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Adaptive Competition, Market Efficiency, and Phase Transitions
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In many social and biological systems agents simultaneously and adaptively compete for limited
resources, thereby altering their environment. We analyze a simple model that incorporates fundamental
features of such systems. If the space of strategies available to the agents is small, the system is in a
phase in which all information available to the agents’ strategies is traded away, and agents’ choices
are maladaptive, resulting in a poor collective utilization of resources. For larger strategy spaces, the
system is in a phase in which the agents are able to coordinate their actions to achieve a better utilization
of resources. The best utilization of resources occurs at a critical point, when the dimension of the
strategy space is on the order of the number of agents. [S0031-9007(99)08619-6]

PACS numbers: 02.50.Le, 05.65.+b, 05.70.Fh, 87.23.Ge
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Most systems in the biological and social sciences i
volve interacting agents, each making behavioral choic
in the context of an environment that is formed, in larg
part, by the collective action of the agents themselves, a
with no centralized controller acting to coordinate age
behavior. In the most interesting cases, the agents ha
heterogeneous strategies, expectations, and beliefs [1].
some cases, the agents’ strategies may be self-validat
at least for a limited time. For example, in the financia
markets a widespread belief that a commodity will rise i
price may perforce result in a price rise for that commod
ity. But unless there are fundamental reasons for the pr
rise, such bubbles eventually burst, so that widely shar
strategies are often self-defeating in the long run. Thus,
many systems successful agents will employ strategies t
differentiate them from their competitors. Furthermore
from the point of view of overall system performance, th
best strategy sets are those that result in coordinated
source utilization so that average agent experience is re
tively good, and resources are consumed near their limiti
rates. Examples of systems in which agents seek to d
ferentiate themselves from their competitors, and in whic
coordinated allocation of resources is critical, include firm
searching for profitable technological innovations, ecolog
cal communities [2], routers sending packets over the i
ternet [3], and humans deciding on which night to go to
popular bar [1].

Although these systems are enormously complicate
there are fundamental properties which are shared by
of them. To understand such systems, we must fi
understand the dynamics imposed by their most ba
common properties.

The simple model of competition we discuss here [4
consists ofN agents playing a game as follows: At eac
time step of the game, each of theN agents joins one
of two groups, labeled 0 or 1. Each agent that is in th
minority group at that time step is awarded a point, whi
each agent belonging to the majority group gets nothin
An agent chooses which group to join at a given time ste
based on the prediction of a strategy. The strategy us
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information from the historical record of which group wa
the minority group as a function of time. A strategy
memorym is a table of two columns and2m rows. The
left column contains all of the2m possible combination o
m 0’s and 1’s, while each entry in the right column is
0 or a 1. To use this strategy, an agent observes w
groups were the minority groups during the immediat
precedingm time steps, and finds that string of 0’s and 1
in the left column of the table. The corresponding en
in the right column contains that strategy’s determinat
of which group (0 or 1) the agent should join during t
current time step.

In each of the games discussed here, all strate
used by all of the agents have the same value ofm.
At the beginning of the game each agent is random
assigneds s.1d of the22m

possible strategies, chosen wi
replacement [5]. For its current play the agent choose
strategy that would have had the best performance o
the history of the game until that time. Ties betwe
strategies are decided by a coin toss. Because the a
each have more than one strategy, the game is ada
in that agents can choose to play different strategie
different moments of the game in response to chan
in their environment. Because the environment (i.e.,
time series of minority groups) is created by the collect
action of the agents themselves, and because the rel
rankings of the agents’ strategies depend on their prev
successes, this system has strong collective feedback

This system may be though of as a very simple model
a number of different situations in the social and biologi
sciences. In particular, this system can be interprete
a kind of very simple “protomarket,” driven by a simp
supply-demand dynamic [6].

We report here the results of this game for a range
values ofN (odd),m, ands ­ 2. The qualitative results
also hold for other values ofs that are not extremely larg
[7]. We must also create a short (of orderm) random
history of 0’s and 1’s, so that the strategies can be initia
evaluated. The asymptotic statistical results of any run
not materially depend on what this random string is.
© 1999 The American Physical Society 2203
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To understand the behavior of this system, consider t
time series of the number of agents belonging to group
which we will call L1. (This information is not available
to the agents but it is available to the researchers.) T
mean of this series is generally close toNy2 for all values
of N , m, ands, so the standard deviations of this time
series is a convenient reciprocal measure of how effecti
the system is at distributing resources, on average, sin
the smallers is, the larger a typical minority group is.

The behavior ofs is quite remarkable. In Fig. 1, we
plot s for these time series as a function ofm for N ­ 101
ands ­ 2. For each value ofm, 32 independent runs were
performed. The horizontal dashed line in this graph is
the value ofs for the random choice game (RCG), i.e., fo
the game in which each agent randomly chooses 0 or
independently and with equal probability at each time ste
Note the following features: (1) For smallm, the average
value ofs is very large (much larger than in the RCG). In
addition, form , 6 there is a large spread in thes’s for
different runs with different (random) initial distributions
of strategies to the agents, but with the samem. (2) There
is a minimum in s at m ­ 6 at which s is less than
the standard deviation of the RCG. We shall refer to th
value of m at which thes vs m curve (for fixedN) has
its minimum asmc. Also, for m $ mc, the spread in the
s’s appears to be small relative to the spread form , mc.
(3) As m increases beyond 6,s slowly increases, and for
largem approaches the value for the RCG.

The system clearly behaves in a qualitatively differen
way for small and largem. To understand the dynamics in
these two regions, consider the (binary) time series of m
nority groupsG, the data publicly available to the agents
To study the information content ofG, considerPs1 j ukd,
the conditional probability to have a 1 immediately follow
ing some specific string,u, of k elements. Recall that in
a game played with memorym, the strategies use only the
information encoded in strings of lengthm to make their

FIG. 1. s as a function of m for N ­ 101 and s ­ 2,
showing 32 independent runs of 10 000 time steps for ea
value of m. The value ofs for each run is indicated by a
dot. The horizontal dashed line is at the value ofs for the
random game described in the text.
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choices. In Fig. 2, we plotPs1 j ukd for G generated by
a game withm ­ 4, N ­ 101, and s ­ 2. Figure 2(a)
shows the histogram fork ­ m ­ 4 and Fig. 2(b) shows
the histogram fork ­ 5. Note that the histogram is quite
flat at 0.5 in Fig. 2(a), but is not flat in Fig. 2(b). Thus
for any strategy with memory (less than or) equal to 4, t
history of minority groups contains no predictive informa
tion about which will be the minority group at the nex
time step. But recall that this time series itself was gene
ated by players playing strategies withm ­ 4. Therefore,
in this sense, the market is efficient [8] and no strategy u
ing memory (less than or) equal to 4 can, over the long ru
have a success rate better than 50%. ButG is not a random
(IID) sequence. There is information inG, as indicated by
the fact that the histogram in Fig. 2(b) is not flat. How
ever, that information is not available to the strategies
the agents playing them ­ 4 game who collectively gen-
eratedG in the first place. We shall refer to this propert
as “strategy efficient” to distinguish it from other kinds o
market efficiency [8].

We can repeat this analysis form $ 6 (N ­ 101, s ­
2). For this range ofm, the corresponding histogram for
k ­ m is not flat, as we see in Fig. 3 for them ­ 6 game.
In this case, there is significant information available to th
strategies of the agents playing the game with memorym
and the market is not efficient in this sense.

How does the system behavior depend onN? One finds,
plotting s vs m for each fixedN , that in all cases one
obtains a graph with a shape similar to that of Fig. 1, b

FIG. 2. (a) A histogram of the conditional probability
Ps1 j ukd with k ­ 4 for the game played withm ­ 4. The
bin numbers, when written in binary form, yield the stringsu.
(b) A histogram of the conditional probabilityPs1 j ukd with
k ­ 5 for the game played withm ­ 4.
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FIG. 3. A histogram of the conditional probabilityPs1 j ukd
with k ­ 6 for the game played withm ­ 6. The bin numbers,
when written in binary form, yield the stringsu.

in which the position of the minimum,mc, is proportional
to ln N. In addition, s and the spread ins behave in
very simple ways as a function ofN. Generally, for fixed
m , mc, both s and the standard deviation of thes’s
(defined asDs) are proportional toN , whereas for fixed
m $ mc boths andDs are proportional toN1y2.

The transition between these very different behaviors
at mc , ln N . We have found [6], using mean-field-like
arguments, that to a first approximations2yN is a function
only of 2myN ; z. To see this explicitly, we plot in Fig. 4
s2yN as a function ofz on a log-log scale for variousN
and m (with s ­ 2). Note that all of the data fall on a
nearly universal curve. The minimum of this curve is nea
2mc yN ; zc ø 0.5, and separates the two different phase
The slope forz , zc approaches21 for smallz, while the
slope forz . zc approaches zero for largez, consistent
with the results of Fig. 4 [9]. Becauses2yN depends only
on z, it is clear that, for any fixedz, s is proportional
to N1y2, both above and belowzc. In addition, it can be
shown that, for fixedz, Ds is approximately independent

FIG. 4. s2yN as a function ofz ; 2myN for various values
of N, on a log-log scale.
is

r
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of N , approaching az-dependent constant asN ! `. In
the N ! ` limit, Ds is large for small values ofz and
decreases monotonically with increasingz. It is unclear
whether or notDs is nonanalytic atzc.

The two phase structure we have observed is due to co
petition between two different effects. First, there is a
embedded periodic dynamics which results in strong po
tive correlations in the responses of the agents to sub
quent occurrences of a given string of lengthm in G. For
smallm, it can be shown [6] that the system’s response
any givenm history in G is largely independent of its re-
sponse to otherm strings. In this phase, odd occurrence
of a givenm string in G result in a subsequent minority
group whose size is close toNy2, while even occurrences
result in very small minority groups. Moreover, the mi
nority group that follows an even occurrence of a givenm
string inG is opposite that of the preceding odd occurrenc
of that same string. This gives rise to a “bursty” structur
in L1 with larger, orderN excursions from the mean sepa
rated by smaller excursions of orderN1y2.

It is the response of the system to the even occurren
of strings that gives rise to the large deviations from
the mean inL1, and are responsible for the fact that
in the strategy-efficient, smallm phase,s (as well as
Ds) is proportional toN for fixed m. This dynamic
also explains the flat conditional probability distribution
such as those shown in Fig. 2(a). Consecutive (odd-eve
occurrences of a given string produce opposite respon
in the sequence of minority groups. Consequently, th
conditional probabilities will be very close to 0.5 for allm
strings, for a game with small enoughm. Using a simple
random walk argument [6], one can show that for value
of m $ mc this period-two dynamics ceases to dominate

The second effect, and possibly the most remarkab
feature of this system, is the emergent coordination amo
the agents’ responses to different strings of lengthm which
works, for large enoughm, to reduces below the value it
would have in a RCG. Form nearmc, the contribution
of the periodic dynamics diminishes, and we uncove
this remarkable emergent property which gives rise to a
improvement in overall utilization of the resource. The
region of greatest effective coordination (smallests) is
whenz ­ 2myN is of order one. Coordination diminishes
ands approaches the RCG result asm increases beyond
mc. This can be qualitatively understood by recalling
that each chosen strategy carries with it fixed respons
to 2m different strings of lengthm. Thus, the ranking
of strategies by each agent must coordinate the agen
responses to2m different strings. Asm increases, for
fixed N , it becomes increasingly difficult for the agents to
coordinate all of their responses (systemwide there are o
N choices that can be made to try to satisfy2m conditions),
and the system’s behavior will look increasingly random
asm increases for fixedN .

Despite this apparent random behavior for largem, the
system is not in a Nash equilibrium for largem, nor
generally for any other value ofm. That s is consistent
2205
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with RCG at largem is not due to a Nash equilibrium
mixed strategy that one would have in the RCG. In fac
there is increasing information inG as m increases [6].
There are many Nash equilibria in a minority game, b
they are not achieved by the dynamics of this system.

It is also quite remarkable thats2yN lies on a universal
curve as a function of the scaling variablez ­ 2myN
(Fig. 4). Sincemc is proportional to lnN , we are led to the
intriguing idea that for maximum coordinationN should
be roughly the same size as thedimensionof the strategy
space.

It is clear that the behavior of the system is qualitative
different form above and belowmc. However, it is unclear
whether that difference is the result of a singularity (an
thus, a bona fide phase transition atmc) or a crossover
effect, even in the limitN ! ` with z fixed. In Ref. [6]
we show that information theoretic measures, including t
entropy, appear to be nonanalytic atmc (at least for large
s), suggesting that a phase transition does exist, at leas
the larges limit. It may also be that the phase change
accompanied by a change from a period to a nonperiod
(possibly chaotic) state [6,10].

In an effort to begin to understand the universalit
of our results, we have studied some models which a
variations of the one described here, differing, for examp
in the length of the history over which the strategies a
evaluated, the nature of the publicly available informatio
or in some of the details of the way in which the agen
choose among their strategies. While some details of t
results change [6,11], the general structure remains
same. In particular, Fig. 4 is largely unchanged.

The model’s general two-phase structure, with max
mum utilization of resources at the phase transition (wh
the dimension of the strategy space is of the order of t
number of agents playing the game), may well be a chara
teristic that transcends the class of simple models we ha
studies. Thus, the size of the available strategy space m
be of practical significance for the structure of many sy
tems such as financial markets and ecological systems.

Although the behavior we have elucidated is very in
triguing, one must remember that there are many effe
that may play a major role in specific systems and whic
could alter the emergent structure, fundamentally. For e
ample, while this model is adaptive, it is not evolutionary
There is no discovery of new strategies by the agents,
mutation, no recombination, and no sex. Strong evol
tionary dynamics may drastically alter the phase structu
of the system. Nevertheless, any analysis of more comp
cated specific systems, which share the general competi
dynamics we have discussed here, must take account of
type of structure we have described.

Finally, and perhaps most importantly, our work raise
the question: What really are the fundamental terms
which we ought to think aboutN-agent adaptive systems?
For example, the fact that, form , mc, s is so strongly
dependent on the initial distribution of strategies sugges
that a meaningful specification ofs must include a speci-
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fication of the spread in the variance. This suggests t
need for care in interpreting data from adaptive systems,
from their simulations. For thecognescenti,this suggests
an intriguing analogy with spin glasses [12] in which th
agents’ random, but fixed, strategies are analogous to
frozen-in impurities found in a spin glass. In any case,
is certainly true that the phenomenon of frustration, whic
is at the core of glassy behavior, plays a significant role
competitive games of the sort described here.

The fact is that there is no well-developed epistemolog
for complex adaptive systems, and we are still quite unsu
of what the important issues are or the most robust wa
of characterizing the dynamics of such systems. But th
study of simple statistical models, and the elucidation o
the variety of behaviors which they manifest, can lea
us toward a deeper understanding of how to proper
frame the questions that we can sensibly ask, and sensi
answer, for complex systems.
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