variance in Fig. 3.

6 In Fig. 3 the Fig. 4c of A;<t-Sahalia (1996a) shows the estimated diKusion of Rrt , which is
the conditional variance.
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Fig. 3. A;<t-Sahalia’s (1996a) short rate drift and diKusion.

Conley et al.’s (1997) drift estimations on overnight Fed funds rate changes
look very similar to A;<t-Sahalia’s plots, but without the strong mean rever-
sion at high interest rates. In their formulation, stationarity at high interest
rates is induced by increasing volatility. Stanton’s (1997) non-parametrically
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estimated drift on daily 3 month T-bill rate changes is zero until high inter-
est rates where the drift becomes very negative. Stanton’s non-parametrically
estimated volatility looks very similar to A;<t-Sahalia’s, with volatility in-
creasing at higher levels of interest rates. However, Stanton Ends the volatil-
ity to be mostly convex over most short rate levels, except at very high
short rates where the conditional volatility becomes concave, and the lowest
volatility happens at the lowest rates. Stanton’s pictures diKer somewhat from
A;<t-Sahalia (1996a) as he does not impose a parametric form onto the drift
and volatility functions. A;<t-Sahalia’s (1996a) parameterizations may not be
su2ciently rich to capture the non-parametric shapes which Stanton Ends.
We reproduce Stanton’s Egures in Fig. 4.
These Endings suggest that interest rates exhibit strong non-linear drifts,

with the drift being zero over much of the support of the data, but strongly
mean reverting at low or high interest rates. The volatility of interest rates
generally increases with the level of the interest rate with the lowest volatility
appearing in the low to middle range of the support. 7 In the next section we
show that the drift and volatility functions implied by the regime-switching
models can mimic these features.
We note that regime-switching models may not be the only models which

can reproduce the non-parametric estimations of the drift and volatility. If
multiple factors drive the term structure, then conditioning only on the short
rate may induce apparent non-linearities in the drift and volatility functions
because these now depend on the entire history of the short rate process.
However, certain classes of multi-factor models can be ruled out. For ex-
ample, in the Du2e and Kan (1996) a2ne class, the short rate can al-
ways be written as a linear function of factors. In this case, the drift will
be a linear function of a single state variable, after integrating out other
state variables. In addition, in multi-factor CIR models the factors must
be positively correlated to ensure admissibility. Single-factor models with-
out regime switching may also capture some non-linearities. For example,
the constant elasticity of volatility model of Chan et al. (1992) is able to
capture the convex shape of the conditional volatility by specifying the con-
ditional variance to be a cubic function. However, these models still parame-
terize the conditional drift to be a2ne. Ahn and Gao (1999) use a quadratic
drift, but this model does not satisfactorily capture the highly mean-reverting
drift at high interest rates levels. Regime-switching models can reproduce
the non-parametric estimations of both the conditional mean and conditional
volatility.

7 Johannes (1999) shows that the high mean reversion at high interest rates survives the ad-
dition of jumps in the short rate process, but introducing jumps causes the conditional volatility
to appear more linear.
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Fig. 4. Stanton’s (1997) short rate drift and diKusion.
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Fig. 5. Short rate drifts from the joint estimation.

4.2. Short rate drift and volatilities from the joint estimation

4.2.1. Drift function
Fig. 5 reports the short rate drift function for the four models we estimate:

the univariate short rate model with constant and time-varying transition prob-
abilities, and the bivariate short rate-term spread models with constant and
time-varying probabilities. Fig. 5 shows very clearly that the feature of the
model which drives the shape of the drift function is the time-varying logistic
transition probability. The models with constant transition probabilities pro-
duce a drift function that is nearly linear, except at the very edges where some
slight curvature is present which is due to sampling error. 8 This kind of func-
tion could be well approximated by a simple linear autoregressive model. The

8 At very low or very high interest rates, because these are in the extremes of the interest
rate distribution, not many observations are present: for example, in the constant probability
bivariate spread model, the proportion of observations lying in the range 18–20% is simulated
to be only 0.0018.
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drift functions from the models with the time-varying transition probabilities
on the other hand closely resemble the drift presented in Stanton (1997).
The drift function is at Erst very :at (but downward sloping) until an

interest rate of about 10% and then turns steeply negative at higher interest
rates. Stanton’s drift starts turning negative around 14%. For most of the
range, the function looks similar to A;<t-Sahalia’s (1996a) but the drift there
starts turning negative at only 18%. We do not generate the non-linearity
he produces at very low short rates, but that is exactly the range of interest
rates where the biases documented by Chapman and Pearson (2000) play a
large role. A;<t-Sahalia’s increasing drift at low interest rates may also be due
to the �3=rt−1 function he imposes in the conditional mean (see Eq. (10)).
Despite some small diKerences in the details, which are perhaps due to the
use of diKerent data sets, what is remarkable here is that the state-dependent
probability model can reproduce the shape of the non-parametrically estimated
drift functions.
What drives the drift function in the regime-switching models? The drift

function for the regime-switching process is a weighted average of the linear
drift functions in each regime, with the weights determined by the diKerent
amount of time spent in each regime at diKerent interest rate levels. The
non-linearity is induced by this weighting. When transition probabilities are
constant, there is little scope for non-linearity and the drift function retains a
fairly linear shape. However, in the state-dependent model, as interest rates in-
crease a much faster transition into the stronger mean-reverting regime occurs
and much more time is spent in the second regime at higher short rates. This
non-linear weighting is illustrated in Fig. 6. The dotted line represents the
linear drift in the Erst regime, which features a near-unit root and hence very
:at drift function. The dashed line represents the linear drift in the second
much more mean-reverting regime, where the drift slopes downwards much
more steeply. At low interest rates, the Erst regime totally dominates and the
drift function is :at, but when interest rates reach 10%, it becomes more and
more likely that the interest rates are drawn from the second regime and the
function curves steeply downward. The non-parametric result found before
can now potentially be given an economic explanation. It is well known that
monetary authorities smooth interest rates, as documented by Mankiw and
Miron (1986). This explains the near-unit root behavior of short rates in the
normal range giving rise to an almost :at drift function. It takes large shocks
to bring interest rates outside this range and once there both policy actions
and mean reversion in fundamentals (in:ation for example) bring about rapid
mean reversion.

4.2.2. Volatility function
Fig. 7 plots the conditional volatility functions of the short rate for the

same four models considered in Fig. 5. The constant probability universe
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Fig. 6. Regime-dependent drifts.

and bivariate models yield similar shapes for the conditional volatility and
bear a strong resemblance to A;<t-Sahalia’s (1996a) J-shaped estimations (see
Fig. 3). The time-varying probability models produce a drawn-out S-shape
volatility. The volatility Erst is rather :at at very low interest rates (0–4%)
and then increases strongly with interest rates, and Enally :attens out around
15%. This shape is very similar to what Stanton (1997) Ends (see Fig. 4). As
in the case of the drift functions, the time-varying probabilities allow more
non-linearities than the constant transition probabilities.
What drives the volatility functions in the regime-switching models? Al-

though the conditional volatility is a complex function of the model param-
eters (see Section 2), a major component is a simple weighting of the two
volatility parameters in the two regimes, which are assumed constant. Hence,
the expected regime also plays a critical role in driving the volatility function.
This explains why the range of volatilities reached in the constant probability
model is much lower than in the time-varying probability model, since the
weighting of the two regimes does not vary very much with the interest rate.
Fig. 8 explicitly shows the link between the shape of the volatility function
and E(st) the expected value of the regime (between 1, the low-volatility
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Fig. 7. Short rate volatility from the joint estimation.

regime and 2, the high-volatility regime), which was also recorded during
our simulations. The model used in Fig. 8 is the univariate short rate model
with time-varying probabilities. The ‘Average Regime’ function has the exact
same shape as the volatility function does.
Fig. 8 shows that we are more likely to be in the Erst low-volatility regime

at low short rates (0–8%) while at high short rates (above 14%) we are much
more likely to be in the second high-volatility state. This pattern is expected
from the state-dependent transition probabilities: recall Fig. 1 which plots the
transition probabilities as a function of the lagged short rate for the same
model as Fig. 8. At low interest rates, the probability of remaining in the
low-volatility regime is high and as the short rate increases, the probability
of transitioning to the second regime increases steeply. At high interest rates,
the probability of remaining in the second regime is high, while at low interest
rates if we are in the second regime the probability of transitioning to the
Erst regime increases.
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Fig. 8. Comparison with the average regime.

Note that the left column of Fig. 7 shows that the constant transition prob-
ability models display a J-shape, which is naturally shared by the expected
regime as a function of rt−1 (not shown). There is not much diKerentiation of
the regimes across short rates in these models. The minima of the volatility
curves coincide with the lowest values of E(st), where the model is most
likely to be in the low-volatility regime. The :atness of the curves derives
from a large and a relatively high stable probability of being in this regime.
This means that the mixing of the two diKerent regimes does not result in
noticeably diKerent modes in the distribution. For example, for the univariate
short rate model, the regime-dependent unconditional volatility in regime 2
is 2.8344 (versus 0.6523 in regime 1), and the stable probability of being
in regime 2 is 0.3419. 9 This high-volatility distribution tends to :atten the

9 The regime-dependent unconditional variance is �2i =(1 − �2i ), and the stable probability is
(1− Q)=(2− P − Q).
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Fig. 9. Spread drifts and volatilities from the joint estimation.

eKect of the more concentrated Erst distribution. In contrast, the state depen-
dence of the time-varying probability models enables the expected regime to
be more diKerentiated across the support of the short rate.

4.3. Spread drift and volatility functions from the joint estimation

The bivariate regime-switching models permit investigating the drifts and
volatilities of term spreads. These are presented in Fig. 9. In the constant
probability model, the drift function for the spread is linear and downward
sloping, re:ecting the higher mean reversion found for spreads. The time-
varying probability model generates a drift function that is very similar in
shape to the one from the constant probability model, with only very slight,
almost imperceptible non-linearities. This is not so surprising since the spread
dynamics do not diKer very much across regimes (see Table 5).
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However, spreads are much more variable in the second regime and the
transition probabilities depend on the spread in the time-varying transition
probability model. Hence, we would expect more divergence between the
two models for the volatility function. Fig. 9 conErms this. For the constant
probability model, the volatility function has a U-shape. For normal levels
of the spread (slightly negative to slightly over 1%), volatility is low, but
high and low spreads are both associated with higher spread volatility. In
other words, high-volatility short rate regimes can coincide both with upward
and downward sloping yield curves. In the time-varying transition probabil-
ity model, the spread volatility curve is no longer symmetric and its range
is larger. In particular, volatility decreases until spreads are above the nor-
mal range and then increases rapidly, but spread volatility at unusually large
negative spreads is higher than at unusually large positive spreads.
The mechanism for this result lies in the state dependence of the transi-

tion probabilities. Negative term spreads typically coincide with very high
short rates and hence one is likely in the high-volatility regime. As spreads
tend to their normal range, short rates drop and the probability of switching
into the normal regime increases. This is only partially counteracted by the
fact that negative spreads generally decrease the probability of staying in the
high-variance regime, an eKect that weakens at higher, less negative spreads.
At normal (positive) levels of the spread, the economy is in the Erst unit-root
regime, and volatility is low. When spreads increase, the probability of stay-
ing in this low-volatility regime decreases (note the negative c1 coe2cient
in Eq. (4)). Since the probability of switching into the high-variance regime
increases, the volatility function slopes upward again. The curve is steeper
here, since the state dependence in the Erst regime is stronger (see Table 5).

4.4. Drift and volatility functions for the US

Given the di2culty in estimating regime-switching models in general, and
the lack of extreme interest rate data in the US, we feel that the joint es-
timation is the most reliable guide towards the true shape of the drift and
volatility functions. For completeness, Figs. 10 and 11 plot drift and volatility
functions for the estimations that use only US data. Because of the superi-
ority of the time-varying transition probability model, we only show results
for that model.
Fig. 10 shows results for the univariate model. Even for US data, the drift

function takes the Stanton (1997) form, with a :at part and then a steeply
downward sloping part, for interest rates beyond 9–10%. The volatility curve
also looks like what Stanton Ends, where the low and high interest range
portions are now virtually entirely :at. The results for the bivariate model,
reported in Fig. 11, are less encouraging, but have to be interpreted with cau-
tion. Remember that we were not successful in obtaining convergence using
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Fig. 10. US short rate model.

the short rate in the transition probability function; so the state dependence
here is of a diKerent, less complete form than in the full model we discussed
before. As a consequence, the drift function is linear and downward slop-
ing and the volatility function U-shaped. For spreads, we do get functions
that resemble the ones reported in the joint estimation. In particular, the drift
function is near linear, and the volatility function has an asymmetric U-shape,
with two distinctions relative to our previous Endings. First, the asymmetry
in volatility between low and high spreads is much more striking. This is pri-
marily due to the fact that the identiEcation of the negative spread part of the
function for US data is limited to the 1979–1982 monetary targeting period.
Second, there is an almost :at portion at very low and high spreads, which is
due to the expected regime converging to remain close to 2 at these values.

5. Conclusion

An economically intuitive regime-switching model replicates the non-linear
patterns in the drift and volatility functions of short rates found by non-
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Fig. 11. US spread model.

parametric studies. The critical feature of the model that generates the required
non-linearities is the state dependence of the transition probabilities. In our
univariate short rate regime-switching models these probabilities depend lo-
gistically on the lagged level of the short rate. In our bivariate model using
the short rate and term spread, these are logistic functions of lagged short
rates and spreads. At a detailed level, our empirical Endings are remarkably
close to the non-parametric Endings of Stanton (1997). Although the shapes
we found are generally similar to A;<t-Sahalia’s (1996a) Endings, there are
some diKerences, especially at very low interest rates. Since there are few
data points at these ranges, we suspect that these diKerences may be gen-
erated by the semi-non-parametric nature of A;<t-Sahalia’s (1996a) method,
which imposes a parametric form on the drift and volatility function.
Our results have several implications. First, for the term structure litera-

ture it is important to build models that embed these non-linearities. It is
unlikely, for example, that a2ne models can ever generate the non-linearities
documented in both the drift and volatility functions. This paper has shown



1272 A. Ang, G. Bekaert / Journal of Economic Dynamics & Control 26 (2002) 1243–1274

that models with regime switches, or perhaps jumps are rich enough to mimic
the non-parametrically estimated short rate drift and volatility. Although some
progress has been made in this area, much more remains to be done. Naik
and Lee (1994) and Veronesi and Yared (1999) develop a continuous-time
regime-switching term structure model, but allow switching only in the con-
ditional mean. Bansal and Zhou (1999) and Evans (1999) have recently de-
veloped discrete-time term structure models accommodating regime switches,
but they do not allow for state-dependent transition probabilities and their
solution technique makes some strong assumptions. Consequently, the extant
models are unlikely to generate the required non-linearities.
Second, our results have implications for the vast macro-economic literature

on the eKects of policy shocks on the economy and asset prices (see for
example, Gali, 1992). Identifying policy shocks from linear VAR’s seems
very inappropriate given the dynamics of interest rates illustrated here. Since
the regimes may well be caused by changes in monetary policy operating
procedures, policy analysis should take these regime dynamics into account.
Ang and Bekaert (1998) speciEcally consider how dynamic impulse responses
may diKer between a simple VAR and a regime-switching VAR.
Finally, although the non-linear patterns in themselves are of much interest,

eventually we should attempt to understand what economic forces drive them.
Are they induced by shifts in expected in:ation or low-frequency changes in
real rates? Evans and Lewis (1995) document that regime changes in in:ation
do not perfectly coincide with regime changes in interest rates, and on-going
work by Bekaert and Marshall (2000) attempts to trace regime changes to
changes in real rate or in:ation regimes.
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