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Abstract

In recent years, physicists have begun to apply concepts and methods of statistical physics to
study economic problems, and the neologism “econophysics” is increasingly used to refer to this
work. Much recent work is focused on understanding the statistical properties of time series. One
reason for this interest is that economic systems are examples of complex interacting systems
for which a huge amount of data exist, and it is possible that economic time series viewed from
a di�erent perspective might yield new results. This manuscript is a brief summary of a talk
that was designed to address the question of whether two of the pillars of the �eld of phase
transitions and critical phenomena – scale invariance and universality – can be useful in guiding
research on economics. We shall see that while scale invariance has been tested for many years,
universality is relatively less frequently discussed. This article reviews the results of two recent
studies – (i) The probability distribution of stock price 
uctuations: Stock price 
uctuations
occur in all magnitudes, in analogy to earthquakes – from tiny 
uctuations to drastic events,
such as market crashes. The distribution of price 
uctuations decays with a power-law tail well
outside the L�evy stable regime and describes 
uctuations that di�er in size by as much as eight
orders of magnitude. (ii) Quantifying business �rm 
uctuations: We analyze the Computstat
database comprising all publicly traded United States manufacturing companies within the years
1974–1993. We �nd that the distributions of growth rates is di�erent for di�erent bins of �rm
size, with a width that varies inversely with a power of �rm size. Similar variation is found for
other complex organizations, including country size, university research budget size, and size of
species of bird populations. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

We organize our presentation around three questions: (i) What is the question?
(ii) Why do we care about this question? and (iii) What do we actually do?
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Fig. 1. Comparison of the time evolution of the S& P 500 for the 35-year period 1962–1996 (top line)
and a biased Gaussian random walk (bottom line). The random walk has the same bias as the S& P 500 –
approximately 7% per year for the period considered. The sharp drop seen in the S& P 500 in 1987 is the
market crash of October 19. Courtesy of P. Gopikrishnan.

1.1. What is the question?

To a physicist, the question is very basic: How can we quantify economic 
uc-
tuations? Everything in the economy 
uctuates. Consider a single “fruit 
y”, one
drosophila in this �eld of economics – the S& P 500 index, which is a weighted av-
erage of the 500 largest US business �rms. When graphed against time on the x-axis,
one sees substantial price 
uctuations over time, even if price changes are shown log-
arithmically on the y-axis (Fig. 1). Note, in particular, the very large “
uctuation”
that took place on 19 October 1987 (Black Monday), when business �rms all over the
world lost from 20 to 50 percent of their market value. Black Monday occurred simul-
taneously all over the world – a �rst analogy with classic critical phenomena, since
obviously at that moment every stock in the world clearly depended on every other
stock.
Fig. 1 compares this experimental data to a plot generated by a simple biased ran-

dom walk, i.e., a pattern created by the sequential 
ipping of a biased coin – if
the coin is heads, the walker moves up; if tails, the walker moves down. We notice
that, although this simple theoretical model – which was �rst developed by Bache-
lier [1] at the end of the last century – does bear a striking resemblance to the
empirical curve, there are no “Black Mondays” in the theoretical model. The rea-
son for this is intuitively obvious: the probability of a tossing N tails in a row –
which would be necessary to cause the walker to make N steps in the down di-
rection – is ( 12 )

N = exp(−N log 2), which decreases exponentially with N . Hence
a major “crash” in this theoretical model is “exponentially rare” – i.e., virtually
impossible.
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1.2. Why do we care about this question?

1.2.1. Scienti�c reasons
A �rst scienti�c reason to care about the 
uctuating economic system is that the

topic allows us to test ideas of complex systems on thoroughly documented databases;
literally every economic transaction is recorded somewhere and, in principle, recorded
very accurately. That accuracy is not present in the physical measurements that consti-
tute most of the databases we physicists work with, and that completeness is also not
present in our usual databases (since we do not have an in�nite number of graduate
students to take all possible measurements).
A second scienti�c reason to care about this topic is the ready possibility of in-

teractions between certain unsolved problems in physics – such as turbulence – and
unsolved problems in economics. Turbulence bears a remarkable resemblance to eco-
nomics. A �nancial news source can report that yesterday was a “turbulent day” on
Wall Street and, qualitatively, we understand the phenomenon that is being described
– but, as physicists, we can go much further than this general sense of what is taking
place. Indeed, the stock market and turbulence have been analyzed in parallel by a
number of researchers in recent years [2–4].
If we take a glass of water and stir it, energy on a big scale (our induced stirring)

is dissipated on smaller and smaller scales (the ripples that go out from our induced
stirring). In an economic system, induced energy takes the form of new information.
If there is no new information, there is no motivation for action. In a news blackout,
all trading stops. For this reason, Wall Street keeps track of all news, utilizing special
“live wire” news sources; they pay large sums of money in order to hear every piece
of news – correct or incorrect – the instant it happens or is reported to have happened.
Recently, I received an e-mail from a 21-year-old relative who works on Wall Street

saying there was an earthquake in Mexico City. I immediately sent an e-mail to a
colleague in Mexico City asking if they had experienced an earthquake. He instantly
answered yes, but that it had only begun 30 s ago – and how did I know? For me,
that is vivid proof that Wall Street is poised for almost instantaneous action whenever
news happens.
News on Wall Street, like injected energy in turbulence, is dissipated at smaller and

smaller scales. One big �rm might take some action at the news of the Mexico City
earthquake, and another smaller �rm might take a di�erent action, and a retiree or
day-trader still another.

1.2.2. Practical reasons
The overriding practical reason to care about this question is that this 
uctuating

economic system a�ects everyone in the world. Since in economics “everything depends
on everything else”, a Black Monday is a serious event for all of humanity.
An investment �rm on Wall Street recently tried using a variant of the simple biased

random-walk model. Eventually, and not surprisingly, the law of statistics caught up
with them: a huge 
uctuation occurred and the �rm was unable to cover its debts. Like
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all similar �rms on Wall Street, it had invested more money than it actually had (such
�rms typically invest 20 times as much). What happened then? Did the �rm’s creditors
give them concrete overshoes and dump them in the harbor – the usual Hollywood
solution for gamblers who cannot cover their debts? No! Other investment �rms on
Wall Street reached into their pockets and pulled out billions in order to bail them
out.
This was not altruism run amok; it was a conscious action taken in self-interest. The

other �rms knew that in the economy everything is a�ected by everything else and
that, if a major �rm failed, they also could be powerfully a�ected. Investors would
become frightened enough to withdraw their money, not just from the failed �rm (if
they could get any), but also from �rms similar to the one that failed. Typically, �rms
have readily available only a small fraction of the total funds they control, so a large
increase in withdrawals usually has a devastating e�ect.
Another way of describing this practical reason to care about the 
uctuating economic

system is to say that we want to be able to predict, and perhaps prevent, “economic
earthquakes”. If Wall Street investment �rms think they can manage huge chunks of
the economy using a simple biased random-walk model that neglects big 
uctuations,
then it seems we face a new kind of brinksmanship to replace the one we grew to
know so well during the Cold War. This is not idle speculation. There was a regional
economic earthquake recently in Indonesia – a collapse in the economy caused, among
other things, a rice shortage, and people actually starved. Investors in that economy
were a�ected because they lost their money, and a large number of non-investors were
a�ected because they no longer had food. Instances like this one make it clear that
the economy has become crucial to everyone’s well being, not just the well being of
stockholders.

2. What do we actually do?

2.1. Quantifying stock price 
uctuatuations

When we physicists look at the 
uctuating economic system, the �rst thing we want
to do is quantify the 
uctuations [5–8]. One way we can do this is to measure the
change G in the value of the stock price – �rst now, and then again after some �xed
time interval �t (say 1 day). Of course, G will change with time. On good days –
when the market goes up – G will be positive, and on bad days G will be negative.
What can we physicists do with this information? We can measure the time-correlation
function, and if these 
uctuations are indeed a conventional kind of critical phenomena,
the correlation should be a power law. A number of researchers have already done this
– we were not the �rst – and discovered that it is not a power law [9,10]. In fact,
a log-linear plot of the correlation function is a straight line, and the fall-o� – the
characteristic value of the exponential that gives rise to that straight line – is four
minutes.
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What about the absolute value of G? If we make a log–log plot of the auto-correlation
function of the absolute value of G, we �nd a region of roughly two decades where
the data are approximately linear, indicating that there are some kind of long-range
power-law correlations in that quantity [9,10]. Of course, you cannot make money
knowing only the absolute value of G – you have to know whether the quantity is
going up or down. An intriguing fact is that when we study the long-range power-law
correlations in the absolute values of G – using power-spectrum methods or detrended

uctuation analysis – we see an interesting crossover at approximately one day [10].
The reason for this crossover is unknown. Perhaps one of the students attending this
conference will help us understand the reason?
In addition to analyzing the data in the order they are actually recorded, we can

simply “dump the data on the 
oor”, and then retrieve the data points and bin them
according to value. That is exactly what Benoit Mandelbrot did – as well as many
others before and after him. Mandelbrot did it with three sets of data – two sets of
daily returns and one set of monthly returns – for cotton prices [5]. When he constructed
a cumulative histogram, i.e., the number of times a cotton price 
uctuated more than
a certain amount G on the x-axis, he got linear behavior on log–log paper. He also
discovered what today is called “universality” – the same slope, 1.7, in each of the
three data sets. This was both “scaling” and “universality” in cotton price 
uctuations.
The fact that the data were linear on log–log paper replaced the Bachelier theory of a
simple biased random walk [1] with another distribution, the L�evy distribution. Since
that time, many have worked with Mandelbrot’s �ndings and have given them a good
deal of credence, but – as we will soon see – that L�evy distribution does not hold for
the data we are examining.
Each of Mandelbrot’s analyses had only ≈103 data points, and the shortest time

interval studied was 1 day. Shorter time intervals are helpful for a detailed study of

uctuations. Mantegna studied these 
uctuations with a di�erent database, the S& P
500 index, in which the 
uctuations are measured down to 15-s time periods �t and
the data points number not ≈103 but ≈106 [2–4,9]. Mantegna’s histogram of value

uctuations in the S& P 500, which are graphed logarithmically on the y-axis, do not
show an inverted parabola (−x2). Rather, the data show 
uctuations far bigger than
those predicted by a Gaussian, i.e., a Gaussian does not have any “Black Mondays”. His
histogram also shows, when we look at the center of the data, a L�evy distribution. The
�t is remarkably good out to about �ve standard deviations, supporting Mandelbrot’s
results. When we probe the wings, we �nd that the data are orders of magnitude
below the predictions of a L�evy distribution. If the empirical data did follow a L�evy
distribution, “Black Mondays” would occur much more frequently. This distribution,
which is a truncation of the L�evy form, is called a truncated L�evy 
ight [11–13].
What about the “universality” of this distribution of price changes? Johannes

Skjeltorp did an analysis similar to that of Mantegna’s, but on the Norwegian econ-
omy [14]. Even though Norway’s economy is only 5% as large as the USA, and is
extremely specialized because of its dependence on oil revenue, Skjeltorp �nds the
same truncated L�evy distribution as was found in the S& P 500.
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Fig. 2. Probability density function of the normalized returns of the 1000 largest companies in the TAQ
database for the 2-year period 1994–1995. A power-law �t in the region 26x680 yields values of the slope
1 + � = 4:10 ± 0:03 for the positive tail and 1 + � = 3:84 ± 0:12 for the negative tail, clearly outside the
L�evy stable domain 1¡ 1+ �¡ 3. The fall o� of the distribution for small values of returns arise from the
discreteness in stock prices, which are set in units of fractions of USD, usually 1

8 ,
1
16 , or

1
32 . Courtesy of

P. Gopikrishnan.

Just as Mantegna increased the number of data points from ≈103 to ≈106 in his
analysis, Gopikrishnan and collaborators increased the number from ≈106 to ≈108 by
analyzing the data for every transaction made in the entire 2-year period 1994–1995
[15–17]. He found that the distribution P(G) is approximately linear on log–log paper
(Fig. 2). When he averaged over every individual stock, he convincingly showed that
for individual stocks the histogram of price 
uctuations is very close to an inverse
quartic power-law. The data fall on the same straight line all the way out to 100
standard deviations – i.e., events that are ≈10−8 as common as everyday events, since
two decades on the abscissa is eight decades on the ordinate if the exponent is −4
[15–18]. This means that extremely rare events seem to be following the same empirical
law as common everyday events.
Unlike the apparent di�ering behaviors in the S& P 500 – a region of L�evy behavior

and a region of truncation – in Gopikrishnan’s histogram of individual stocks there is
no region of L�evy behavior at all. Gopikrishnan repeated Mantegna’s work using a
longer time frame and con�rmed that there is a small region of L�evy behavior, with
truncation by a power law. Again, earthquakes that are ≈10−8 as common as everyday
shocks follow the same plot.
The Gutenburg–Richter law for the frequency of earthquakes is of the same char-

acter. Large earthquakes fall on the same straight line as small earthquakes, meaning
that extremely rare events seem to be following the same empirical law as common
everyday events. This empirical fact suggests that if we can build models and de-
velop some understanding of everyday “small earthquakes”, then this understanding
will help comprehend large earthquakes – we do not need a separate theory for the
large earthquakes.
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Similarly, perhaps statistical physicists can develop some understanding of everyday
“small” stock price 
uctuations, we will be able to use this understanding to compre-
hend large price 
uctuations – we will not need a separate theory (as some believe we
do) for the large “economic earthquakes”.

2.2. Quantifying business �rm 
uctuations

The theory of �rms in economics is not unlike the theory of the Ising model of spin
glasses in physics. The set of “all spins” here is the set of all publicly traded �rms.
The classic approach in economics is to divide that “set of all spins” into “sectors”:
manufacturing, food, computers, drugs (the legal kind), automotive, and so forth. The
interactions within sectors are treated exactly, but the interactions between sectors are
treated using a mean-�eld theory or are neglected altogether. The classic approach in
physics is the same thing as our so-called e�ective-�eld theories of magnetism [19].
However, in physics we have found that such e�ective-�eld theories miss the essential
physics under conditions of criticality [20].
So, in order to avoid the same problem in economic systems, we analyzed all the

�rms together – rather than breaking them into sectors. That each �rm has some depen-
dence on all other �rms is more realistic for intuitive reasons. If General Motors goes
down because of the public disclosure of an unsafe design in some of its vehicles, then
Ford may go up as customers, concerned about safety, purchase that manufacturer’s
cars instead. But then Ford may need to expand their work force to make the increased
number of cars, and that larger number of workers almost certainly will increase the
noontime business at the McDonald’s across the street from the plant. So we have
an interaction that negatively correlates two �rms in the same sector, and one that
positively correlates two �rms in two di�erent sectors.
This spin-glass picture of the economy is still new and seems very promising, but

we have not yet discovered exactly how to work with it. There are 104 �rms and so
108 interactions – interactions that are sometimes positive, sometimes negative, some
are long-range, and some even change with time, and we do not even know how to
assign the interaction energy J .
So we �nd ourselves once again making histograms. Speci�cally, Stanley and collab-

orators [21,22] made a histogram that shows how many times a �rm grows by a given
amount – e.g., the sales this year divided by the sales last year – places the histogram
into a family of histograms, depending on the size of the �rm. As we would expect,
a large �rm cannot grow or shrink very much in a given year. General Motors could
not grow by a factor of 10 in a single year. Big �rms have narrow histograms. Small
�rms, on the other hand, have very wide histograms (Fig. 3). The width, or standard
deviation, of a histogram is a decreasing function of the size of the �rm. This has
been known qualitatively for some time, but apparently no one had actually tried to
quantify how that decrease depends on the size of the �rm. When we make that plot
we �nd that the standard deviation is a function of the size of the �rm, and the data
are approximately linear on log–log paper – suggesting that that deviation is a power
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Fig. 3. Distribution of scaled annual growth rates for di�erent organizations: R& D expenditures of US
universities, sales of �rms, and GDP of countries. The data collapse onto a single tent-shaped curve suggesting
that the scaled distributions have the same functional form. Courtesy of V. Plerou.

law. The slope of that power law is on the order of 0.2. This number also seems to
be quite universal, e.g., if you measure �rm size by number of employees (rather than
by annual sales total) the slope is the same. It is therefore possible to collapse all
these tent-shaped distributions onto the same scaling curve by using appropriate scaled
variables.
What about universality? Takayasu tested the universality hypothesis by looking at

data for other countries and data for individual sectors of the economy [23]. Je�rey
Sachs of Harvard University suggested that we look at GDP data of countries. For
some time, one has known that the “economies” of many large business �rms are the
size of those of small countries, but we are just now becoming aware that business
�rms might also have similar organizational structures to countries. Canning, Lee, and
coworkers found that indeed the identical tent-shaped distribution was found for the
growing and shrinking of the economies of countries and with the identical slope (≈ 1

6 )
[24,25]. So, in this sense, countries and business �rms are identical.
Recently Plerou, Amaral, and coworkers found parallels between business �rms and

funded scienti�c research in universities [26]. We researchers must sell our ideas to
the funding institutions, so we are the business �rm and the funding institution is the
customer. The growth and shrinking of research funding, when analyzed, exhibits the
same tent-shaped distribution and, when size-dependence is scaled out, everything can
be plotted on the same curve (Fig. 3).
This has even been applied to non-human organizations. Each species of bird is

like a �rm in that it grows or shrinks from year to year. Keitt found that data on the
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dynamics of North American breeding-bird populations demonstrate the same tent-
shaped distribution [27].

3. Summary

In recent years, physicists have started applying concepts and methods of statistical
physics to study economic problems, and the neologism “econophysics” was introduced
in 1995 to refer to this work [28]. In this presentation, we have reviewed two recently
uncovered empirical results that appear to be “universal” in that they are independent
of the details of the economic system studied:
(1) The L�evy distribution is not valid for stock price 
uctuations. It appears to be

valid for certain stock averages, if the tails are ignored, but it is never valid for
stock price 
uctuations of individual �rms, even when the tails are ignored.

(2) The growth and shrinking of complex organizations appears to follow a universal
law that is immensely robust. This universal law demonstrates its validity for a
wide range of organization types – from business �rms to bird populations.

A possible key to understanding the �rst empirical law is to consider stock price

uctuations as analogous to di�usion. In di�usion, a particle changes its direction when-
ever there is a molecular collision. In stock price 
uctuations, the change takes place
whenever there is a transaction. If we carry though the steps of classic di�usion,
we �nd predictions that do not agree with the stock market – but if we generalize
classic di�usion to anomalous di�usion (a test particle in Yellowstone Park, bouncing
around among the bubbling springs and geysers) we do get the predictions of the stock
market [29].
Regarding the tent-shape distributions observed for the growth of organizations and

the corresponding power laws, we have recently developed a simple model that re-
produces those empirical �ndings [30]. The model dynamically builds a diversi�ed,
multi-unit structure, reproducing the fact that the typical organization passes through a
series of changes in structure, growing from a single-unit to a multi-unit organization.
Our simple model rests on a small number of assumptions: (i) organizations tend to
grow into multiple divisions once they achieve a certain size, (ii) there is a broad
distribution of characteristic scales in the system, and (iii) growth rates of di�erent
divisions are independent of one another.
The model provides some insight into the processes by which organizations grow and

leads to a number of conclusions. Namely, it suggests the deviations in the empirical
data from predictions of a simple random multiplicative process may be explained
(i) by the diversi�cation of �rms, i.e., �rms are made up of interacting subunits; and
(ii) by the fact that di�erent industries have di�erent underlying scales, i.e., there is
a broad distribution of minimum scales for the survival of a unit (for example, a car
manufacturer must be much larger than a software �rm).
Moroever, the model suggests a possible explanation for the common occurrence

of power-law distributions in complex systems. Namey, that the empirically observed
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power-law scaling does not require a critical state of the system, but may arise from
an interplay between random multiplicative growth and the complex structure of the
units composing the system.
We close with the caveat that we have not discussed many other interesting results

in economics. One of the most promising relates to the possibility that correlations
between di�erent stocks can provide useful information and possible interesting new
“laws of economics” (see, e.g., Refs. [31,32] and references cited therein).
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