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We present a phenomenological study of stock price fluctuations of individual companies. We systematically
analyze two different databases covering securities from the three major U.S. stock n{arkbesNew York
Stock Exchange(b) the American Stock Exchange, afo) the National Association of Securities Dealers
Automated Quotation stock market. Specifically, we consfdehe trades and quotes database, for which we
analyze 40 million records for 1000 U.S. companies for the 2-yr period 1994—95(iiarttie Center for
Research and Security Prices database, for which we analyze 35 million daily records for approximately 16 000
companies in the 35-yr period 1962—-96. We study the probability distribution of returns over varying time
scalesAt, whereAt varies by a factor of<10°, from 5 min up to~4 yr. For time scales from 5 min up to
approximately 16 days, we find that the tails of the distributions can be well described by a power-law decay,
characterized by an exponent 25 <4, well outside the stable g regime 0<a<2. For time scaledt
>(At) «~16 days, we observe results consistent with a slow convergence to Gaussian behavior. We also
analyze the role of cross correlations between the returns of different companies and relate these correlations
to the distribution of returns for market indicd§1063-651X%99)11412-Q

PACS numbegs): 05.40.Fb, 05.45.Tp

[. INTRODUCTION First, how does the nature of the distribution of individual
stock returns change with increasing time scat€ In other
The study of financial markets poses many challengingvords, does the distribution retain its power-law functional
guestions. For example, how can one understand a strongfgrm for longer time scales, or does it converge to a Gauss-
fluctuating system that is constantly driven by external infor-ian, as found for market indicd¥,16]? If the distribution
mation? And how can one account for the role of the feedindeed converges to Gaussian behavior, how fast does this
back between the markets and the outside world, or of theonvergence occur? For the S&P 500 index, for example,
complex interactions between traders and assets? An advaore finds the distribution of returns to be consistent with a
tage for the researcher trying to answer these questions is ti@nstablepower-law functional form &~3) for approxi-
availability of huge amounts of data for analysis. Indeed, thenately 4 day, after which an onset of convergence to Gauss-
activities at financial markets result in several observablesan behavior is found16].
such as the values of different market indices, the prices of Second, why is it that the distribution of returns for indi-
the different stocks, trading volumes, etc. vidual companies and for the S&P 500 index have the same
Some of the most widely studied market observables arasymptotic form? This finding is unexpected, since the re-
the values of market indices. Previous empirical studiesurns of the S&P 500 are the weighted sums of the returns of
[1-12] show that the distribution of fluctuations—measured500 companies. Hence, we would expect, the S&P 500 re-
by the returns—of market indices has slow decaying tailsturns to be distributed approximately as a Gaussian, unless
and that the distributions apparently retain the same functhere were significant dependencies between the returns of
tional form for a range of time scal¢$,2,6,7. Fluctuations different companies which prevent the central limit theorem
in market indices reflect the average behavior of the pricdrom applying.
fluctuations of the companies comprising them. For example, To answer the first question, we extend previous work
the S&P 500 is defined as the sum of the market capitaliza-14] on the distribution of returns for 5-min returns by per-
tions (stock price multiplied by the number of outstanding forming an empirical analysis of individual company returns
shareg of 500 companies representative of the U.S.for time scales up to 46 month. Our analysis uses two dis-
economy. tinct databases detailed below. We find that the cumulative
Here we focus on a more “microscopic” quantity: indi- distribution of individual-company returns is consistent with
vidual companies. We analyze the tick-by-tick dpt&] for ~ a power-law asymptotic behavior with an exponert 3,
the 1000 publicly-traded U.S. companies with the largesthich is outside the stable kg regime. We also find that
market capitalizations, and systematically study the statistithese distributions appear to retain the same functional form
cal properties of their stock price fluctuations. A preliminary for time scales up to approximately 16 day. For longer time
study[14] reported that the distribution of the 5-min returns scales, we observe results consistent with a slow conver-
for 1000 individual companies and the S&P 500 index de-gence to Gaussian behavior.
cays as a power-law with an exponewnt=3—well outside To answer the second question, we randomize each of the
the stable Ley regime (@<2). Earlier independent studies 500 time series of returns for the constituent 500 stocks of
on individual stock returns on longer time scales yield simi-the S&P 500 index. A surrogate “index return,” thus con-
lar result[15]. These findings raise the following questions. structed from the randomized time series, shows fast conver-
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gence to Gaussian behavior. Further, we find that the fundseginning in December 1925 and daily data beginning in

tional form of the distribution of returns remains unchangedJuly 1962. For the AMEX, both monthly and daily data be-

for different system size@measured by the market capitali- gin in July 1962. For the Nasdaq stock market, both monthly

zation), while the standard deviation decays as a power lavand daily data begin in July 1972.

of the market capitalization. We also analyze the S&P 500 index, which comprises 500
The organization of this paper is as follows. Section Ilcompanies chosen for market size, liquidity, and industry

describes the databases studied and the data analyzed. Sgmup representation in the U.S. In our study, we analyze

tions 1ll, IV, and V present results for the distribution of data with a recording frequency of less than 1 min that cover

returns for individual companies for a wide range of timethe 13 yr from January 1984 to December 1996. The total

scales. Section VI discusses the role of cross-correlationsumber of data points in this 13-yr period exceeds 4.5

between companies and possible reasons why market indices10°.

have statistical properties very similar to those of individual

companies. Section VII contains some concluding remarks.  |j|. DISTRIBUTION OF RETURNS FOR AT<1 DAY

The basic quantity studied for individual companigs—
Il. DATA ANALYZED =1,2,...,1000—is the market capitalizatid(t), defined

We analyze two different databases covering securitied> the share price multiplied by the number of outstanding

from the three major U.S. stock markets, naméilythe New Shares. The timéruns over the working hours of the stock
" N . exchange—removing nights, weekends, and holid@2A.

York Stock ExchangéNYSE), (ii) the American Stock Ex- For each company. we analvze the return

change(AMEX), and(iii) the National Association of Secu- pany, y

rities Dealers Automated QuotatidiNasdag stock market. G,=G;(t,At)=InS,(t+At)—InS(1). (1)

The NYSE is the oldest stock exchange, tracing its origin to

the Buttonwood Agreement of 17927]. The NYSE is an  For small changes i (t), the returnG(t,At) is approxi-

agency auction market, that is, trading at the NYSE takesnately the forward relative change

place by open bids and offers by Exchange members, acting

as agents for institutions or individual investors. Buy and sell S(t+At)—S(t)

orders are brought to the trading floor, and prices are deter- Gi(t,At)~ T @

mined by the interplay of supply and demand. As of the end

of November 1998, the NYSE listed over 3100 companiesFor time scales shorter than 1 day, we analyze the data from

These companies have ovek20' shares, worth approxi- the TAQ database. We consider the largest 1000 companies

mately 16%in U.S. dollars, available for trading on the Ex- [23], in decreasing order of values of their market capitali-

change. zation on the first trading day, 3 January 1994. We sample
In contrast to the NYSE, Nasdaq uses computers and telehe price of these 1000 companies at 5-min inter{/248. In

communication networks which create an electronic tradingrder to obtain time series for market capitalization, we mul-

system wherein the market participants meet over the comtiply the stock price of each company by the number of out-

puter rather than face to face. Nasdag's share volumstanding shares for that company at each sampling time. We

reached 1.8 10" shares in 1997, and dollar volume reachedthereby generate a time series, sampled at 5-min intervals,

4.4x10%in U.S. dollars. As of December 1998, the Nasdagfor the market capitalizations of each of the largest 1000

Stock Market listed over 5400 U.S. and non-U.S. companiesompanies. Each of the 1000 time series has approximately

[18]. Nasdag and AMEX merged in October 1998, after the40 000 data points—corresponding to the number of 5-min

end of the period studied in this work. intervals in the 2-yr period—or about 40 million data points
The first database we consider is the trades and quotés total. For each time series of market capitalizations, we

(TAQ) databasé19], for which we analyze the 2-yr period compute the 5-min returns using Ea). We filter the data to

January 1994 to December 1995. The TAQ database, whiclemove spurious events, such as occur due to the inevitable

has been published by the NYSE since 1993, cowadrs recording error$25].

trades at the three major U.S. stock markets. This huge da-

tabase is available in the form of CD-ROM'’s. The rate of A. Distribution of returns for At=5 min

publication was one CD-ROM per month for the period stud- . L

ied, but recently has increased to 2—3 CD-ROM's per month, Figure Xa) shows the cumulative distributions of returns

The total number of transactions for the largest 1000 stockSi for At=5 min—the probability of a return larger than or
is of the order of 18in the 2-yr period studied. equal to a threshold—for ten individual companies randomly

The second database we analyze is the Center for reelected from the 1000 companies that we analyze. For each

search and Security Pricé6RSP databasg20]. The CRSP companyi, the asymptotic behavior of the functional form of
stock files cover common stocks listed on the NYSE begin-the cumulative distribution is “visually” consistent with a
ning in 1925, on the AMEX beginning in 1962, and on the POWer law,

Nasdaq Stock Market beginning in 1972. The files provide

complete historical descriptive information and market data P(G,>X)~ i 3
including comprehensive distribution information; high, low, X%

and closing prices; trading volumes; shares outstanding; and

total returng 21]. where «; is the exponent characterizing the power-law de-

The CRSP stock files provide monthly data for the NYSEcay. In Fig. 1b) we show the histogram fos;, obtained
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FIG. 1. () Cumulative distributiond?(g>x) for the positive tails of ten randomly selected companies. Note that they are all consistent
with a power-law asymptotic behavidh) The histogram of the power-law exponents obtained by power-law regression fits to the individual
cumulative distribution functions, where the fit is for allarger than two standard deviations. Note that this histogram is not normalized—
they axis indicates the number of occurrences of the exporienCumulative distributions of the ten randomly chosen companida)in
scaled by the standard deviation calculated from the entire 2-yr period.

from power-law regression fits to the positive tails of thenormalized returns. The cumulative distributid®(g>x)
individual cumulative distributions of all 1000 companies shows a power-law decdyig. 2(a)]
studied. The histogram has the most probable valyg
~3. 1
Next we compute the time-averaged volatility; P(g>x)~—. (6)
=v;(At) of companyi as the standard deviation of the re- X
turns over the 2-yr period o ) )
Regression fits in the region=2g=<80 vyield
vP=(Ghr—(G)3, @ o
3.10+0.03 (positive tai)

= . 7
2.84+0.12 (negative tall. 0

where(- - - )7 denotes a time average over the 40000 data a
points of each time series, for the 2-yr period studied. Figure

1(a) suggests that the widths of the individual distributions
differ for different companies; indeed, companies with small ; . .
values of market capitalization are likely to fluctuate more.Stable Ly range, which requires Qa<2.

: : . In order to obtain an alternative estimate fgrwe use the
In order to compare the returns of different companies with X :
different volatilities, we define the normalized retumn methods of Refs[12,14-16,2F We first calculate the in-

verse of the local logarithmic slope oP(g), ¢ %(g)

These estimatg®6] of the exponentr are well outside the

=0i(LAY as =dInP(g)/dIn g, whereg is rank ordered. We then estimate
Gi—(G)7 the asymptotic sloper by extrapolatingl as a function of
o= — (5) 1/g—0. Figure 3 shows the results for the negative and posi-
|

tive tails, for the 5-min returns for individual companies,
each using all returns larger than five standard deviations.

Figure Xc) shows the ten cumulative distributions of the > . L )
Extrapolation of the linear regression lines yields

normalized returng); for the same ten companies as in Fig
1(a). The distributions for all 1000 normalized returgs . .
have similar functional forms to these ten. Hence, to obtain w= 2.84+0.12 (positive tai)
better statistics, we computesingle distribution of all the 2.73+0.13 (negative talil.

®
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FIG. 2. (a) Cumulative distributions of the positive and negative tails of the normalized returns of the 1000 largest companies in the TAQ
database for the 2-yr period 1994—-1995. The solid line is a power-law regression fit in the regien8®. (b) Probability density function
of the normalized returns. The values in the center of the distribution arise from the discreteness in stock prices, which are set in units of
fractions of U.S. dollars, usually 1/8, 1/16, or 1/32. The solid curve is a power-law fit in the regict=80. We finda=3.10+0.03 for
the positive tail, andv=2.84+0.12 for the negative tail.

B. Scaling of the distribution of returns for At<1 day tion (Fig. 4). The second is that companies with similar mar-

The next logical step would be to extend the previousket capitalizatio_n typically have similar volati_lities. Based on
procedure to time scales longer than 5 min. However, thid€S€ observations, we make the hypothesis that the market
approach leads to unreliable results, the reason being that tIL‘(@_pltallzatlon is an influential factor in determining the vola-
estimate of the time averaged volatility—used to define thé!'Y:
normalized returns of Eq5)—has estimation errors that in- Vi=Vvi(S,At) 9)
crease withAt. For the distribution of 5-min returns, the boonme
previous procedure relies on 40 000 data points per comparpfence we group the returns of all the companies into “bins”
for the estimation of the time averaged volatility. For 500- according to the market capitalization of each company at
min returns the number of data points available is reduced tehe beginning of the interval for which the return is com-
400 per company which leads to a much larger error in thgyuted. We then compute the conditional probability of Atte
estimate ofv;(At). returns for each of the bins of market capitalization. We

To circumvent the difficulty arising from the large uncer- define Gs=Gg(t,At) as theAt returns of the subset of all
tainty inv;(At), we use an alternative procedure for estimat-companies with market capitalizatid and we then calcu-
ing the Volatility [28—3]] which relies on two observations. late the cumulative conditional probab|||FMGS>)(|S) F|g_
The first is that volatility decreases with market capitaliza-yre 5a) showsP(Gs=x|S) for 30-min returns for four dif-

ferent bins ofS The functional form for each of the four

08 T Lt ' distributions is consistent with a power-law.
041 ° | We define a normalized return
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FIG. 3. The inverse . local slo.pe ofP(g), g (9)= 10° 10° 107 10° 10° 10"
—[dInP(g)/dIng] as a function of the inverse normalized returns Market capitalization

1/g for (a) the negative tail andb) the positive tail[16,27]. Each

data point shown is an average over 1000 events and the lines are FIG. 4. Log-log plot of the standard deviation of the distribution
linear regression fits to the data. The linear regression fit over thef returns as a function of market capitalization for=1 day. Our
range G=g=0.2 yields the values of the inverse asymptotic slopespreliminary data suggest a power-law dependence with exponent
l/a; we find «=2.84+0.12 for the positive tail andvk=2.73  B~0.2. This value is not unlike what was observed for the firm
+0.13 for the negative tail. Note that the average over all eventsales (3~ 1/6) [28], GDP of countries =~ 1/6) [29], and research
used would be identical to the estimator for the asymptotic slopéudgets B~ 1/4) [30]. For large values of market capitalization,
proposed by Hill[27]. this power law is followed by a “flat” region.
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FIG. 5. (@ Cumulative distribution of the conditional probabiliB(g>x|S) of the 30-min returns, for companies with market capitali-
zationS from the TAQ database. We define uniformly spaced bins on a logarithmic scale. We show the distribution of returns for the four
bins, 1608<S<10'2 10°0%<S<10'%% 10%%<S<10'%% and 16°6<S<10'°8 (b) Cumulative conditional distributions of returns nor-
malized by the average volatilitys(At) of each bin. Note that we find the same functional form for the different valu&s of

vi=(G%s(Gyg)s. (1)

In Fig. 5(b) we show the cumulative conditional probabil-
ity of the normalized 30-min return®(gs=x|S) for the
where(- - - )5 denotes an average over all returns of all com-same four bins shown in Fig.(&®. Visually, it seems clear
panies with market capitalizatio8 The average volatility that these distributions have power-law functional forms
vs=Vg(At) is defined through the relation with similar values ofa. Hence, to obtain better statistics,

Gs(At) —(Gg(At))s
vs(At) ’

gs=0s(t,At) (10)
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FIG. 6. (&) Cumulative distribution of normalized returns st =30 min. The filled squares show the distribution for returns normalized
by the time-averaged volatility for each company, as defined in(&qg.The circles show the distribution for returns normalized by the
average volatility for each size bjiEq. (10)], showing the consistency of these two meth@bsThe distribution of returns for different time
scalesAt<1 day. The exponents from the power-law regression fits are summarized in Tét)l€&rdactional moments from€9k<3 for
the normalized returns for the same scales ab)nNote that the moments are not converging to Gaussian behavior, for example, at large

k the moments foAt=280 min is to the right ofAt=320 min. The thick full line shows the Gaussian moments.
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TABLE I. The values of the exponent for different time scales  the same form as Ed6). Power-law regression fits to the
At obtained by(a) a power-law regression fit to the cumulative positive tail yield estimates af=3.21+0.08 for the former
distribution andb) the Hill estimator. The non-daggered values are method andy = 3.23+ 0.05 for the latter, confirming the con-
computed using the TAQ database, which contains tick data, Wh”%istency of the two procedures. The values of the exponent
the daggered values are computed using the CRSP database, whigh 30-min time scalesq=3.21+0.08 (positive tai) and

contains records witht=1 day andAt=1 month sampling. Note =3.01+0.12 (negative tajl, are also consistent with the es-
that we use the conversion 1 day390 min and 1 montk 22 day. timates[Eq. (7)] for 5-min normalized returns

Next we compute the distribution of returns for longer

At (min) P zower-lav'zl fit i P Ht'” estlmaltlor i time scalesAt. Figure &b) shows the cumulative distribu-
ostive cgative osttive €93V " tion of the normalized returns for time scales from 5 min up
5 3.10-0.03 2.84-0.12 2.84-0.12 2.73-0.13 to 1 day. We observe good “data collapse” with consistent
10 3.32-0.08 2.89-0.13 3.14-0.10 2.68-0.14 values of@ which suggests that the distribution of returns
20 3.25-0.08 2.75-0.10 3.32-0.18 2.4t 0.10 appears to retain its' functiona}l form for largkt, beyor_1d a
40 3.28-0.08 2.61-0.10 3.39-0.16 2.62-0.11 lower bound which is apprOX|mater the same for different
80 3.50-0.13 2.49-0.11 3.65-0.26 2.53-0.14 At. Note that we do not find any indication of the distribu-
160 347-0.08 2.420.09 2.9-04 253017 tion converging to Gaussian behavior for small returns. For
320 360:0.10 2.540.10 3.32-0.08 3.19-0.05 example, consider the sum of independent, nonstable, power-
390 296-009 270-0.10 3.05-013 2.95-015 law distributed random variables. Then the power-law be-
280 3'0%0'03 2'62 0'04 3'1t0'09 2'9&0'12 havior is pushed further out into the tails with an increasing
o ' ' ' ' ' ' number of variables summed, with Gaussian behavior for
;igg géig'gg EZi 8'82 2'3&8'% z'gig'ég low values. However, our results are inconsistent with this
6240 3'4&0'04 2.74: 0‘12 3'3&0'04 2‘9&0'07 possibility, as we do not observe any indication of such con-

vergence to Gaussian behavior. The estimates of the expo-
12 480 3.73£0.04 263006 3.540.05 2.920.08 nenta from power-law regression fits to the cumulative dis-
24 960 3.98:0.09 278007 3.8%009 3.00-0.10 tribution and from the Hill estimator are listed in Table I.
49920 424+0.09 284007 452022 3.10-0.18  Npote also that the scaling of the distribution of returns for
99840 506007 301007 45:0.6 292019 jndividual companies is consistent with previous results for

199680 524+0.12 3.3200.06 56:1.0 3.14:0.13  the distribution of the S&P 500 index returfig 16].
399 360 6.43+0.29 3.480.07 5.11*0.03 3.45-0.02

C. Scaling of the moments forAt<1 day
we consider the normalized returns for all valuesSodind
compute asingle cumulative distribution.

Figure §a) shows the distribution of normalized 30-min
returns. We test if our alternative procedure of normalizing
the returns by the time averaged volatility for each bin of
market capitalizatiors is consistent with the previous proce- Mkz<|g|k>, (12
dure of normalizing by the time averaged volatility for each
company through EqJ5). To this end, in Fig. @), we also
show the distribution of normalized 30-min returns using thewhere(- - -) denotes an average over all the normalized re-
normalization of Eq(5). The distribution of returns obtained turns for all the bins. Since~3, we expeciu to diverge
by both procedures are consistent with a power-law decay dbr k=3, and hence we compujg, for k<3.

In Sec. Il B we reported that the distribution of returns
retains the same functional form for 5 minAt<< 1 day. We
can further test this scaling behavior by analyzing the mo-
ments of the distribution of normalized returgs
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FIG. 7. (8 Cumulative distribution of the conditional probabiliB(g>x|S) of the returns for companies with starting values of market
capitalization S forAt=1 day from the CRSP database. We define uniformly spaced bins on a logarithmic scale and show the distribution
of returns for the bins, P& S<10®, 1P<S<10, 10<S<10®, and 1§<S<10°. (b) Cumulative conditional distributions of returns
normalized by the average volatilitys(At) of each bin.
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FIG. 8. (a) Cumulative distribution of normalized daily returns computed from the CRSP database contrasted with the same distribution
from the TAQ database, normalized by the average volatility. Regression fits yield estima®96+ 0.09 (positive tai), and «=2.70
+0.10 (negative tail for the CRSP data, and=3.27+0.19 (positive tai) and «=2.98+0.21 (negative tail for the TAQ data. The
regression fits were performed for the regios @<80. (b) Positive and(c) negative tails of the cumulative distribution of normalized
returns forAt=1,4, and 16 day. Estimates of the exponents are listed in Takdg The fractional momentg,=(|g|*) for the normalized
returns for the same time scales. The thick full line shows the Gaussian moments.

Figure Gc) shows the moments of the normalized returnslogarithmic scale. We then compute a separate probability
g for different time scales from 5 min up to 1 day. The distribution for the return&s which belong to a bin of av-
moments do not vary significantly for the above time scalesgrage market capitalizatio®

thus confirming the scaling behavior of the distribution ob-  Figure 7a) shows the cumulative distribution of daily re-
served in Fig @). turnsP(Gg>x|S) for different values ofs. Since the widths

of these distributions are different for differegtwe analyze
the normalized returngg, which were defined in Eq10).

Figure 7b) shows the cumulative distributioR(gs>Xx)
of the normalized daily returngs. These distributions ap-
pear to have similar functional forms for different values of

For time scales of 1 day or longer, we analyze data fronS. In order to improve statistics, we computsiagle cumu-
the CRSP database. We analyze approximately< 38 lative distributionP(gs>x) of the normalized returns for all
daily records for about 16 000 companies for the 35-yr peS We observe a power-law behavior of the same form as Eq.
riod 1962—96. We expect the market capitalization of a com{6). Regression fits yield estimates for the exponemt,
pany to change dramatically in such a long period of time.=2.96+0.09 for the positive tail and=2.70+0.10 for the
Further, we expect small companies to be more volatile thanegative tail.
large companies. Hence large changes that might occur in Figure 8a) compares the cumulative distributions of the
the market capitalization of a company will lead to large normalized 1-day returns obtained from the CRSP and TAQ
changes in its average volatility. To control these changes idatabases. The estimates of the power-law exponents ob-
market capitalization, we adopt the method that was used itained from regression fits are in good agreement for these
the previous subsection fdtt>5 min. two databases.

Thus, we compute the cumulative conditional probability  Figures 8b) and &c) show the distributions of normalized
P(Gg=x|S) that the returrGs=Gg(t,At) is greater tharx, returns forAt=1, 4, and 16 day. The estimates of the expo-
for a given bin of average market capitalizatiSnWe first  nent« increase slightly in value for the positive tail, while
divide the entire range o into bins of uniform length in  for the negative tail the estimates af are approximately

IV. DISTRIBUTION OF RETURNS FOR
1 DAY <At=<16 DAY
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FIG. 9. (a) Positive andb) negative tails of the cumulative distribution of the normalized returng\for 16, 64, 256, and 1024 day.
The positive tail shows clear indication of convergence to Gaussian behavior, whereas for the negative tail the power-law behavior still
seems to hold, although the statistics at the tail are limited for the longer time scales. Estimates of the exponents are listed(i) Thble I.
fractional momentgs, , 0<k<3, of the normalized returns fakt=16, 64, 256, and 1024 day show clear indication of convergence to

Gaussian behavior with increasidg.

constant. The increase im for the positive tail is also re-
flected in the momentFig. 8d)].

V. DISTRIBUTION OF RETURNS FOR At=16 DAY

tions of slow convergence to Gaussian behavior. In Figs. 9
and 9b) we show the cumulative distributions of the normal-
ized returns forAt=16 day. For the positive tail, we find
indications of convergence to a Gaussian, while the negative
tail appears not to converge. The convergence to Gaussian

The scaling behavior of the distributions of returns ap-behavior is also apparent from the behavior of the moments
pears to break down fakt=16 day, and we observe indica- for these time scalgg=ig. 9c)].
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FIG. 10. The values of the exponemtcharacterizing the asymptotic power-law behavior of the distribution of returns as a function of
the time scalé\t obtained usinda) a power-law fit, andb) the Hill estimator. The values @i for At<1 day are calculated from the TAQ
database, while foAt=1 day they are calculated from the CRSP database. The unshaded region, corresponding to time scales larger than
(At) «~16 day(6240 min, indicates the range of time scales where we find results consistent with slow convergence to Gaussian behavior.
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FIG. 11. (a) Positive andb) negative tails of the cumulative distribution for the normalized returns for the individual companies and the
S&P 500 index. Both the distributions show the same functional form, in spite of being a nonstahle) [@wmulative distribution for the
shuffled returng™(t,At) for N=1, 10, 100, and 500. The dotted curve is the cumulative distribution for the S&P 500. With increasing
N the curves progressively approach a Gaussian, implying that without the cross-dependencies between companies, the cumulative distri-
bution for the S&P 500 would be almost Gaussian.

To summarize our results for the distribution of individual computing the cross-correlation matri82—-34. Here we
company returns, we find th& the distribution of normal- take a different approach, by analyzing the distribution of
ized returns for individual companies is consistent with areturns as a function of market capitalization.
power-law behavior characterized by an exponent3; (i) First we compare the distributions of the S&P 500 index
the distributions of returns retain the same functional formand that of individual companies. Figures(dland 11b)
for a wide range of time scalest, varying over three orders show the cumulative distributior?(g=x) for individual
of magnitude, 5 mins At<6240 min= 16 day; andiii) for =~ companies and for the S&P 500 index. The distributions
At>16 day; the distribution of returns appears to slowlyshow the same power-law behavior fox§=<80. This is

converge to a Gaussidfig. 10]. surprising, because the distribution of index returns
Gspsod(t,At) does not show convergence to Gaussian
VI. CROSS-CORRELATIONS behavior—even though the 500 distributions of individual

. . ) returnsG;(t,At) are not stable. Consider the family of index
In this section we address the second question that Westyrns defined as the partial sUsg|

posed initially. That is, why is it that the distribution of re-

turns for individual companies and for the S&P 500 index N

have the same asymptotic form? In the previous sections, we G(N)(t,At)EE w; Gi(t,At), (13

presented evidence that the distribution of returns scales for a i=1

wide range of time intervals. In a previous study], we

demonstrated that this scaling behavior is possibly due twhere the weightSNiESi/E}\‘:lSj have weak time depen-

time dependencies, in particular, volatility correlations. Next,dencie§36]. From the central limit theorem for random vari-

we will show that as the time correlations lead to the timeables with finite variance, we expect that the probability dis-

scaling of the distributions of returns, so do cross-tribution of G, would change systematically witN and

correlations among different companies lead to a functionaapproach a Gaussian for large provided there are no sig-

form of the distribution of returns of indices similar to that nificant dependencies among the retu@sfor differenti.

for single companies. Instead, we find that the distribution &, has the same
A direct way of analyzing the cross-correlations is by asymptotic behavior as that for individual companies.
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In order to show that the scaling behavior may be due taange of time scales from 30 m[i34] up to 1 day[32,33.
cross-correlations between companies, we first destroy arijhese studieg32—34 show that the largest eigenvalue of the
existing dependencies among the returns of different compaross-correlation matrix corresponds to correlations that per-
nies by randomizing each of the 1000 time sef&§t). By  vade the entire market, and a few other large eigenvalues
adding up the shuffled series, we construct a shuffled indegorrespond to clusters of companies that are correlated
return Gf,(,‘)(t) out of statistically independent companies amongst each other.
with the same distribution of returns. Figure(d@lshows the
cumulative distribution of the shuffled index returns ACKNOWLEDGMENTS
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down and we observe “slow” convergence to Gaussian be-

havior. We find that the average volatility for each bwg(At)

We also find that the distribution of returns of individual shows an interesting dependence on the market capitaliza-
companies and the S&P 500 index have the same asymptofiion. In Fig. 4, we plot the standard deviation as a function of
behavior. This scaling behavior does not hold when thesize on a log-log scale fakt=1 day. We find a power-law
cross-correlations between companies are destroyed, sudependence of the standard deviation of the returns on the
gesting the existence of correlations between companies —asarket capitalization, with exponet~0.2 very similar to
occurs in strongly interacting physical systems where powerthe values reported for the annual sales of fif@%-31], the
law correlations at the critical point result in scale-invariantGross Domestic Product of countrigz9] and the university
propertied37]. Recent studies of the cross-correlation matrixresearch budgets30]. For larger time scales the exponent
using methods of random matrix thedr§2—34 also show gradually decreases, approaching the vabie0.09 for At
the existence of correlations that are present through a wide 1000 day.
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