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Adaptive Competition, Market Efficiency, and Phase Transitions
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In many social and biological systems agents simultaneously and adaptively compete for limited
resources, thereby altering their environment. We analyze a simple model that incorporates fundamental
features of such systems. If the space of strategies available to the agents is small, the system is in a
phase in which all information available to the agents’ strategies is traded away, and agents’ choices
are maladaptive, resulting in a poor collective utilization of resources. For larger strategy spaces, the
system is in a phase in which the agents are able to coordinate their actions to achieve a better utilization
of resources. The best utilization of resources occurs at a critical point, when the dimension of the
strategy space is on the order of the number of agents. [S0031-9007(99)08619-6]
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Most systems in the biological and social sciences ininformation from the historical record of which group was
volve interacting agents, each making behavioral choicethe minority group as a function of time. A strategy of
in the context of an environment that is formed, in largememorym is a table of two columns an2” rows. The
part, by the collective action of the agents themselves, ankft column contains all of the” possible combination of
with no centralized controller acting to coordinate agentn 0's and 1's, while each entry in the right column is a
behavior. In the most interesting cases, the agents havkor a 1. To use this strategy, an agent observes which
heterogeneous strategies, expectations, and beliefs [1]. groups were the minority groups during the immediately
some cases, the agents’ strategies may be self-validatingtecedingn time steps, and finds that string of 0's and 1’s
at least for a limited time. For example, in the financialin the left column of the table. The corresponding entry
markets a widespread belief that a commodity will rise inin the right column contains that strategy’s determination
price may perforce result in a price rise for that commod-of which group (0 or 1) the agent should join during the
ity. But unless there are fundamental reasons for the priceurrent time step.
rise, such bubbles eventually burst, so that widely shared In each of the games discussed here, all strategies
strategies are often self-defeating in the long run. Thus, imised by all of the agents have the same valuenof
many systems successful agents will employ strategies that the beginning of the game each agent is randomly
differentiate them from their competitors. Furthermore,assigned (>1) of the2?" possible strategies, chosen with
from the point of view of overall system performance, thereplacement [5]. For its current play the agent chooses its
best strategy sets are those that result in coordinated retrategy that would have had the best performance over
source utilization so that average agent experience is reléhe history of the game until that time. Ties between
tively good, and resources are consumed near their limitingtrategies are decided by a coin toss. Because the agents
rates. Examples of systems in which agents seek to dieach have more than one strategy, the game is adaptive
ferentiate themselves from their competitors, and in whichn that agents can choose to play different strategies at
coordinated allocation of resources is critical, include firmgdifferent moments of the game in response to changes
searching for profitable technological innovations, ecologiin their environment. Because the environment (i.e., the
cal communities [2], routers sending packets over the intime series of minority groups) is created by the collective
ternet [3], and humans deciding on which night to go to aaction of the agents themselves, and because the relative
popular bar [1]. rankings of the agents’ strategies depend on their previous

Although these systems are enormously complicatedsuccesses, this system has strong collective feedback.
there are fundamental properties which are shared by all This system may be though of as a very simple model for
of them. To understand such systems, we must firsh number of different situations in the social and biological
understand the dynamics imposed by their most basisciences. In particular, this system can be interpreted as
common properties. a kind of very simple “protomarket,” driven by a simple

The simple model of competition we discuss here [4]supply-demand dynamic [6].
consists ofN agents playing a game as follows: At each We report here the results of this game for a range of
time step of the game, each of th\ agents joins one values ofN (odd),m, ands = 2. The qualitative results
of two groups, labeled 0 or 1. Each agent that is in thealso hold for other values afthat are not extremely large
minority group at that time step is awarded a point, while[7]. We must also create a short (of orde) random
each agent belonging to the majority group gets nothinghistory of 0's and 1's, so that the strategies can be initially
An agent chooses which group to join at a given time stegvaluated. The asymptotic statistical results of any run do
based on the prediction of a strategy. The strategy use®t materially depend on what this random string is.
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To understand the behavior of this system, consider thehoices. In Fig. 2, we ploP(1|u;) for G generated by
time series of the number of agents belonging to group la game withm = 4, N = 101, ands = 2. Figure 2(a)
which we will call L;. (This information is not available shows the histogram for = m = 4 and Fig. 2(b) shows
to the agents but it is available to the researchers.) Ththe histogram fok = 5. Note that the histogram is quite
mean of this series is generally closeN@?2 for all values flat at 0.5 in Fig. 2(a), but is not flat in Fig. 2(b). Thus,
of N, m, ands, so the standard deviatian of this time  for any strategy with memory (less than or) equal to 4, the
series is a convenient reciprocal measure of how effectivhistory of minority groups contains no predictive informa-
the system is at distributing resources, on average, sind@®n about which will be the minority group at the next
the smallers is, the larger a typical minority group is. time step. But recall that this time series itself was gener-

The behavior ofo is quite remarkable. In Fig. 1, we ated by players playing strategies with= 4. Therefore,
plot o for these time series as a functiorvefor N = 101 in this sense, the market is efficient [8] and no strategy us-
ands = 2. For each value of:, 32 independent runs were ing memory (less than or) equal to 4 can, over the long run,
performed. The horizontal dashed line in this graph is ahave a success rate better than 50%. @ig not a random
the value ofo for the random choice game (RCG), i.e., for (1ID) sequence. There is information @, as indicated by
the game in which each agent randomly chooses 0 or lhe fact that the histogram in Fig. 2(b) is not flat. How-
independently and with equal probability at each time stepever, that information is not available to the strategies of
Note the following features: (1) For smatl, the average the agents playing the = 4 game who collectively gen-
value of o is very large (much larger than in the RCG). In eratedG in the first place. We shall refer to this property
addition, form < 6 there is a large spread in thes for  as “strategy efficient” to distinguish it from other kinds of
different runs with different (random) initial distributions market efficiency [8].
of strategies to the agents, but with the same(2) There We can repeat this analysis for = 6 (N = 101, s =
is @ minimum ino at m = 6 at which o is less than 2). For this range ofn, the corresponding histogram for
the standard deviation of the RCG. We shall refer to thek = m is not flat, as we see in Fig. 3 for tlwe = 6 game.
value of m at which theo vs m curve (for fixedN) has Inthis case, there is significant information available to the
its minimum asm.. Also, form = m,, the spread in the strategies of the agents playing the game with memory
o’s appears to be small relative to the spreadiior m..  and the market is not efficient in this sense.

(3) As m increases beyond @; slowly increases, and for ~ How does the system behavior dependvsh One finds,
largem approaches the value for the RCG. plotting o vs m for each fixedN, that in all cases one

The system clearly behaves in a qualitatively differentobtains a graph with a shape similar to that of Fig. 1, but
way for small and large:. To understand the dynamics in

these two regions, consider the (binary) time series of mi- 1 — : : ,
nority groupsG, the data publicly available to the agents. (@)
To study the information content @, considerP (1 | uy), _os ]
the conditional probability to have a 1 immediately follow- *g
ing some specific strings, of k elements. Recall that in .30-6’
a game played with memory, the strategies use only the Eoal
information encoded in strings of length to make their ; ’
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FIG. 1. o as a function ofm for N =101 and s = 2, FIG. 2. (a) A histogram of the conditional probability
showing 32 independent runs of 10000 time steps for eact?(1|u;) with k = 4 for the game played witm = 4. The
value of m. The value ofo for each run is indicated by a bin numbers, when written in binary form, yield the strings
dot. The horizontal dashed line is at the valueooffor the  (b) A histogram of the conditional probabilit#(1 | ;) with
random game described in the text. k = 5 for the game played witlm = 4.
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1 - — - ‘ - of N, approaching a-dependent constant & — oo. In
I - . the N — o limit, Ao is large for small values of and
08 - : ] decreases monotonically with increasing It is unclear
| | 1 whether or notA o is nonanalytic at..
‘gf I | The two phase structure we have observed is due to com-
206 i I petition between two different effects. First, there is an
9 embedded periodic dynamics which results in strong posi-
§0.4 tive correlations in the responses of the agents to subse-
o

quent occurrences of a given string of lengthn G. For
smallm, it can be shown [6] that the system’s response to
any givenm history in G is largely independent of its re-
sponse to othem strings. In this phase, odd occurrences
0 10 20 30 40 60 of a givenm string in G result in a subsequent minority
m-bit past group whose size is close /2, while even occurrences
FIG. 3. A histogram of the conditional probabilih(1|u,)  "€Sult in very small minority groups. Moreover, the mi-
with k = 6 for the game played witl: = 6. The bin numbers, hority group that follows an even occurrence of a giwen
when written in binary form, yield the strings string inG is opposite that of the preceding odd occurrence
of that same string. This gives rise to a “bursty” structure
in which the position of the minimum,., is proportional  in L; with larger, orderV excursions from the mean sepa-
to InN. In addition, & and the spread ir behave in rated by smaller excursions of ordg/2.
very simple ways as a function of. Generally, for fixed It is the response of the system to the even occurrence
m < m,., both o and the standard deviation of the's  of strings that gives rise to the large deviations from
(defined asA o) are proportional taV, whereas for fixed the mean inL;, and are responsible for the fact that,
m = m, botho andAo are proportional tav!1/2, in the strategy-efficient, smalk phase,o (as well as
The transition between these very different behaviors id4 o) is proportional toN for fixed m. This dynamic
atm. ~ In N. We have found [6], using mean-field-like also explains the flat conditional probability distributions
arguments, that to a first approximatiefi/N is a function ~ such as those shown in Fig. 2(a). Consecutive (odd-even)
only of 2" /N = z. To see this explicitly, we plotin Fig. 4 occurrences of a given string produce opposite responses
o?/N as a function ot on a log-log scale for variou§ in the sequence of minority groups. Consequently, the
andm (with s = 2). Note that all of the data fall on a conditional probabilities will be very close to 0.5 for ail
nearly universal curve. The minimum of this curve is nearstrings, for a game with small enough Using a simple
2" /N = z. = 0.5, and separates the two different phasesrandom walk argument [6], one can show that for values
The slope for; < z. approaches-1 for smallz, while the ~ of m = m, this period-two dynamics ceases to dominate.
slope forz > z, approaches zero for large consistent The second effect, and possibly the most remarkable
with the results of Fig. 4 [9]. Because’/N depends only feature of this system, is the emergent coordination among
on z, it is clear that, for any fixed, o is proportional the agents’ responses to different strings of lengtihich
to N'/2, both above and below,. In addition, it can be works, for large enough, to reduces below the value it
shown that, for fixed;, Ao is approximately independent would have in a RCG. Fom nearm,, the contribution
of the periodic dynamics diminishes, and we uncover
this remarkable emergent property which gives rise to an
improvement in overall utilization of the resource. The
o o N=11 region of greatest effective coordination (smallestis
x  x N=25 whenz = 2™ /N is of order one. Coordination diminishes
MR and o approaches the RCG result msincreases beyond
0 * x N=1001 ) e )
- —  slope=-1 m.. This can be qualltat|vely.unde.rstc.)od. by recalling
that each chosen strategy carries with it fixed responses
Z £\ to 2™ different strings of lengthm. Thus, the ranking
A P of strategies by each agent must coordinate the agents’
107k ? *b*% ] responses t@™ different strings. Asm increases, for
b fixed N, it becomes increasingly difficult for the agents to
coordinate all of their responses (systemwide there are only
N choices that can be made to try to satigfyconditions),
and the system’s behavior will look increasingly random
102 10° 10 10 asm increases for fixed.
z Despite this apparent random behavior for langethe
FIG. 4. ¢*/N as a function of; = 2" /N for various values System is not in a Nash equilibrium for large, nor
of N, on a log-log scale. generally for any other value of. Thato is consistent
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with RCG at largem is not due to a Nash equilibrium fication of the spread in the variance. This suggests the
mixed strategy that one would have in the RCG. In factheed for care in interpreting data from adaptive systems, or

there is increasing information i@ asm increases [6].

from their simulations. For theognescentithis suggests

There are many Nash equilibria in a minority game, butan intriguing analogy with spin glasses [12] in which the

they are not achieved by the dynamics of this system.

It is also quite remarkable that’>/N lies on a universal
curve as a function of the scaling variabde= 2" /N
(Fig. 4). Sincen, is proportional to InV, we are led to the
intriguing idea that for maximum coordinatiov should
be roughly the same size as ttienensionof the strategy
space.

agents’ random, but fixed, strategies are analogous to the
frozen-in impurities found in a spin glass. In any case, it
is certainly true that the phenomenon of frustration, which
is at the core of glassy behavior, plays a significant role in
competitive games of the sort described here.

The fact is that there is no well-developed epistemology
for complex adaptive systems, and we are still quite unsure

Itis clear that the behavior of the system is qualitativelyof what the important issues are or the most robust ways

different form above and below:.. However, itis unclear

of characterizing the dynamics of such systems. But the

whether that difference is the result of a singularity (andstudy of simple statistical models, and the elucidation of

thus, a bona fide phase transitionmat) or a crossover
effect, even in the limitv — oo with z fixed. In Ref. [6]

the variety of behaviors which they manifest, can lead
us toward a deeper understanding of how to properly

we show that information theoretic measures, including thérame the questions that we can sensibly ask, and sensibly

entropy, appear to be nonanalyticiat (at least for large answer, for complex systems.

s), suggesting that a phase transition does exist, at least in
the larges limit. It may also be that the phase change is [1]
accompanied by a change from a period to a nonperiodic
(possibly chaotic) state [6,10].

In an effort to begin to understand the universality
of our results, we have studied some models which are
variations of the one described here, differing, for example, [3]
in the length of the history over which the strategies are
evaluated, the nature of the publicly available information, [4]
or in some of the details of the way in which the agents
choose among their strategies. While some details of the®]
results change [6,11], the general structure remains the
same. In particular, Fig. 4 is largely unchanged.

The model’'s general two-phase structure, with maxi- rg
mum utilization of resources at the phase transition (when
the dimension of the strategy space is of the order of the
number of agents playing the game), may well be a charac-
teristic that transcends the class of simple models we havé7]
studies. Thus, the size of the available strategy space may
be of practical significance for the structure of many sys-
tems such as financial markets and ecological systems. [&]

Although the behavior we have elucidated is very in-
triguing, one must remember that there are many effects
that may play a major role in specific systems and which
could alter the emergent structure, fundamentally. For ex-
ample, while this model is adaptive, it is not evolutionary.
There is no discovery of new strategies by the agents, no
mutation, no recombination, and no sex. Strong evolu-
tionary dynamics may drastically alter the phase structure
of the system. Nevertheless, any analysis of more compli-
cated specific systems, which share the general competitivé®]
dynamics we have discussed here, must take account of the
type of structure we have described.

Finally, and perhaps most importantly, our work raise
the question: What really are the fundamental terms i
which we ought to think abouY-agent adaptive systems? [11]
For example, the fact that, fen < m,, o is so strongly [12]
dependent on the initial distribution of strategies suggests
that a meaningful specification of must include a speci-

2206

(2]

10]

W. Brian Arthur, Am. Econ. Assoc. Papers Pr&d, 406—
411 (1994).

Ecology and Evolution of Communitiesdited by M. L.
Cody and J. M. Diamond (Harvard University, Cambridge,
MA, 1975).

Coordination of the Internetedited by B. Kahin and
J. Keller (MIT, Cambridge, MA, 1997).

D. Challet and Y.-C. Zhang, Physica (Amsterda2/6A,
407 (1997).

The dynamics of adaptivity are crucial to our results. Itis
thus essential that > 1 so that the agents have more than
one strategy with which to play. For = 1, the game
devolves into a game with a trivial periodic structure.

] R. Manuca, Y. Li, R. Riolo, and R. Savit, University of

Michigan Program for the Study of Complex Systems
Report No. PSCS-98-11-001 (to be published), available
at http://www.pscs.umich.edu/RESEARCH/pscs-tr.html..
The dependence of the results of the game sorare
interesting and are discussed in Ref. [6]. However, the
qualitative picture we present here obtains fox 22",
Classic references on market efficiency are written by
E.F. Fama [J. Financ®5, 383 (1970);46, 1575 (1991).]
The sense in which the market is efficient here is subtle.
The flat probability distribution means that the market
is informationally efficient with respect to the strategies.
But the market is not necessarily efficient with respect
to the agents. Since the agents can switch their strategies,
they could, in principle, use different strategies at different
times and have a better than random success rate. In fact,
in this phase the opposite happens and the agents’ choices
are maladaptive. See also Ref. [6].

For different values ofs there are systematic changes in
the shape of this scaling curve, although the qualitative
structure is similar. These are discussed further in
Ref. [6].

This may fall in the class of voting games discussed in D.
Meyer and T. Brown, Phys. Rev. Le81, 1718 (1998).

Y. Li, R. Riolo, and R. Savit (to be published).

See, for exampleSpin Glassesedited by K. Fischer and

J. Hertz (Cambridge University, Cambridge, England,
1991). See also Ref. [6].



