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Abstract

The main objective of this paper is to investigate the validity of the much-used assumptions
that stock market returns follow a random walk and are normally distributed. For this purpose
the concepts of chaos theory and fractals are applied. Two independent models are used to
examine price variations in the Norwegian and US stock markets. The �rst model used is the
range over standard deviation or R=S statistic which tests for persistence or antipersistence in
the time series. Both the Norwegian and US stock markets show signi�cant persistence caused
by long-run “memory” components in the series. In addition, an average non-periodic cycle of
four years is found for the US stock market. These results are not consistent with the random
walk assumption. The second model investigates the distributional scaling behaviour of the
high-frequency price variations in the Norwegian stock market. The results show a remarkable
constant scaling behaviour between di�erent time intervals. This means that there is no intrinsic
time scale for the dynamics of stock price variations. The relationship can be expressed through
a scaling exponent, describing the development of the distributions as the time scale changes.
This description may be important when constructing or improving pricing models such that
they coincide more closely with the observed market behaviour. The empirical distributions of
high-frequency price variations for the Norwegian stock market is then compared to the L�evy
stable distribution with the relevant scaling exponent found by using the R=S- and distributional
scaling analysis. Good agreement is found between the L�evy pro�le and the empirical distribution
for price variations less than ±6 standard deviations, covering almost three orders of magnitude
in the data. For probabilities larger than ±6 standard deviations, there seem to be an exponential
fall-o� from the L�evy pro�le in the tails which indicates that the second-moment may be �nite.
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1. Introduction and problem statement

1.1. Motivation

Economies and the capital markets are regarded as complex systems. Large e�orts
have been made over the years in order to understand how and how fast information
ows from one investor to another and then is incorporated into prices. The models
that have been developed to explain the capital markets are, of necessity, simpli�-
cations of reality. From this, an entire analytic framework has been created, but the
models do not work too well. They explain some of the structures, but leave many
questions unanswered. Economists often �nd that their forecasts have limited empirical
validity.
In the traditional scienti�c thinking, one has tried to understand complicated condi-

tions and processes by breaking up the systems into smaller parts. By studying these
parts individually, one has attempted to gain insight into the total, accumulated be-
haviour by putting the pieces together and work out averaged developments. Chaos
theory is an emerging science where one attempts to study complexity as an interplay
and self-organization of many interacting parts. One may say that “more is di�erent”
in the sense that the co-operative behaviour of many parts may not be predicted from
the behaviour of the single parts. This is in deep contrast to the rational behaviour or
representative agent concepts in economics today.
A distinct feature with complexity is that in many situations one has what is called

sensitive dependence upon initial conditions. What would, for example, have happened
if Bill Gates and Paul Allen, the founders of Microsoft, had not met each other about
30 years ago? We would probably not have had Microsoft Windows or Word, but
perhaps something even better? We will of course never know what would have come
instead. These types of complex chain reactions limit our ability to predict the future,
but it also incorporates a kind of long-term memory e�ect in di�erent processes which
presently is ignored in the basic theoretical framework of �nance and economics.
As we shall see, the messiness of the stock market may be studied using chaos

theory and fractal concepts which embody their own kind of simple laws. Although
we still only get approximate results, they will prove to reproduce the data much
more accurately than model results obtained using conventional statistical averages
and Gaussian normal distributions. Through chaos theory and fractal geometry we
have access to tools and a new way of thinking that has been widely used within
the physical sciences to describe complex systems and processes. If we believe that
the �nancial markets are complex non-linear dynamic systems, then these tools will be
very useful to obtain a better description of the �nancial markets. This again may be
used to improve those models already at hand and even make new models that conform
more closely to observed market behaviour. Econophysics [1] is an interdisciplinary
�eld of research applying methods from physics to analyse economic systems. The
�eld has gained increased practical and theoretical interest the recent years. From a
theoretical viewpoint, it o�ers a fresh look at existing theories in �nance. Due to the
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increased availability of high-frequency data, the need for new tools to analyse the data
has become crucial.
The main objective of this paper is to apply the concepts of chaos, fractals and

“new” analytical techniques to explore the possibility that scaling phenomena occur
in stock market returns. The analysis will mainly be concentrated on the Norwegian
stock market. In particular, the concept of e�cient markets, which is the bedrock
of quantitative capital market theory will be examined, as well as the much used
assumption of stock prices following a random walk (Brownian motion) or related
independent processes like the martingale, sub-martingale, etc. The paper contains six
main parts. In the remainder of this �rst part, there will be a review of the existing
model framework and a discussion why there may be a need for a new viewpoint in
economics. Then, in Section 2, there will be a survey of the theoretical background
of chaos theory and fractals. In Section 3 an explanation and review of the methods
which will be used to examine the Norwegian and US stock markets will be given. In
Sections 4 and 5 the �ndings and their implications will be discussed followed by a
more general conclusion.

1.2. A review of the traditional model framework

1.2.1. Perfect capital markets
There is one main purpose of capital markets. This is to allocate funds e�ciently

between lenders and borrowers, where lenders often are savers and borrowers may be
viewed as the producers in the economy. The characteristic feature of an allocationally
e�cient market [2] is that the risk-adjusted marginal rates of return for all producers
and savers are equated for all states of nature. Thus, in such a market all savings are
optimally allocated to productive investments in a way that it bene�ts everyone. If we
have perfect markets, then there are certain conditions that must be met. These are:
• Frictionless markets: no transaction costs or taxes, perfect divisibility and marketabil-
ity of all assets, no regulations.

• Perfect competition in product and securities markets.
• Markets are informationally e�cient: information is costless and received simulta-
neously by all individuals.

• All individuals are rational: they maximize their expected utility.
When all these conditions are met, we have an allocationally and operationally

e�cient market. An operationally e�cient market means that the cost of transferring
funds is assumed to be zero. The notion of perfect capital markets is a very restrictive
assumption, and more restrictive than the concept of capital market e�ciency. One may
say that we have e�cient markets when some of the perfect capital market assumptions
are relaxed.

1.2.2. Capital market e�ciency
According to Fama [3], in an e�cient capital market, all the information in some

information set � is fully, and more or less instantaneously, reected in the securities
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prices. Thus, prices are accurate signals for capital allocation. However, in contrast to
perfect capital markets, we may still have market e�ciency even though we have allo-
cational ine�ciencies in the product markets and=or costly information. In the 1960s,
Fama operationalized the notion of market e�ciency. He proposed to distinguish be-
tween three versions of the e�cient market hypothesis depending on the speci�cation
of the information set �. These were:
• Weak-form e�ciency: it is not possible to develop any trading rules based on his-
torical price information to achieve excess returns in the future. � includes only
historical prices. In other words, it is not possible to earn excess returns through
technical analysis or other active trading strategies.

• Semistrong-form e�ciency: it is not possible for any investor to earn abnormal re-
turns from trading rules based on any publicly available information. � is broadened
to include also all information that is publicly available.

• Strong-form e�ciency: no investor can earn excess return by using any information
available, whether it is insider- or public information. � is thus broadened even
further to also include all insider information as well.
This means that given an information set at time t, then today’s price Pt is the best

estimate of tomorrow’s discounted price plus dividends

Pt = E

[
P̃
∗
t+1

1 + �

∣∣∣∣∣�t
]
: (1)

Here P̃
∗
t+1 is the P̃t+1 + d̃t+1, d̃t+1 the expected dividends, �t the current information

set at t; � the discount rate.
A crucial point when discussing market e�ciency is therefore how much and how

fast information is captured and incorporated in prices. In this regard it is often assumed
that when information is costly, the net gain obtained from collecting information
must be zero in equilibrium. The capital market is therefore e�cient relative to a
given information set only after consideration of the costs of getting to a particular
information structure is taken into consideration. So, what does this mean for the
behaviour of stock market prices? This will be discussed in the following section.

1.2.3. The Gaussian hypothesis of stock price behaviour
The assumption of market e�ciency implies that since all fundamental- and price

history information (�t) known up to and including time t, is reected and discounted
in the current price, prices only move when new information arrives in the market.
Because the stock market is a large system that has a large number of degrees of free-
dom or investors, it is assumed that current prices must reect the information everyone
already has. In other words, today’s change in price is caused only by today’s unex-
pected new information. This means that today’s price, given all relevant information
available today, is the best forecast of tomorrow’s discounted price plus dividends (1).
Therefore, yesterday’s news is no longer important, and today’s returns are unrelated
to yesterday’s returns; i.e., the returns are independent. If we collect enough historical
data of stock prices and returns, the distribution should, according to theory, in the
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Fig. 1. The familiar normal (Gaussian) distribution for the frequency of returns when E(r) = 0 and the
standard deviation is 0.2.

limit of large numbers of data approach the normal-distribution with a stable mean
and a �nite variance (Fig. 1). The equation for the frequency of returns, r, which are
symmetrically and normally distributed with no skewness or kurtosis, is usually
expressed as

f(r) =
1

�i
√
2�t

exp

[
− 1
2t

(
r − E(r)
�i

)2]
; (2)

where E(r) is the mean return, �i the standard deviation for security i, t the time
index.
It is important to note that the e�cient market hypothesis (EMH) does not necessar-

ily imply a random walk, but conversely a random walk does imply market e�ciency.
However, the assumption of independence is a very crucial and deeply rooted aspect
of the EMH. In the traditional literature treating the e�ciency of capital markets,
there are three main theories of the time series behaviour of prices: the random-walk
model (Brownian motion), the martingale- and the fair-game model. The main di�er-
ences between these models is whether they allow for dependencies in the higher-order
moments of the distribution of returns.

1.3. Why there may be a need for a revisited model framework

One of the great scientists of this century, Nobel Laureate and Norwegian-born Lars
Onsager once commented on doing important science which will matter in the long run:
“Look at the problem and then choose your ‘weapons’ to solve it”, he said. It is “poor”
science to attempt the opposite by constructing nice theories and then “look around”
for the phenomena �tting the theory. As we shall see below, it may be claimed that the
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random-walk model applied to economics to a certain extent falls into this category. In
capital market theory, the assumption of normality and �nite variance, as well as models
based on those assumptions, were developed even as empirical evidence continued to
contradict theory [4]. In other words, it seems like the theory was constructed to justify
the methods instead of the empirical facts themselves.
The current paradigm, with the EMH as the core of it, basically says that investors

react to the arrival of information in a linear fashion. This implies that investors react
to information instantaneously as the information is received, and not in a cumulative
fashion to a series of events. This linear paradigm, which is built into the rational in-
vestor concept, is based on the assumption of past information already being reected
in security prices. Thus, the linear paradigm implies that returns should be approxi-
mately identically normally distributed and independent. However, the new paradigm
that is discussed and applied in this paper, is the possibility of non-linear reaction to
information by investors and traders. It also looks at the trading horizon as an im-
portant dimension when analysing the distribution of stock returns, and the interaction
between the investors and traders with di�erent investment horizons. Today, it is gen-
erally recognized that returns are not normally distributed [1,5–10]. The distribution
of security returns are leptokurtic, meaning that the empirical distribution is higher
around the mean and has fatter tails than predicted by the normal distribution. In
Fig. 2, a plot of the empirical distribution of daily Dow–Jones Industrial Index of one
day changes in the logarithm of prices for the period 1962 through 1993 is compared
to the normal distribution with the same variance. The �gure clearly reveals the lep-
tokurtosis in the frequency distribution. The non-normal shape of the distribution is
not peculiar to only the Dow–Jones series, but is, in fact, the case for most �nancial
time series [5,7,11–13]. From Fig. 2, we see an indication that markets do not follow
a random walk. Such fat-tailed distributions are normally attributed to long “memory”
e�ects generated by a non-linear stochastic process which both exhibit periods of sta-
bility as well as sudden large movements on all time horizons. If this is the case, we
may be over- or understating our risk and return potential on all trading horizons by
using the current model framework.
Now, if we look more closely at the empirical versus the theoretical distribution, we

see that theory predicts that the probability of a larger than three-sigma event is 0.3%.
However, if we look at the empirical distribution based on actual data, the probability
of such an event occurring (positive or negative) is about 1.5%. Thus, standard theory
fails by a factor of �ve! This discrepancy increases even more if we look at the
probability of a larger than four-sigma event occurring. Theory predicts that this will
occur on average with a probability of 0.0064%, while empirically it seems to be a
probability of 0.66% of such an event to occur, or more than 100 times the probability
estimated theoretically. This di�erence in the theoretical and empirical probability of
large events occurring can be seen from Fig. 3 where the tails of the normal and
empirical distributions are compared.
It therefore seems that events that theoretically should not occur, actually occurs

relatively quite “often”. From this we can see that stock market returns are not
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Fig. 2. (a) The empirical distribution for the daily returns for the Dow–Jones Industrial Average (DJIA)
during the period 1962–1993 compared to the Gaussian normal distribution. (b) The same distribution as in
(a), but in logarithmic probabilities to amplify the wings of the distributions.

normally distributed. In fact, they are not even approximately normally distributed as
Osbourne assumed in his famous 1964 article [4]. The consequences of this are then
that much statistical analysis, particularly diagnostics such as correlation coe�cients
and t-statistics, is seriously weakened and may give misleading results.
The underlying reasons for this leptokurtosis have been widely discussed as well as

whether the random-walk theory is applicable or not. The most common explanation
for the fat tails and high peak at the mean is that information shows up in infrequent
clusters rather than in a smooth and continuous fashion. When information arrives in
the market in such a fashion, there are periods of low and high volatility, which gives
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Fig. 3. The di�erence between the normal distribution and the empirical frequency distribution of returns
for the Dow–Jones Ind. Average when we examine the accumulated probability of returns being larger than
di�erent standard deviations (both positive and negative).

rise to relatively high values of the probability densities both in the centre and the tails.
Thus, because the distribution of information is leptokurtic, the distribution of price
changes is leptokurtic as well. The most direct argument against the random-walk model
is based on plain observations of actual data. Stock prices need not to be continuous and
they are in fact conspicuously discontinuous due to periods of low uctuations which
are interrupted by periods of turbulent burst; such a behaviour is often referred to as
intermittency [12,14]. In contrast, Brownian motion, which is the basis for the random
walk and martingale models, is a continuous process. There is no reason whatsoever
to expect that a natural phenomenon like Brownian motion, governed by Newtonian
physics should apply to economics. The e�ects of the actions of economists, investors,
speculators and politicians on stock prices are simply not governed by the laws of
physics. People have a free will to inuence outcomes. This is incompatible with the
“passive” evolution of natural phenomena described by, e.g. the Brownian motion. The
random-walk model may at best be characterized as being able to catch some features
of actual economic data, but fails per de�nition miserably in perhaps the most important
aspect in economics; for having some predictive possibility.
The fact that prices, returns, etc. are discontinuous, hardly seems to contain any

predictive ability in itself. But, as we shall see, it has the e�ect of forcing us to look
at these phenomena with completely new eyes. In so doing, the new “weapons” we
have to choose, in fact reveals new features and even new predictive powers. The
new models may still not be “perfect”, but will be much better than the random-walk
model.
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Mandelbrot [6,12] suggested in 1964 that the price movements follow a family of
distributions called Stable Paretian. These types of distributions have high peaks at the
mean and fat tails, much like the observed behaviour of stock price movements (ref.
Fig. 5). However, for these distributions, variance is in�nite or unde�ned, something
which mostly is found intuitively and practically unacceptable by economists. On the
other hand, phenomena governed by non-linear behaviour were notoriously di�cult to
handle until the chaos theory and fractals came into the picture. This is a completely
new paradigm in economics, which was started in the physical sciences several decades
ago, and is now beginning to be applied to �nance and economics. The theoretical
background for this emerging science and applications to �nance and economics will
be explained in the next part.

2. Chaos theory and fractals in �nance

2.1. Fractal time-series

The fractal dimension of an object, such as the Sierpinski triangle and the Cantor
set [15], says something about the extent to which the object �lls space. On the other
hand, the fractal dimension of a time series measures how jagged the time series is
and how it scales statistically in time. A characteristic feature of �nancial price records
like that shown in Fig. 4, is that it is virtually impossible to distinguish a daily price
record from a monthly price record when the axes are not labeled.
This apparent statistical self-similarity seen in Fig. 4 is qualitatively similar to that

found in ordinary Brownian motion. Di�erent time series can be classi�ed quantitatively
by looking at their fractal dimension. If a time series has a fractal dimension Df = 1
it is a smooth line. A time series with Df = 1:5 is a random walk since it scales
with the square-root of time, see Eq. (3). There is a 50=50 chance of prices rising
or falling. However, for a time series with 1¡Df¡ 1:5, the curve is smoother than

Fig. 4. A 100-day daily price record, a 100-week weekly price record and a 100-month monthly price record
of the Oslo-stock exchange general index. Due to the self-similar structure in the records, it is impossible to
say which is which without any labels on the axes. Test yourself before you check for the correct labeling.
(a) is weekly records, (b) is daily records and (c) is monthly records.
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that for a random walk, but more jagged than a straight line. This means that the
underlying process is somewhere between deterministic (a smooth line with Df = 1)
or totally unpredictable (a random walk with Df=1:5). Furthermore, if 1:5¡Df¡ 2,
the process has more reversals (is more jagged) than a random walk would imply. The
important point to note is that a time series with a fractal dimension di�erent from 1.5
would also possess non-Gaussian statistics. Thus, by using fractal geometry we have a
way of determining quantitatively the extent to which a time series deviates from a pure
Brownian motion. This in turn is a measure for a long “memory” e�ect di�erent from
memory processes that have been proposed for �nancial time series such as, e.g. ARCH
and GARCH models [16,17], which do not take into account the scaling property of
the process. This memory e�ect thus reveals itself with a power-law behaviour di�erent
from that of a random walk.
The most widely studied function in economics is probably the Brownian motion

function discussed earlier. Let us now return to this process and take a closer look at
the particle moving in the plane shown in Fig. 2. If we zoom in on the trajectory in
this �gure and increase the time resolution by reducing the time steps �t, we will see a
statistically, self-similar random walk. In Fig. 4a, we have plotted the particle trajectory
in Fig. 2 in the x-direction versus time. The time axis is therefore included as an
extra dimension. This time record here is said to be self-a�ne rather than self-similar.
The distinction between these two notations will be discussed in the following. The
displacement rt in Fig. 4b is de�ned as a stochastic variable with zero mean, 〈rt〉=0,
where the angle brackets 〈 〉 denote the mean value of the enclosed quantity, and a
variance of,

〈r2t 〉˙ t : (3)

In order to have the time record in Fig. 4b look “the same” under a change of resolution
we must have what is called scale invariance. It may be shown [15] that the Brownian
random process is invariant in distribution under a transformation that changes the time
scale by a factor b and the length scale by a factor b0:5. This means that we observe the
particle position only at intervals b� where � is the time step and b is some arbitrary
number. To get a time record that “looks the same” as that of Fig. 4b, the length
scale has to be multiplied by b0:5 i.e., rt→ rt ·b0:5. A “side-by-side comparison” of two
self-a�ne curves with b= 4 is shown in Fig. 5.
The fractional Brownian motion (FBM) [5,7,12,15] is an extension of the concept

of the usual Brownian motion discussed so far. The return, rt , for such a non-normal
process in one dimension is, by de�nition, a stochastic variable with zero average and
with variance,

〈r2t 〉˙ t2Df : (4)

Here, Df is the fractal dimension of the time trace. We see that a special case of the
fractional Brownian motion is the normal Brownian motion when Df = 1:5, because
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Fig. 5. Two self-a�ne curves of a Brownian motion process. We cannot expect rt and t to scale by the
same ratio. The concept of self-a�nity is therefore important when analysing time series. When scaling up
rt by a factor of two we need to scale the time index, t, by a factor of 4 to preserve the relationship of rt
scaling by t0:5 for a Brownian motion.

then Eq. (4) is equal to Eq. (3) and we have normal scaling behaviour. When we
have a fractal dimension between 1.5 and 2 the time series is said to be antipersistent.
If the fractal dimension is between 1 and 1.5 the time series is said to be persistent.
Examples of simulations of fractional Brownian motion series are shown in Fig. 6. We
see that for the persistent series in Fig. 6 (1a), positive changes are more likely to
be followed by positive changes and vice versa. The time series is smoother and less
jagged than in 1b and 1c which has a higher fractal dimension. There is less noise in
the system and the “trends” are more pronounced as Df gets smaller. By increasing the
fractal dimension in the simulation, we see that the time series becomes more jagged.
Thus, the fractal dimension of a time series measures how smooth or deterministic the
time series is. A perfectly deterministic system would produce a smooth curve with
Df = 1, and a purely random system has a Df = 1:5. Thus, if we have a persistent
time series, the system is somewhere between a purely deterministic and completely
random system.
One method used to estimate the fractal dimension of a time series is called the

Rescaled Range Analysis or R=S analysis [11]. This is one of several methods that
will be used in this paper to examine the fractal structure of the Norwegian stock market
and the US market. The model framework and a detailed explanation and discussion
of the R=S analysis will be presented in Section 3.
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Fig. 6. Examples of simulated fractional Brownian motion time series for di�erent fractal dimensions Df as
discussed in the text. In 1a we have a persistent time series with a fractal dimension of Df = 1:3. In 1b
we have a random walk with Df = 1:5, and in 1c we have an antipersistent time series with Df = 1:7. The
corresponding returns are shown in graphs 2a, 2b and 2c.

2.2. Chaos and �nancial economics

In economics and capital market theory, researchers have long used the “Newto-
nian” assumption that a system when left alone tends to equilibrium. Thus, when
modelling the capital market and currency market it has been modelled as being nat-
urally at equilibrium unless perturbed by an exogenous shock. In other words, there
is a natural balance between supply and demand of stocks or currencies, unless an
exogenous shock changes the supply and=or demand, which will cause the system to
seek a new equilibrium and stabilize itself if no further information is added to the
system. The emerging, and new capital market paradigm treats the markets as com-
plex, interdependent systems where the state of the system is continually uctuating,
with no natural equilibrium state. The market has long-term correlations and trends
due to feedback e�ects, and can be more or less erratic under certain conditions,
conditioned upon earlier events. The e�cient market hypothesis [3,18] has one pri-
mary goal; to justify the use of probability calculus in analyzing capital markets. If
markets are non-linear dynamic systems, then the use of standard statistical analysis
can give misleading results. This is particularly true if a random-walk or martingale
model is used, which is often the case. Some characteristic features one would expect
for non-random, non-linear behaviour are: long-term correlations and trends (feedback
e�ects=memory e�ects), erratic markets under certain conditions and certain times
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(volatility clustering), the series may have self-similar and self-a�ne characteristics, a
fractal structure and less reliable forecasts due to the sensitivity of such a system on
initial conditions.

3. Model framework

In this part we will review the two independent models used in this paper to inves-
tigate the possible fractal structure of the Norwegian and American stock markets. The
�rst model uses the rescaled range analysis to estimate the fractal dimension and the
degree of persistence or anti-persistence of a time series. This can be used to see how
the time-series under study di�ers from the normal-Gaussian alternative. The second
model looks more at the scaling behaviour of the distribution of returns for di�erent
time horizons and is here called the distributional scaling approach, which was �rst
proposed by Mandelbrot [6,12].

3.1. Rescaled Range Analysis (R=S analysis)

3.1.1. Background
The rescaled range analysis or R=S analysis, was developed by Hurst [11,15], a

hydrologist who worked on the problem of reservoir control on the Nile River dam
project around 1907. His problem was to determine the ideal design of a reservoir based
upon the given record of observed river discharges. An ideal reservoir never empties or
overows. In constructing the model, it was common to assume that the uncontrollable
part of the system, which in this case was the inux due to rainfall, followed a random
walk due to the many degrees of freedom in the weather. When Hurst examined this
assumption he gave us a new statistical measure, the Hurst exponent (H). As we will
see, it is also closely connected to the fractal dimension discussed above. His statistical
method is very robust and has few underlying assumptions. The Hurst statistics can
be used to classify time series into random or non-random series. The analysis is
very robust with respect to the underlying distribution of the process. As noted by
Mandelbrot and Wallis [19], even extremely non-Gaussian independent processes which
have a log-normal, hyperbolic or gamma distribution will give an H = 0:5. Using R=S
analysis one also �nds the average non-periodic cycle, if there is any, and the degree
of persistence in trends due to long “memory” e�ects.
Standard Gaussian statistics works best under very restrictive assumptions. The events

measured must be independent and identically distributed (IID). Thus, events must not
inuence one another, and they must all be equally likely to occur. The normality or
near-normality assumption is often made when analysing and describing large complex
systems with very many degrees of freedom so that standard statistical analysis can be
applied. However, if the system is not IID, we need a non-parametric method. Such a
method is the R=S analysis.
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3.1.2. The R=S methodology
The main idea behind using the R=S analysis for our purpose is that one looks at the

scaling behaviour of the rescaled cumulative deviations from the mean, or the distance
the system travels as a function of time. This is compared to the null-hypothesis of a
random walk. As mentioned before, for an independent system, the distance covered
increases, on average, by the square-root of time. If the system covers a larger distance
than this, it cannot be independent by de�nition, and the changes must be inuencing
each other; they have to be correlated. Although there may be autoregressive (AR)
processes present that can cause short-term correlations, we will see that when adjust-
ing for such short-term correlations (serial correlations), there may be other forms of
memory e�ects present which need to be examined. Next, the steps needed to do the
analysis is reviewed.
We �rst start with a time series in prices of length M . This time series is then

converted into a time series of logarithmic ratios or returns of length N =M − 1 such
that

Ni = log
(
Mi+1
Mi

)
; i = 1; 2; : : : ; (M − 1) : (5)

Divide this time period into A contiguous sub-periods of length n, such that A · n=N .
Each sub-period is labelled Ia, with a=1; 2; : : : ; A. Then, each element in Ia is labelled
Nk;a such that k=1; 2; : : : ; n. For each sub-period Ia of length n the average is calculated
as

ea =
1
n

n∑
k=1

Nk;a : (6)

Thus, ea is the average value of the Ni contained in sub-period Ia of length n. Then,
we calculate the time series of accumulated departures from the mean (Xk;a) for each
sub-period Ia, de�ned as

Xk;a =
k∑
i=1

(Ni;a − ea); k = 1; 2; : : : ; n : (7)

As can be seen from Eq. (7), the series of accumulated departures from the mean
always will end up with zero. Now, the range that the time series covers relative to
the mean within each sub-period is de�ned as

RIa =max(Xk;a)−min(Xk;a); 1¡k¡n : (8)

The next step is to calculate the standard deviation for each sub-period Ia,

SIa =

√√√√1
n

n∑
k=1

(Nk;a − e2a) : (9)

Then, the range for each sub-period (RIa) is rescaled=normalized by the corresponding
standard deviation (SIa). Recall that we had A contiguous sub-periods of length n. Thus,
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the average R=S value for length or “box” n is

(R=S)n =
1
A

A∑
a=1

(
RIa
SIa

)
: (10)

Now, the calculations from Eq. (5) to Eq. (10) must be repeated for di�erent time
horizons. This is achieved by successively increasing n and repeating the calculations
until we have covered all integer n’s. One can say that R=S analysis is a special form
of “box-counting” for time series. However, the method was developed long before the
concepts of fractals.
After having calculated R=S values for a large range of di�erent time-horizons n, we

plot log(R=S)n against log(n). By performing a least-squares regression with log(R=S)n
as the dependent variable and log(n) as the independent one, we �nd the slope of the
regression which is the estimate of the Hurst exponent (H). The relationship between
the fractal dimension Df discussed earlier and the Hurst exponent (H) can be expressed
as [7]

Df = 2− H : (11)

3.1.3. Interpreting the Hurst exponent
According to theory, H = 0:5 means that the time series is independent, but as

mentioned above the process need not be Gaussian. If H =0:5, the process may in fact
be a non-Gaussian process as e.g. the Student-t or gamma. If H ∈ 〈0:5; 1:0] it implies
that the time series is persistent which is characterized by long “memory” e�ects on
all time scales. I.e., all daily price changes are correlated with all future daily price
changes; all weekly price changes are correlated with all future weekly price changes
and so on. This is one of the key characteristics of fractal time series as discussed
earlier. It is also a main characteristic of non-linear dynamic systems that there is
a sensitivity to initial conditions which implies that such a system in theory would
have an in�nite memory. The persistence implies that if the series has been up or
down in the last period then the chances are that it will continue to be up or down,
respectively, in the next period. This behaviour is also independent of the time scale we
are looking at. The strength of the trend-reinforcing behaviour, or persistence, increases
as H approaches 1.0. This impact of the present on the future can be expressed as a
correlation function (C),

C = 2(2H−1) − 1 : (12)

In the case of H=0:5 the correlation C equals zero, and the time series is uncorrelated.
However, if H = 1:0 we see that C = 1, indicating perfect positive correlation. On the
other hand, when H ∈ [0; 0:5〉 we have antipersistence. This means that whenever the
time series have been up in the last period, it is more likely that it will be down in
the next period. Thus, an antipersistent time series will be more choppier than a pure
random walk with H = 0:5.
As mentioned above, the R=S analysis can also uncover average non-periodic cycles

in the system under study. If there is a long “memory” process at work, for a natural
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system this memory is often �nite, even though long “memory” processes theoretically
are supposed to last forever, as was the case for mathematical fractals and the logistic
map. When the long-term memory is lost, or the memory of the initial conditions has
vanished, the system begins to follow a random walk; this is also called the crossover
point. Thus, a crucial point in the estimation of the Hurst exponent is to use the
proper range for which there is non-normal scaling behaviour. This is the range for
which the scaling behaviour is “linear” in the log(R=S)n versus log(n) plot. If there is
a crossover-point, this can be seen as a “break” in the plot where the slope changes
for a certain value, log(nmax). If this is the case, it is an indication of a non-periodic
cycle with average cycle length equal to nmax.

3.1.4. Weaknesses with the method
The Scaling Range and small sample sizes. Persistent time series, with 0:5¡H61:0,

are fractal in the sense that they can be represented as fractional Brownian motions
(FBM). In a fractional Brownian motion there is a correlation between events across
time scales, as described by Eq. (12). However, as n gets very large it is expected
that the series will converge to the value H = 0:5, because the memory e�ect will
diminish to a point where it becomes unmeasurable. The regression to estimate the
Hurst exponent should therefore be performed on the data prior to the convergence of
H to 0.5, which we called the crossover point, in the discussion above. There is also
a lower cuto� limit nmin for n below which the data are not useful in the regression
analysis. As a rule of thumb this is the case for nmin = 10. The reason for this is
that small values of n produce unstable estimates when sample sizes are small. This
is often the case for �nancial data sets. In order to get a well-de�ned Hurst exponent,
it is therefore important to establish the proper scaling range nmin¡n¡nmax before
running the regression.
Short-term dependencies in the data. Another weakness with the R=S-analysis method

is that it is sensitive to short-term dependencies, which can bias our estimate of H .
Financial time series of high frequency (daily or more frequent observations) gen-
erally exhibit signi�cant autoregressive tendencies. This is due to the fact that the
high-frequency data are primarily trading data, and traders do inuence each other.
Thus, an empirical investigation of long-term “memory” e�ects in stock returns must
�rst take into account the presence of high-frequency autocorrelations [7,16,20]. When
doing the R=S analysis it is therefore important to try to eliminate or, at least min-
imize, such linear dependencies, since it can bias the Hurst exponent and classify a
process as having a long-term “memory” when it is, in reality, a short-term “memory”
e�ect. By taking the AR(1) residuals we minimize the bias, a method which is called
detrending or prewhithening, used by Peters [7] and Lo [20]. This will eliminate, or at
least reduce, serial correlation as well as inationary growth. The former is a problem
with very high-frequency data while the latter is a problem when we are dealing with
low-frequency data. However, for R=S analysis the short-memory process is more of a
problem than the inationary growth problem [7]. To do a detrending we begin with
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a series of logarithmic returns,

St = log
(
Pt
Pt−1

)
; (13)

where St is the logarithmic return at time t, Pt the price at time t.
Now, St is regressed as the dependent variable against St−1 as the independent

variable. We then obtain the intercept, a, and slope, b. Then the AR(1) residual of St
subtracts out the dependence of St on St−1,

Xt = St − (a+ b · St−1) : (14)

Here; Xt = the AR(1) residual of S at time t.
Now, the R=S analysis is done according to the procedure outlined above in

Eqs. (5)–(10), except that we use Xt which has been adjusted for AR(1) residuals
as returns and start with Eq. (6) instead of Eq. (5). This procedure is taken from
Peters [7].

3.1.5. Examples of the method
Below we shall show some examples of how to estimate the Hurst exponent on a

few simulated fractional Brownian motion processes as well as a pure random walk. By
constructing a series of Gaussian random numbers it is possible to see if the rescaled
range analysis gives a satisfactory result with H = 0:5. In the example below, a series
of 8000 pseudorandom numbers was constructed in Mathcad, and then an R=S analysis
was performed on the series. In Fig. 7 a log=log plot of the results is shown. As may
be seen, the simulated results are well described by the linear regression form n¿ 20
with a Hurst exponent H = 0:515 which is slightly higher than the theoretical value

Fig. 7. R=S as a function of time lag n for a series consisting of 8000 random Gaussian numbers. The solid
line is the �tted curve R=Sn = anH for n¿ 20 (log(n)¿ 1:3) with H = 0:516 and intercept a = 0:0178.
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Fig. 8. A simulated fractal Brownian function BH with H =0:7 and a long memory of M =200 observations
and n = 5.

H = 0:5. For n¡ 20, the simulated results fall signi�cantly below the linear �t. That
such deviations could be expected was already pointed out by Mandelbrot and Wallis
[19]. We shall return to this point later in Section 3.1.6 where the “power” of the R=S
analysis is reviewed.
We shall now turn to the Mandelbrot and Van Ness [21] method, it is possible to

simulate a fractional Brownian motion and thus approximate a long memory process.
In this example we take 8000 Gaussian random numbers and convert them into 1400
fractional Brownian numbers shown in Fig. 8. Each biased increment is made up of
n = 5 random numbers and has a memory of the last 200 biased random numbers.
A relatively short memory of M = 200 is selected because of the huge increase in
computation time by choosing a longer memory.
In Fig. 9 we have performed an R=S analysis of the data in Fig. 8 and we obtain

H = 0:65 for 4¡n¡ 200. This is somewhat lower than the theoretical H = 0:7, and
may be due to the limited set of only 1400 observations. The estimate would probably
improve if a larger amount of data had been used, but due to the huge increase in
computation time required for simulating a larger data set, this has not been attempted.
The present example serves its purpose as an illustration. From Fig. 9 we see that there
is a “break” in the plot at about log(n)=2:3, or 200. This is exactly the long memory
e�ect of M = 200 which was used in the simulation. When log(n)¿ 2:3, the slope of
the log=log plot drops to H = 0:51, which means that there is no measurable memory
e�ect left and the series starts to follow a random walk.

3.1.6. The “power” of the R=S analysis
To evaluate the signi�cance of the R=S analysis results, a con�dence test is needed.

Such a con�dence test has been developed by Peters [7] on the basis of Monte Carlo
simulations and previously developed asymptotic theory. For small values of n the
R=S will scale at a faster rate than H = 0:5 which is the expected scaling rate for an
independent series, see Fig. 7. This is due to the fact that for small n the standard
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Fig. 9. log(R=S) as a function of log(n) for the fractal Brownian function BH (n) with H = 0:7. The solid
line for n¡ 200 is a linear �t to R=S = anH with H =0:65 and intercept a=−0:228. The asymptotic �t for
n¿ 200 produces H = 0:51 and a= 0:061. The break in the plot at n= 200 is clearly seen. Thus, the long
time memory e�ect of M = 200 has been captured by the R=S-analysis.

deviation will scale at a relatively slower rate than the range [19] as de�ned in
Eqs. (8) and (10). Mandelbrot and Wallis referred to the range of small n as “transient”
because n was not large enough for the proper behaviour to be seen. They pointed out
that the R=S analysis tends to overestimate H for H ¡ 0:72 and underestimate H for
H ¿ 0:72.
Thus, when assessing the signi�cance of our �ndings it is important to have a correct

measure of the random null hypothesis for all n which takes into account this bias.
In 1976 Anis and Lloyd [22] developed an equation for calculating the expected R=S
values which took this bias into account. By simulating a huge amount of scrambled
pseudo random numbers 300 times and calculating the average R=S values for all n,
it is possible to approximate the true behaviour of the R=S-analysis for a Gaussian
random walk. For small n, the expected R=S values will scale at a faster rate than
H = 0:5 as was seen in Fig. 7, but converge asymptotically to H = 0:5 as n goes to
in�nity. The expected R=S values can be expressed as [7]

E(R=S)n =
[(
n− 0:5
n

)(
n
�
2

)]−0:5 n−1∑
r=1

√
n−r
r : (15)

By using Eq. (15) we can now generate expected values of the Hurst exponent by
taking a regression of E(R=S) for the same range of n as for our empirical R=S values.
Because the R=S values are normally distributed random variables we would also expect
that the values of H are normally distributed with expected variance 1=T , where T is
the total number of observations in the sample. This has been thoroughly tested by
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Peters [7] and has been shown to be a good approximation. Thus, by using Eq. (15)
as the null hypothesis of a random walk, we can determine the signi�cance of the
results we get. This is done by calculating how many standard deviations away from
the null hypothesis E(H) the empirical Hurst exponent H is through the expression

�H =
H − E(H)√

1=T
: (16)

Next, there will be a review of the second model which extends the scaling to the
entire distribution of returns.

3.2. L�evy stable distributions (Fractal distributions)

The R=S analysis discussed in the previous section is the simplest quantitative mea-
sure of the scaling behaviour and self-similarity of a time series. A stronger form of
self-similarity is obtained when we look at not only the scaling of the rescaled range
(R=S), but also the scaling property of the full distributions of returns for di�erent time
intervals or lags �t. And then probe whether these distributions scale at a rate similar
to those found by using the R=S-method. This additional analysis will be important to
complement the R=S-method. By looking at fractal distributions and fractal statistics we
are not only able to examine the characteristics of the process, but also the statistics
which is a very important aspect in �nancial economics. If we �nd a Hurst exponent
signi�cantly larger than 0.5 this can be due to either long-tailed distributions of returns,
or due to long-range positive correlations, or a combination of both. In other words,
since H ¿ 0:5 indicates that the mean absolute deviations increases at a faster rate than
what is expected for the Gaussian case, we must have that there are both large jumps
in the series and persistence such that the series is “forced” to travel a larger distance
than a random walk would imply.
As was seen in Figs. 5 and 6 there was a clear leptokurtosis in the daily returns of the

Dow–Jones industrial average index (DJIA), with longer tails and higher mean than the
normal distribution. Standard �nancial models assume that investors are risk averse, and
the amount of risk that the investors take on is reected by the distribution of returns.
Thus, if an investor assumes that the returns are drawn from a normal distribution, the
risk taken on by holding a portfolio for which the returns are drawn from a leptokurtic
distribution is likely to be much higher than expected. Option pricing models, like
the Black–Scholes model [23,24], are heavily based on the Gaussian assumption. In
particular, the shape of the Gaussian normal distribution and the scaling exponent
H =0:5 are used. The distributional self-similarity approach that will be discussed here
could be used for e.g. in more realistic option pricing models.

3.2.1. Stable distributions= fractal distributions
The basic question of fractals is: when does the whole look like its parts? The

French mathematician Paul L�evy asked himself: when does the probability PN (X ) for
the sum of N steps X = X1 + X2 + · · ·+ XN have the same distribution p(x) up to a
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scale factor as the individual steps, or when do we have distributional self-similarity.
Usually, the standard answer is that the p(x) should be a Gaussian since the sum of
N Gaussian numbers is again Gaussian, but with N times the variance of the original.
However, L�evy proposed a more general approach with the Gaussian as only a special
case. The representation of the L�evy stable distribution which will be used here is [10]

L�(Z;�t) ≡ 1
�

∫ ∞

0
exp(−�tq�) cos(qZ) dq ; (17)

where � is the characteristic exponent (fractal dimension of the probability space)
0¡�62; Z the return,  the scale factor, and �t the time interval.
The L�evy stable distribution rescales under the following transformations:

ZS ≡ Z�t
(�t)1=�

(18)

and

L�(ZS; 1) ≡ L�(Z;�t)
(�t)−1=�

: (19)

Thus, it is expected that the rescaled empirical distributions for di�erent �t will col-
lapse on the �t = 1 distribution due to the normalization when we use Eqs. (18) and
(19) and �, which may be estimated indirectly through R=S analysis. Our objective
will be to compare the empirical distributions with the theoretical L�evy distribution in
Eq. (17), and see if the L�evy distribution is a good description of the data.
The exponent � characterizes how “peaked” and “fat-tailed” the distribution is. If

� = 2:0 the distribution is Gaussian, and we have a �nite second moment. On the
other extreme with � = 1 we have the Cauchy distribution with both unde�ned �rst
and second moments. For both these cases the parameter values can be de�ned in
terms of closed-form mathematical expressions and they are special cases of the stable
L�evy distribution. In the region for which 1:0¡�¡ 2:0; the second moment becomes
in�nite or unde�ned, but with a stable mean. There are no closed-form mathematical
solutions for this case, only numerical ones found using computers [6,7]. We expect to
�nd an � within this region for the Norwegian stock market, but with a new technique
described below it is possible to determine the parameters required in a rather simple
and straightforward fashion.
The concept of in�nite or unde�ned variance is something which normally is an

unappealing property for �nancial economics since this creates problems when one
attempts to determine risk. The concept of in�nite variance has thus been the main
critique for applying stable distributions to �nancial models. Despite this, the stable
L�evy distributions have a number of nice features that reect important aspects of the
observed market behaviour, as we will see later in this paper.
The fractal dimension of the probability space, �, used in Eqs. (17)–(19) is related

to the Hurst exponent of the time series in the following way:

�=
1
H
: (20)
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The Hurst exponent H is thus a measure of the fractal dimension of the time trace
through Eq. (11), while � characterizes the statistical self-similarity of the probability
space.

3.2.2. Determination of �
Fama [25] and Mandelbrot [6,12] describe a number of di�erent ways to measure

�. These methods mainly investigate the tails of the distributions, which is di�cult
especially because larger values of �t imply a reduced number of data and thus makes
the estimates unreliable. There are also some more robust ways of estimating �, where
the most obvious one is by using R=S analysis due to the relationship between � and the
Hurst exponent shown in Eq. (20). It now appears that R=S analysis o�ers the most
reliable method for calculating �. Another method recently proposed by Mantegna
and Stanley [10] proves also to be a reliable method. In this paper both of these
methods will be applied to determine whether there are scaling relationships that can
be established in the stock market, and if there is consistency between the fractal
dimension for the time trace and the distributions of returns as expressed through
Eq. (20). Since the R=S method has already been described in Section 3.1, we will
only discuss the Mantegna=Stanley [10] method here. The method is straightforward,
but is very data intensive. First, one selects from a data set, the complete set of
non-overlapping records separated by a time interval �t. The values of the prices are
denoted as P(t) while the successive variations Z(�t) are denoted as

Z(�t) ≡ P(t)− P(t −�t) : (21)

We can now determine the probability distributions Pr(Z) of price variations for dif-
ferent values of �t. The empirical probability distributions are calculated by using
relative frequencies. This is done by counting the number of returns falling within
di�erent ranges of Z(�t) and dividing by the total number of data in the sample. This
ensures that both axioms of probability are satis�ed. Since Eq. (21) implies that large
�t imply a reduced number of data, especially when investigating the wings of the dis-
tributions which is the traditional method, Mantegna and Stanley use another approach.
They study the scaling behaviour of the “probability of zero return”, Pr[Z(�t)=0], as
a function of �t. This is chosen because we then estimate the point of each probability
distribution that is least a�ected by the �niteness of the data set. If Pr[Z(�t) = 0] is
plotted against �t in a log=log plot, the slope will show if we have a normal or a
non-normal scaling behaviour depending on whether the slope (�) is equal to �=−0:5
or not. This slope is also related statistically to the Hurst exponent through

H =−� : (22)

Thus, by combining Eqs. (20) and (22), � can be determined as follows:

�=
1
−� : (23)

To summarize, if we have a normal scaling behaviour with H = 0:5 or � =−0:5, the
fractal dimension of the probability space is � = 2, and we have the special case of
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Fig. 10. Left: The normal distribution with mean 0 and standard deviation equal to 1, compared to the L�evy
stable distribution with � = 2:0 and standard deviation of 1. Right: The same distributions in a logarithmic
plot.

Fig. 11. Left: The normal distribution with zero mean and standard deviation equal to 1, compared to
the L�evy distribution with � = 1:4286 (corresponding to H = 0:7). Right: The same comparison, but in a
logarithmic plot to enhance the tails.

the Gaussian normal distribution with �nite variance. Fig. 10 shows that the normal
distribution and the L�evy distribution indeed are the same for this case. On the other
hand, if we have non-normal scaling behaviour with H 6= 0:5 and thus � 6= −0:5,
the second moment of the distribution becomes in�nite and the leptokurtosis in the
distribution increases. Fig. 11 shows a L�evy distribution with � = 1:4286 (H = 0:7)
compared to the normal distribution. The fatter tails and higher probability around the
mean (leptokurtosis) are clearly seen.

3.2.3. L�evy distributions and observed market behaviour
Self-Similarity. One important property of stable L�evy distributions is that they

are self-similar. This means that the probabilities of return are the same for all time



J.A. Skjeltorp / Physica A 283 (2000) 486–528 509

frames once we adjust for the time scale. This self-similar property is why stable
L�evy distributions often are referred to as fractal distributions. This means that a trader
with a 1 min time frame (noise trader) faces the same risk as a 100 min trader or a
1000 min trader in his time frame when adjusted for scale. For example, if a 100 min
trader faces a 4 standard deviation event in his time frame it may be a disaster for
him. However, this is of far less importance in absolute returns for a 1000 min trader
if this had happened to him in his time frame. The characteristic exponent, �, takes
this scaling relationship into account.
Discontinuities. As mentioned before, in a “Gaussian market” there cannot be any

large price jumps or discontinuities since a Gaussian process is everywhere continuous 2

and di�erentiable. This is not the case for a fractal process like the fractional Brownian
motion or L�evy processes, for which such discontinuities are allowed features. When
looking at how the market behaves on all time scales, it is not uncommon to have
large price jumps which might be due to fears of capital or opportunity loss. In fact,
such jumps seem to appear relatively often; and surely more often than “never”. The
market prices, are, in general, characterized by calm periods followed by sharp breaks
and discontinuities. It is therefore not satisfactory to look at them as anomalies which
should never occur and keep them out of the model. Instead, one should make them a
part of the model framework for better or for worse.
The Truncated L�evy distribution. A very promising approach with respect to its ap-

plication to mathematical �nance [24], is the truncated L�evy distribution [1,26,27]. The
truncated L�evy distribution (TLD) takes into account the slow convergence towards a
Gaussian process as the time horizon (�t) increases. Compared to the L�evy distribu-
tion which has an in�nite second moment, the TLD has �nite variance and it scales
in a �nite interval. For �nancial time series, this seems to be a good approximation,
since there seems to be a convergence to a Gaussian regime for long horizons [28].
Due to its �nite variance property, as well as scaling characteristics, the TLD has been
an attractive candidate for option pricing models [29,30]. However, one limitation of
the TLD is that it does not describe the time-dependent volatility observed in �nancial
market data.

4. Results from the R
/
S analysis

4.1. The Data

4.1.1. The Oslo stock exchange general index (TOTX)
The �rst data set 3 that will be analysed here is the daily closing prices of the

total-index at Oslo stock exchange (OSE) for 13 years of data ranging from 1983 to
1995, or a total of 3190 observations. This index is a weighted average of the stock

2 The Gaussian assumption is used under the general heading of continuous-time �nance where option pricing
is one example.
3 The data was obtained from associate professor Bernt Idegaard at Norwegian School of Management (BI).
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Fig. 12. Daily observations of the OSE general index for the period 1983 to 1995, or 3190 daily closing
prices.

prices for all companies registered at OSE. Each stock’s weight is calculated as the
fraction of the total value of the stock to the total value of all the companies at the stock
exchange. 4 The data set only contains trading days and not holidays and weekends.
This means that �ve-day returns may not necessarily need to be for a Monday-to-Friday
week, but �ve consecutive trading days. Therefore, when we talk about 30-day returns
this is not “monthly” returns, but rather 30 trading days. A plot of the daily closing
prices for the entire period is shown in Fig. 12.

4.1.2. The Dow–Jones Industrial Average (DJIA)
The second data set that will be examined is the daily closing prices of the Dow–

Jones industrial average for the period 1962–1993, or 31 years of daily data. 5 The
index itself consists of 30 large US stocks. The DJIA is not a “true” average as the
name indicates, but rather the price one has to pay to get hold of one of each of the
30 stocks, adjusted by a factor of about 0:346. As was the case for the OSE series,
weekends and holidays are also removed from this data set. A plot of the entire data
set is shown in Fig. 13.

4 State-owned companies only count 50% of their total value when their weights are calculated. These
companies are, e.g. DNB, Kreditkassen, Sydvaranger, Raufoss, Hydro.
5 The data was obtained from the Ohio State University database and consists of about 8000 observations.
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Fig. 13. Daily observations of the Dow–Jones Industrial Average for the period 1962 to 1993, about 8000
daily observations.

4.2. R=S -analysis of the OSE general index

4.2.1. Analysis results
By using the model framework described in Section 3, we are now able to exam-

ine whether the OSE general index behaves like a “pure” Brownian motion or not.
Fig. 14 shows the log=log plot of R=S values as a function of time lag n for one-day
returns of the OSE general index. Also plotted are the E(R=S) values excepted for a
Gaussian random-walk calculated by using Eq. (15) for the same range of n. As may
be seen there is clearly a systematic deviation between the empirical R=S curve and
the Gaussian random walk curve. However, there does not seem to be any “break” in
the plot indicating the absence of any non-periodic cycles in the data.
By performing a linear regression on the empirical R=S values versus n we get a

Hurst exponent equal to H =0:6064. When doing a similar regression for the expected
R=S values we �nd that the expected Hurst exponent is E(H) = 0:535. The regression
results are shown in Table 1, and we see from the table that the regression on the
empirical R=S data has an R2 = 0:99, which is a remarkably good �t.
To determine the signi�cance of the results, we �rst calculate the variance of the

expected Hurst exponent for Gaussian random variables. As discussed in Section 3.1.5
the variance of E(H) is 1=T , where T is the total number of observations. Thus, the
variance of E(H) is 0:0003134(1=3190), or a standard deviation of 0:0177. By using
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Fig. 14. R=S values as a function of time lag n for a series of daily returns of the OSE general index
covering the period 1983 to 1995. The dotted line is the �tted curve to R=S = anH with H = 0:6064. The
expected value of H is E(H) = 0:535 for the same range of n.

Table 1
Linear regression results from R=S analysis in Fig. 14, both for the empirical and expected R=S values for
the range 10¡n¡ 1550 or 1¡ log(n)¡ 3:2

OSE (daily) E(R=S)

Constant −0:1406 −0:0181
Slope (Hurst exponent) 0.6140 0.5351
Number of points 99 158
Fit range 10¡n¡ 1550 10¡n¡ 1550
Average X 2.1077 2.7740
Average Y 1.1539 1.4655
Regression sum of squares 15.1344 7.592
Residual sum of squares 0.0232 0.0069
Coe�. of determination, R2 0.9984 0.9991
Residual mean square 0.00024 0.000045
(�H ) std.dev. H ¿E(H) 4.50847

Eq. (16), the Hurst exponent for the OSE data is calculated to be about 4.51 standard
deviations above its expected value. This is a highly signi�cant result at the 95% level.
From the above analysis we see that the one-day changes in the prices of the OSE

general index are characterized by a persistent Hurst process with a Hurst exponent
H=0:614. This is signi�cantly di�erent from a random walk. Because the series consists
of AR(1) residuals achieved by using the prewhithening method described earlier, we
know that a true long-memory process is at work. However, since there is no apparent
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Fig. 15. Stability analysis of the Hurst exponent for the OSE general index data. The Hurst exponent is very
stable despite the changing economic conditions for the three periods.

“break” in the plot, the persistent scaling does not seem to have a time limit. This
means that there is no average cycle length in the data.

4.2.2. Stability analysis
An interesting point to examine, is the stability of the Hurst exponent for di�erent

time periods. The data set was therefore divided into three overlapping periods, and an
R=S analysis was performed on each of the data sets for comparison. The periods that
were chosen were 1983–1989 (1757 observations), 1985–1991 (1434 observations) and
1990–1995 (1752 observations). A log=log plot of the R=S values versus n for the three
data sets is shown in Fig. 15. We see that the three data sets follow approximately the
same scaling behaviour.
The linear regression results are shown in Table 2. We see that the Hurst exponent

varies slightly between H=0:604 and H=0:610. All three Hurst exponents lies about 2
standard deviations above the expected Hurst exponent of E(H)= 0:557, estimated for
the same range of n. This means that they all are signi�cant at the 95% level. Thus, the
Hurst exponent is remarkably stable for the three periods analysed here. This despite
the fact that the data sets cover periods of di�erent underlying economic conditions.
The data covering the period 1983–1989 include both the boom in the 1980s, due
to the liberalization of the Norwegian credit market, and the stock market crash in
1987. The data set for the period 1990–1995 contains both the Gulf crisis and the
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Table 2
Linear regression results from the stability analysis in Fig. 15 for three di�erent periods of the Oslo Stock
Exchange General Index

OSE: 1983–1989 OSE: 1985–1991 OSE: 1990–1995 E(R=S)

Constant −0:1304 −0:1174 −0:1140 −0:0659
Slope (Hurst exponent) 0.6061 0.6044 0.6102 0.5571
Number of points 80 80 81 29
Fit range (n) 10¡n¡ 800 10¡n¡ 800 10¡n¡ 800 10¡n¡ 800
Average X 1.9004 1.9004 1.8930 2.1811
Average Y 1.0214 1.0311 1.0187 1.1491
Regression sum of squares 7.7761 7.7319 8.1818 1.8139
Residual sum of squares 0.0351 0.0214 0.0249 0.0023
R-squared 0.9955 0.9972 0.9969 0.9987
Residual mean square 0.0004497 0.000274 0.0003154 0.0000846
(�H ) std.dev. H ¿E(H) 2.0547 1.9824 2.2279

steady positive developments of the Norwegian economy, while the data set covering
the period 1985–1991 includes both the crash of 1987 and the Gulf crisis.

4.2.3. Summary of the results
Clear evidence of persistence and non-random behaviour in the Norwegian stock

market is found. We obtain a Hurst exponent of H = 0:614 which is signi�cantly
higher than the expected Hurst exponent for the same range which is E(H) = 0:534.
On the other hand, there does not seem to be any “break” in the R=S plot in Fig. 15,
which indicates that there is no average cycle in the data set. The stability of the Hurst
exponent is remarkable for the three periods examined, despite the fact that they are
all taken from di�erent periods of a 13-year time span with quite di�erent underlying
economic conditions.

4.3. R=S -analysis of the Dow–Jones industrial average

4.3.1. Analysis results
The Dow–Jones industrial average (DJIA) data set covers a much longer time span

than the OSE series, and consists on average of much larger companies than the Nor-
wegian general index. It will therefore be interesting to see if there are any di�erences
between the R=S results for the two stock exchanges. There are two main features that
we can expect to �nd di�erent from the �rst data set. First, the average non-periodic
cycle should show up, if there is any, due to the fact that this is a much longer data
set. Second, the persistence could be less pronounced due to the large US market,
perhaps physiologically less vulnerable than the much smaller Norwegian market.
The results from the R=S analysis are shown in Fig. 16, where we can see that

the DJIA index has two scaling ranges divided by the vertical line segment at the
“breakpoint”. To the left of the vertical line the slope of the R=S values is obviously
higher than for the R=S values to the right of the vertical line. This indicates that
there is a non-periodic component in the time series with an average frequency of
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Fig. 16. R=S and E(R=S) values plotted against the time lag n for daily observations on the Dow–Jones
ind.average index for the period 1962–1993. The empirical R=S values follow two scaling regimes separated
by the vertical line.

Table 3
Linear regression results from R=S analysis for the �rst scaling range 10¡n¡ 1260, both for the empirical
and expected R=S values

DJIA E(R=S)

Constant −0:0828 −0:0525
Slope (Hurst exponent) 0.5783 0.5493
Number of points 95 40
Fit range 10¡n¡ 1260 10¡n¡ 1260
Average X 2.0477 2.34618
Average Y 1.1014 1.2363
Regression sum of squares 11.8562 3.5059
Residual sum of squares 0.01579 0.00411
Coe�. of determination, R2 0.9987 0.9988
Residual mean square 0.0001699 0.0001081
(�H ) std.dev. H ¿E(H) 2.5916

approximately 103:1 = 1260 trading days, or about 4 years. To determine whether the
Hurst exponent is the expected Hurst exponent, we do the analysis separately for
the two regions. The results from the �rst regression for the range 10¡n¡ 1260 are
shown in Table 3.
From Table 3 we see that the Hurst exponent is H=0:578 and the expected value of

H for the same region is E(H)=0:5493. This does not seem signi�cant, but the standard
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Table 4
Linear regression results from R=S analysis for the second scaling range 1260¡n¡ 4000 days, both for the
empirical and expected R=S values

DJIA E(R=S)

Constant 0.7993 0.0589
Slope (Hurst exponent) 0.2997 0.5090
Number of points 30 12
Fit range 1260¡n¡ 4000 1260¡n¡ 4000
Average X 3.4399 3.4201
Average Y 1.8302 1.7999
Regression sum of squares 0.1002 0.1509
Residual sum of squares 0.0269002 4.66136E-007
Coe�. of determination, R2 0.788322 0.999997
Residual mean square 0.0009607 4.66136E-008
(�H ) std.dev. H ¿E(H) −18:7222

deviation of E(H) is 0.0112 for 8000 observations. Thus, the Hurst exponent for the
daily DJIA is 2.59 standard deviations above its expected value. This is therefore also
a very signi�cant result as was the case for the OSE general index. For the second
range, covering 1260¡n¡ 4000, a Hurst exponent of H = 0:2997 was found, which
is 18.7 standard deviations below the expected Hurst exponent of E(H) = 0:509. This
means that the process becomes antipersistent after the 4-year cycle. An interpretation
of these �ndings will be done in Section 4.3.3. The regression results are shown in
Table 4.

4.3.2. Stability analysis
A stability analysis is also performed on the DJIA series to see if the Hurst exponent

shows the same degree of stability for the US stock market as the Norwegian market.
The DJIA series covers a much longer time span (1962–1993). By dividing it into
three non-overlapping sub-periods of equal length, we cover three decades of di�erent
underlying economic conditions. The �rst sub-period is 1962–1972, the second is 1972–
1982 and the third is 1982–1993. The R=S analysis results for the three periods are
plotted in Fig. 17. As can be seen from the plot, the slopes of the R=S values for the
three time periods vary much more than for the OSE data. The regression results is
shown in Table 5.
From Table 5 it can be seen that the Hurst exponent for the �rst period (1962–

1971) is equal to H = 0:6068 which is 3.11 standard deviations above the expected
Hurst exponent of E(H)=0:5445. Thus, the result is very signi�cant. However, for the
other two periods (1972–1982, 1983–1993), the Hurst exponents are not signi�cantly
di�erent from what is expected for a random process. These results are therefore quite
di�erent from those we got for the OSE series, which showed a very stable Hurst
exponent. The most plausible explanation for this is probably the fact that the OSE
series covered a much shorter time span with too small di�erences in the underlying
economic conditions to a�ect the Hurst exponent. If we look at the last period cov-
ering 1983–1993, this is almost the same period as the OSE data set. We see from
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Fig. 17. R=S values versus time lag n for three di�erent time periods for the Dow–Jones industrial average
data.

Table 5
Regression results for the stability analysis

DJIA 1962–1971 DJIA 1972–1982 DJIA 1983–1993 E(R=S)

Constant −0:1433 −0:0871 −0:0551 −0:04143
Slope (Hurst exponent) 0.6068 0.5549 0.5383 0.5445
Number of points 94 95 93 42
Fit range (n) 10¡n¡ 1300 10¡n¡ 1300 10¡n¡ 1300 10¡n¡ 1300
Average X 2.0515 2.0473 2.0531 2.4311
Average Y 1.1015 1.0490 1.0502 1.2823
Regression sum of squares 12.6458 10.9160 9.6376 3.5176
Residual sum of squares 0.0372 0.0347 0.0274 0.0042
R-squared 0.99707 0.99683 0.99717 0.99882
Residual mean square 0.0004038 0.0003733 0.0003005 0.0001037
(�H ) std.dev. H ¿E(H) 3.1113 0.5488 −0:3187

Table 5 that the Hurst exponent for the DJIA is H = 0:538 which is not signi�cantly
di�erent from a random walk. However, for the OSE series we have a Hurst exponent
of H = 0:614 which is signi�cantly higher than the expected Hurst exponent for a
random process (see Table 1). This indicates that while the OSE General Index shows
a persistent behaviour for this period, the DJIA does not.
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4.3.3. Summary of the DJIA results
We �nd that the U.S. stock market represented by the Dow–Jones industrial average

Index does not follow a random walk as also is the case for the OSE data. We �nd a
Hurst exponent of H = 0:578 for the range 10¡n¡ 1260 and an H = 0:299 for the
range 1260¡n¡ 4000, where n is the number of trading days. Thus, there seem to
be a non-periodic average cycle of about 1260 trading days or approximately 4 years.
It is tempting to couple this cycle to the political elections periods in the US. As the
memory e�ect disappears for n¿ 1260, the series becomes antipersistent with more
reversals than a random walk since H ¡ 0:5. This conforms to Fama and French’s
�ndings [28] that returns are “mean reverting” in the long term.

4.4. Interpretation of the rescaled range analysis results

4.4.1. Main �ndings
There are three main di�erences between the results found for the Norwegian and

US stock market data. First, the Hurst exponent was much higher for the OSE general
index than for the DJIA. Second, there did not appear to be any average cycle in the
OSE data, while a four-year average non-periodic cycle was found for the US data.
Third, the Hurst exponent for the Norwegian stock market was much more stable than
for the US stock market. This is most likely due to larger di�erences in the underlying
economic conditions for the US data that cover a longer time span.

4.4.2. Discussion of the results
So, what may be the explanation for this observed persistent behaviour in the

Norwegian and American stock markets? In a persistent market, with H ¿ 0:5, capital
market returns are inuenced by the past, and this inuence goes across time scales.
One six-week period inuences all subsequent six-week periods, one six-month period
inuences all subsequent six-month periods and so on. These long-term memory ef-
fects may be caused by investor bias and market sentiment, fads or fashions and create
market trends and non-periodic cycles on all time scales. Thus, the Hurst exponent can
be said to be a measure of the impact of market sentiment, generated by past events,
upon future returns in the capital markets. The most obvious way to use this infor-
mation is as the basis of momentum analysis and other forms of technical analysis.
This persistence may be related to the “excess volatility” e�ects discussed by Shiller
[31] and LeRoy [32]. They also correspond to the U-shaped patterns in �rst-order
autocorrelations across increasing return horizons found by Fama and French [28].
From a fractal, non-linear, viewpoint, the main reason may lie in what fashion

the market reacts to information. As discussed in Section 1.3, the e�cient market
hypothesis (EMH) postulates that the market reacts to information in a linear fashion.
This means that all investors react in the same way to new information instantly as
it is received, and they maximize their return on basis of it; they are rational. Thus,
theory states that the aggregate market is the equivalent of the typical rational investor,
so that the market can value information instantly and e�ciently. However, what if
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investors react to information in a discontinuous, non-linear fashion? The new paradigm
states that the main movement in markets comes from people observing what others
around them with the same investment horizons are doing, and then reacting to it. Thus,
there is a kind of dynamic interaction between investors, rather than a speci�c universal
response by all investors identi�able purely to external news arrivals. Some people react
to new information as soon as it is received, while others wait until they get con�rming
information and do not react until a trend is clearly established. Thus, information is
accumulated and suddenly reacted on. This creates the long tails in the distribution of
price variations on all time horizons. The amount of con�rming information necessary
to validate a trend varies, but the uneven assimilation of information may cause a
biased random walk. This is of course not in agreement with the EMH, but may be a
more realistic way of describing markets than in a linear fashion.
The next step in this paper will be to extend the analysis to include an examination

of the scaling behaviour of the entire probability distribution of returns. There will
also be an examination if stock price returns are well described by the family of L�evy
stable distributions often referred to as fractal distributions.

5. Results from the Distributional Scaling Analysis

5.1. The data

The data set used for this exercise is ticker data on the OBX-index at OSE, and
consists of almost 333.000 observations covering all trading days in the period 1990–
1994. 6 The OBX-index consists of the 25 most frequently traded company stocks on
OSE. Which stocks to include in the index is evaluated four times a year. A plot of
the entire OBX data set is shown in Fig. 18. The time intervals between successive
records are not �xed, but are on average close to 1 min.

5.2. Estimation of �

5.2.1. Estimation of � by using the Mantegna–Stanley method
From the data set, we select the complete set of non-overlapping records separated

by a time interval �t. The value of the OBX index is denoted as P(t) while the succes-
sive variations Z(�t) are de�ned in Eq. (21). We now �rst determine the probability
distributions Pr[Z(�t)] of index variations for di�erent values of �t. Here, we have
selected logarithmically equally spaced values of �t ranging from �t =1 to 316 min.
Fig. 19 shows a semilogarithmic plot of Pr[Z(�t)] obtained for six di�erent values of
�t. As expected, the distributions are roughly symmetrical and are spreading when �t
increases.

6 The OBX data-set was obtained from A. Hagen at Oslo Stock Exchange.
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Fig. 18. Daily observations on the OBX-index for the period 1990–1994.

Fig. 19. Probability distributions Pr[Z(�t)] of the OBX index variations Z(�t) observed at time intervals
�t, which range from 1 to 316 min. As �t is increased a spreading of the probability distribution is
observed.
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Table 6
The probability of zero return Pr[Z(�t) = 0] as a function of the time horizon �t used in Fig. 20

�t Pr[Z(�t) = 0] log(�t) logPr[Z(�t) = 0]

1 0.22320 0 −0:65130
3 0.10782 0.4771 −0:96730
10 0.06133 1 −1:21230
32 0.03373 1.5052 −1:47195
100 0.01356 2 −1:86765
312 0.00631 2.4942 −2:19978

Fig. 20. Probability of zero return Pr[Z(�t) = 0] as a function of the sampling interval �t. A scaling law
behaviour is observed for time intervals spanning almost three orders of magnitude. The slope of the best-�t
straight line is � =−0:6097. By using Eq. (23) we obtain the fractal dimension of the probability space of
� = 1:6402.

To estimate the fractal dimension of the probability space, �, we now use the
Mantegna=Stanley method described in Section 3.2.2. Thus, by plotting the proba-
bility of zero return, Pr[Z(�t) = 0], as a function of the time horizon, �t, we are
able to estimate �. The values of Pr[Z(�t) = 0] for di�erent �t values are shown in
Table 6. In Fig. 19 the same relationship is shown in a log=log plot. The slope of the
best-�t straight line is �=−0:6097. Thus, we observe a non-normal scaling behaviour
(� 6= −0:5) in an interval of trading time ranging from 1 to 316 min. From this scaling
parameter we estimate � to be �= 1:64 through Eq. (23) (Fig. 20).
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Fig. 21. R=S values as a function of time lag n for 100 min returns (about 13 of a day) on the OBX-index
for the period 1990 to 1994. The dotted line is a �tted curve to R=S = anH with H = 0:5913. The expected
value of H for a random walk is E(H) = 0:5417 for the same range of n.

5.2.2. Estimation of � through R=S analysis
It is of interest to see if we obtain the same estimate of � by using R=S analysis

as was obtained by using the Mantegna=Stanley method. It is expected that the Hurst
exponent we get here will be approximately similar to the Hurst exponent we found
for the total-index in Section 4.2 since these two data sets cover the Norwegian stock
market. A description of the OBX data set was done in Section 5.1. We will here use
100 min returns for the R=S analysis due to the fact that a higher frequency implies
both an increase in computation time and serial correlation which can bias the R=S
analysis, while a lower frequency will mean few observations to perform the analysis.
In Fig. 21 the log=log plot of the empirical R=S values as a function of the time lag n
is shown. The dotted line is the best-�t straight line with a slope H = 0:5913, and an
expected Hurst exponent of E(H)=0:5437. Since we have about T=3330 observations,
the expected variance of H is 1=3330=0:0003 or a standard deviation of 0.0173. Thus,
the Hurst exponent lies about 2.75 standard deviations 7 above the expected value
for a true Gaussian process. The linear regression results are shown in Table 7. Using

7 (0.5913−0.5437)/0.0173=2.7468 standard deviations.
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Table 7
Linear regression results from the R=S analysis in Fig. 21, both for the empirical and expected R=S values
covering the range 10¡n¡ 1665

OBX-index E(R=S)

Constant −0:1252 −0:0399
Slope (Hurst exponent) 0.5914 0.5438
Number of points 99 43
Fit range 10¡n¡ 1665 10¡n¡ 1665
Average X 2.1127 2.4488
Average Y 1.1242 1.2917
Regression sum of squares 14.0303 3.67421
Residual sum of squares 0.020455 0.004301
Coe�. of determination, R2 0.998544 0.998831
Residual mean square 0.0002197 0.0001049
(�H ) # of std.dev. that Hurst exponent ¿E(H) 2.7468

Fig. 22. Scaled plot of the probability distributions shown in Fig. 21. All the data collapse on the �t=1 min
distribution by using the scaling transformations of Eqs. (27) and (28) with �=1:64. The at line of points
outside the average behaviour de�nes the noise level of that speci�c distribution.

Eq. 20, a value H = 0:5913 produces an � = 1:69. This is in good agreement with
�= 1:64 found above using the Mantegna=Stanley method (Fig. 22).

5.3. Applying the estimated �

We have just shown that two completely di�erent methods produced remarkably
similar values for �, the fractal dimension of the probability space, for the OBX-index.
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Fig. 23. Comparison of the �t = 1 min empirical probability distribution with the symmetrical L�evy stable
distribution with � = 1:64 and scale factor  = 0:1167. The normal distribution shows poor agreement with
the data, especially for the wings.

By using the Mantegna=Stanley method examining the scaling of the “probability of
zero return”, we obtained an �=1:64. By using R=S analysis we got a somewhat higher
alpha of �=1:69. However, both estimates indicate that the process is di�erent from a
pure random walk. As discussed in Section 3.2.1, �¡ 2:0 is evidence of a non-normal
process with larger wings and higher probability around the mean than for a Gaussian
process. In fact, these results are evidence of a non-linear fractal system, which support
and supplement the results under Section 4.2.
So far, we have tested if there is a scaling behaviour in the “probability of zero

return”. We now want to check if the scaling extends over the entire probability distri-
bution as well as for Pr[Z(�t) = 0]. As mentioned under Section 3.2, the L�evy stable
distributions rescale under the transformations in Eqs. (18) and (19). Fig. 23 shows the
rescaled versions of the distributions in Fig. 21. As can be seen, all the data collapse
on the �t = 1 min distribution using Eqs. (18) and (19) with the estimated � = 1:64.
We may therefore conclude that a L�evy stable distribution describes well the dynamics
of the probability distributions Pr[Z(�t)] over time intervals spanning almost three
orders of magnitude.
In Fig. 23, a comparison is made between the �t = 1 min empirical probability

distribution for the OBX-index and the L�evy stable distribution of �=1:64. As can be
seen from Eq. (16) we need to solve for the scale factor . This is done by using the
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estimated � and Pr[Z(�t) = 0] in Eq. (17) for �t = 1 min such that

Pr[Z(�t) = 0] =
�(1=�)

��(�t)1=� or 0:2232 =
�(1=1:64)

3:14 · 1:64()1:64 : (24)

When solved with respect to  this yields  = 0:1167. Thus, Fig. 22 shows that by
using the estimated � with the corresponding  we get good agreement between the
L�evy distribution and the empirical distribution for the OBX-index, in contrast to the
Gaussian normal distribution (dotted line) which poorly describes the data (Fig. 23).

5.4. Discussion of the L�evy stable distribution analysis results

5.4.1. Main �ndings
In the distributional scaling analysis performed above, there is evidence of the

OBX-index following a scaling law similar to those for non-linear chaotic systems.
We found an � = 1:64 and 1.69 when using the Mantegna=Stanley and R=S analysis
methods, respectively. These estimates are remarkably close to each other, especially
when taking into account the fact that we are using two completely di�erent statistical
methods only similar in the way they use the concept of scaling. This relationship
has never, to our knowledge, been shown to hold for �nancial data. We then checked
whether the scaling extended over the entire probability distribution for all �t exam-
ined by using the transformation functions in Eqs. (17) and (18) with �= 1:64. From
Fig. 22 it seems like the dynamics of the distributions for �t=1 to 316 min are well
described by a scaling parameter of �=1:64 which also is the fractal dimension of the
probability space. Finally, from Fig. 23 it also seems like the L�evy distribution as well
as capturing the dynamics of the distribution, also is able to describe the empirical
probabilities of return much better than the Gaussian normal distribution. The �ndings
are also in good agreement with the �ndings by Stanley and Mantegna [10] for the
S&P 500 index.

5.4.2. Discussion of the results
Proper modelling of the distribution of stock returns is important because of its

signi�cance for investors’ management of risk. Standard �nancial models assume that
investors are risk averse. The amount of risk that an investor takes on by holding, e.g.
the OBX index is reected by the distribution of the index returns. Hence, if an investor
wrongly assumes that returns are drawn from a normal distribution, the risk taken on
by holding the OBX index is likely to be much higher than expected. However, the
fact that L�evy distributions with �¡ 2 have an in�nite or unde�ned second moment
due to the fat tails is a very unappealing property for �nancial economics. This is
because the estimation of risk in the traditional sense is dependent on a �nite variance.
This was already pointed out by Mandelbrot [6] in 1964 when he observed that the
second moment of probability distributions did not tend to any limit. In other words,
the volatility of prices varied widely from one period to the next. However, the �ndings
here show that the L�evy distribution is in good agreement with the empirical frequency
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distribution for the OBX index variations less than ±6 standard deviations (Fig. 23).
For returns more than ±6 standard deviations away from the mean there seems to
be an exponential “fall-o�” of the tails compared to what is predicted by the L�evy
distribution. This may indicate that the variance tends to a limit, but at a much slower
rate than the Normal distribution. Thus, one approach for proper modelling of the
distribution of the variations in the OBX index may be to simulate the tails of the
distribution separately from the central part to conserve the �nite variance assumption.
This approach was �rst proposed by Mantegna and Stanley for the S&P 500 index
[1,10].
Di�erent types of models have been proposed to describe the statistical characteris-

tics of price di�erences of �nancial indices as, for example, the behaviour of volatility.
Prominent approaches are models using mixtures of distributions and ARCH=GARCH-
type [16,17] models. Even though these models appear to produce leptokurtic distri-
butions, they do not produce the observed scaling behaviour of frequency distributions
of stock price variations. R=S analysis and distributional scaling analysis of ARCH and
GARCH models show that they fail to reproduce the fractal scaling property observed
for stock returns [7,10]. In fact, Mantegna=Stanley [10] report that the scaling property
of stock returns in their sample is not well approximated by a GARCH(1,1) model.
They �nd that the time evolution of the probability density functions (PDFs) for the
GARCH(1,1) scale according to �=−0:53, or has a Hurst exponent of H =0:53. Their
fractal dimension estimate for a GARCH(1,1) process is thus �= 1:89 which is much
higher than the �= 1:64 that was found for the OBX-index earlier in this chapter.
Changes in institutions or in economic regime may also account, at least partially,

for the observed leptokurtosis in the distribution of stock returns. This view allows
for the possibility that large outliers in the tail of the distribution of stock returns are
drawn from a di�erent distribution than the observations in the centre. However, the
L�evy distribution approach explains the events during very large market movements as a
reasonable ‘draw’ from a distribution that also describes the price dynamics during more
normal times. The distributional scaling approach used here should not be regarded as
a substitute for existing models such as the ARCH. Instead, it is likely that the two
approaches can be fruitfully combined to improve the models even further so that
the scaling property, leptokurtic distribution and higher moment dependencies in stock
returns are all preserved. Option pricing models based on truncated L�evy distributions
[1,29,30] seem to be a promising path, though one needs to extend these models further,
to also account for the observed time dependence in volatility.

6. General conclusions and future research

In the economic literature dealing with chaos theory, almost no focus has been put
on the concept of fractals which is an essential tool for describing and characterizing
the dynamics of non-linear processes without any intrinsic time scale. In this paper
the concept of fractals has been applied to Norwegian and US stock market data. The
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analysis has revealed some interesting features of both the Norwegian and US Stock
Index dynamics. Both markets show a fractal scaling behaviour signi�cantly di�erent
from what a random walk would produce. These �ndings imply that there are patterns,
or trends in returns that persist over time and di�erent time scales. This provides a
theoretical platform supporting the use of technical analysis and active trading rules to
produce above average returns. The �ndings may also be used to improve the current
models or to make new ones which use the concept of fractal scaling.
Chaos theory has been around for some time now, and critics point out that little of

practical value has been achieved. One promise of chaos theory was to o�er simple,
deterministic models to predict the path of �nancial markets. So far, little empirical
evidence has been found of the type of deterministic chaos that would enable such
forecasting models to be found. This paper attacks the problem from a di�erent angle
which may prove to be a more powerful and correct approach in describing the stock
market dynamics.
A natural continuation of this work would be to compare the results of this analysis

with similar analyses performed on other stock exchanges. The use of multifractals
[12,33,34], which is a kind of generalized fractal analysis, carries the analysis of dy-
namic scaling behaviour even one step further. This concept has been applied success-
fully in physical sciences to characterize, e.g. turbulence and oil well logs in the North
Sea as a tool for predicting and �nding oil deposits. This approach could provide a new
framework within which to develop new and better economic and �nancial models, but
this is beyond the scope of this paper. Some preliminary analysis has been performed
in [35].
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