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Scaling of the distribution of price fluctuations of individual companies
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We present a phenomenological study of stock price fluctuations of individual companies. We systematically
analyze two different databases covering securities from the three major U.S. stock markets:~a! the New York
Stock Exchange,~b! the American Stock Exchange, and~c! the National Association of Securities Dealers
Automated Quotation stock market. Specifically, we consider~i! the trades and quotes database, for which we
analyze 40 million records for 1000 U.S. companies for the 2-yr period 1994–95; and~ii ! the Center for
Research and Security Prices database, for which we analyze 35 million daily records for approximately 16 000
companies in the 35-yr period 1962–96. We study the probability distribution of returns over varying time
scalesDt, whereDt varies by a factor of'105, from 5 min up to'4 yr. For time scales from 5 min up to
approximately 16 days, we find that the tails of the distributions can be well described by a power-law decay,
characterized by an exponent 2.5,},4, well outside the stable Le´vy regime 0,a,2. For time scalesDt
@(Dt)3'16 days, we observe results consistent with a slow convergence to Gaussian behavior. We also
analyze the role of cross correlations between the returns of different companies and relate these correlations
to the distribution of returns for market indices.@S1063-651X~99!11412-0#

PACS number~s!: 05.40.Fb, 05.45.Tp
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I. INTRODUCTION

The study of financial markets poses many challeng
questions. For example, how can one understand a stro
fluctuating system that is constantly driven by external inf
mation? And how can one account for the role of the fe
back between the markets and the outside world, or of
complex interactions between traders and assets? An ad
tage for the researcher trying to answer these questions i
availability of huge amounts of data for analysis. Indeed,
activities at financial markets result in several observab
such as the values of different market indices, the price
the different stocks, trading volumes, etc.

Some of the most widely studied market observables
the values of market indices. Previous empirical stud
@1–12# show that the distribution of fluctuations—measur
by the returns—of market indices has slow decaying ta
and that the distributions apparently retain the same fu
tional form for a range of time scales@1,2,6,7#. Fluctuations
in market indices reflect the average behavior of the p
fluctuations of the companies comprising them. For exam
the S&P 500 is defined as the sum of the market capital
tions ~stock price multiplied by the number of outstandin
shares! of 500 companies representative of the U
economy.

Here we focus on a more ‘‘microscopic’’ quantity: ind
vidual companies. We analyze the tick-by-tick data@13# for
the 1000 publicly-traded U.S. companies with the larg
market capitalizations, and systematically study the stat
cal properties of their stock price fluctuations. A prelimina
study@14# reported that the distribution of the 5-min retur
for 1000 individual companies and the S&P 500 index d
cays as a power-law with an exponenta'3—well outside
the stable Le´vy regime (a,2). Earlier independent studie
on individual stock returns on longer time scales yield sim
lar results@15#. These findings raise the following question
PRE 601063-651X/99/60~6!/6519~11!/$15.00
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First, how does the nature of the distribution of individu
stock returns change with increasing time scaleDt? In other
words, does the distribution retain its power-law function
form for longer time scales, or does it converge to a Gau
ian, as found for market indices@7,16#? If the distribution
indeed converges to Gaussian behavior, how fast does
convergence occur? For the S&P 500 index, for exam
one finds the distribution of returns to be consistent with
nonstablepower-law functional form (a'3) for approxi-
mately 4 day, after which an onset of convergence to Gau
ian behavior is found@16#.

Second, why is it that the distribution of returns for ind
vidual companies and for the S&P 500 index have the sa
asymptotic form? This finding is unexpected, since the
turns of the S&P 500 are the weighted sums of the return
500 companies. Hence, we would expect, the S&P 500
turns to be distributed approximately as a Gaussian, un
there were significant dependencies between the return
different companies which prevent the central limit theore
from applying.

To answer the first question, we extend previous wo
@14# on the distribution of returns for 5-min returns by pe
forming an empirical analysis of individual company retur
for time scales up to 46 month. Our analysis uses two d
tinct databases detailed below. We find that the cumula
distribution of individual-company returns is consistent w
a power-law asymptotic behavior with an exponenta'3,
which is outside the stable Le´vy regime. We also find tha
these distributions appear to retain the same functional f
for time scales up to approximately 16 day. For longer tim
scales, we observe results consistent with a slow con
gence to Gaussian behavior.

To answer the second question, we randomize each o
500 time series of returns for the constituent 500 stocks
the S&P 500 index. A surrogate ‘‘index return,’’ thus co
structed from the randomized time series, shows fast con
6519 © 1999 The American Physical Society
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6520 PRE 60VASILIKI PLEROU et al.
gence to Gaussian behavior. Further, we find that the fu
tional form of the distribution of returns remains unchang
for different system sizes~measured by the market capita
zation!, while the standard deviation decays as a power
of the market capitalization.

The organization of this paper is as follows. Section
describes the databases studied and the data analyzed
tions III, IV, and V present results for the distribution o
returns for individual companies for a wide range of tim
scales. Section VI discusses the role of cross-correlat
between companies and possible reasons why market ind
have statistical properties very similar to those of individu
companies. Section VII contains some concluding remar

II. DATA ANALYZED

We analyze two different databases covering securi
from the three major U.S. stock markets, namely,~i! the New
York Stock Exchange~NYSE!, ~ii ! the American Stock Ex-
change~AMEX !, and~iii ! the National Association of Secu
rities Dealers Automated Quotation~Nasdaq! stock market.
The NYSE is the oldest stock exchange, tracing its origin
the Buttonwood Agreement of 1792@17#. The NYSE is an
agency auction market, that is, trading at the NYSE ta
place by open bids and offers by Exchange members, ac
as agents for institutions or individual investors. Buy and s
orders are brought to the trading floor, and prices are de
mined by the interplay of supply and demand. As of the e
of November 1998, the NYSE listed over 3100 compan
These companies have over 231011 shares, worth approxi
mately 1013 in U.S. dollars, available for trading on the Ex
change.

In contrast to the NYSE, Nasdaq uses computers and
communication networks which create an electronic trad
system wherein the market participants meet over the c
puter rather than face to face. Nasdaq’s share volu
reached 1.631011 shares in 1997, and dollar volume reach
4.431012 in U.S. dollars. As of December 1998, the Nasd
Stock Market listed over 5400 U.S. and non-U.S. compan
@18#. Nasdaq and AMEX merged in October 1998, after
end of the period studied in this work.

The first database we consider is the trades and qu
~TAQ! database@19#, for which we analyze the 2-yr perio
January 1994 to December 1995. The TAQ database, w
has been published by the NYSE since 1993, coversall
trades at the three major U.S. stock markets. This huge
tabase is available in the form of CD-ROM’s. The rate
publication was one CD-ROM per month for the period stu
ied, but recently has increased to 2–3 CD-ROM’s per mon
The total number of transactions for the largest 1000 sto
is of the order of 109 in the 2-yr period studied.

The second database we analyze is the Center for
search and Security Prices~CRSP! database@20#. The CRSP
stock files cover common stocks listed on the NYSE beg
ning in 1925, on the AMEX beginning in 1962, and on t
Nasdaq Stock Market beginning in 1972. The files prov
complete historical descriptive information and market d
including comprehensive distribution information; high, lo
and closing prices; trading volumes; shares outstanding;
total returns@21#.

The CRSP stock files provide monthly data for the NYS
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beginning in December 1925 and daily data beginning
July 1962. For the AMEX, both monthly and daily data b
gin in July 1962. For the Nasdaq stock market, both mont
and daily data begin in July 1972.

We also analyze the S&P 500 index, which comprises 5
companies chosen for market size, liquidity, and indus
group representation in the U.S. In our study, we anal
data with a recording frequency of less than 1 min that co
the 13 yr from January 1984 to December 1996. The to
number of data points in this 13-yr period exceeds
3106.

III. DISTRIBUTION OF RETURNS FOR DT<1 DAY

The basic quantity studied for individual companies—i
51,2,. . . ,1000—is the market capitalizationSi(t), defined
as the share price multiplied by the number of outstand
shares. The timet runs over the working hours of the stoc
exchange—removing nights, weekends, and holidays@22#.
For each company, we analyze the return

Gi[Gi~ t,Dt ![ ln Si~ t1Dt !2 ln Si~ t !. ~1!

For small changes inSi(t), the returnGi(t,Dt) is approxi-
mately the forward relative change

Gi~ t,Dt !'
Si~ t1Dt !2Si~ t !

Si~ t !
. ~2!

For time scales shorter than 1 day, we analyze the data f
the TAQ database. We consider the largest 1000 compa
@23#, in decreasing order of values of their market capita
zation on the first trading day, 3 January 1994. We sam
the price of these 1000 companies at 5-min intervals@24#. In
order to obtain time series for market capitalization, we m
tiply the stock price of each company by the number of o
standing shares for that company at each sampling time.
thereby generate a time series, sampled at 5-min interv
for the market capitalizations of each of the largest 10
companies. Each of the 1000 time series has approxima
40 000 data points—corresponding to the number of 5-m
intervals in the 2-yr period—or about 40 million data poin
in total. For each time series of market capitalizations,
compute the 5-min returns using Eq.~1!. We filter the data to
remove spurious events, such as occur due to the inevit
recording errors@25#.

A. Distribution of returns for Dt55 min

Figure 1~a! shows the cumulative distributions of return
Gi for Dt55 min—the probability of a return larger than o
equal to a threshold—for ten individual companies random
selected from the 1000 companies that we analyze. For e
companyi, the asymptotic behavior of the functional form o
the cumulative distribution is ‘‘visually’’ consistent with a
power law,

P~Gi.x!;
1

xa i
, ~3!

wherea i is the exponent characterizing the power-law d
cay. In Fig. 1~b! we show the histogram fora i , obtained
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PRE 60 6521SCALING OF THE DISTRIBUTION OF PRICE . . .
FIG. 1. ~a! Cumulative distributionsP(g.x) for the positive tails of ten randomly selected companies. Note that they are all cons
with a power-law asymptotic behavior.~b! The histogram of the power-law exponents obtained by power-law regression fits to the indi
cumulative distribution functions, where the fit is for allx larger than two standard deviations. Note that this histogram is not normaliz
the y axis indicates the number of occurrences of the exponent.~c! Cumulative distributions of the ten randomly chosen companies in~a!
scaled by the standard deviation calculated from the entire 2-yr period.
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from power-law regression fits to the positive tails of t
individual cumulative distributions of all 1000 compani
studied. The histogram has the most probable valueaM P
'3.

Next we compute the time-averaged volatilityv i
[v i(Dt) of companyi as the standard deviation of the r
turns over the 2-yr period

v i
2[^Gi

2&T2^Gi&T
2 , ~4!

where ^•••&T denotes a time average over the 40 000 d
points of each time series, for the 2-yr period studied. Fig
1~a! suggests that the widths of the individual distributio
differ for different companies; indeed, companies with sm
values of market capitalization are likely to fluctuate mo
In order to compare the returns of different companies w
different volatilities, we define the normalized returngi
[gi(t,Dt) as

gi[
Gi2^Gi&T

v i
. ~5!

Figure 1~c! shows the ten cumulative distributions of th
normalized returnsgi for the same ten companies as in F
1~a!. The distributions for all 1000 normalized returnsgi
have similar functional forms to these ten. Hence, to obt
better statistics, we compute asingle distribution of all the
a
e

ll
.
h

n

normalized returns. The cumulative distributionP(g.x)
shows a power-law decay@Fig. 2~a!#

P~g.x!;
1

xa
. ~6!

Regression fits in the region 2<g<80 yield

a5H 3.1060.03 ~positive tail!

2.8460.12 ~negative tail!.
~7!

These estimates@26# of the exponenta are well outside the
stable Lévy range, which requires 0,a,2.

In order to obtain an alternative estimate fora, we use the
methods of Refs.@12,14–16,27#. We first calculate the in-
verse of the local logarithmic slope ofP(g), z21(g)
[d ln P(g)/d ln g, whereg is rank ordered. We then estima
the asymptotic slopea by extrapolatingz as a function of
1/g→0. Figure 3 shows the results for the negative and po
tive tails, for the 5-min returns for individual companie
each using all returns larger than five standard deviatio
Extrapolation of the linear regression lines yields

a5H 2.8460.12 ~positive tail!

2.7360.13 ~negative tail!.
~8!
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FIG. 2. ~a! Cumulative distributions of the positive and negative tails of the normalized returns of the 1000 largest companies in t
database for the 2-yr period 1994–1995. The solid line is a power-law regression fit in the region 2<x<80. ~b! Probability density function
of the normalized returns. The values in the center of the distribution arise from the discreteness in stock prices, which are set i
fractions of U.S. dollars, usually 1/8, 1/16, or 1/32. The solid curve is a power-law fit in the region 2<x<80. We finda53.1060.03 for
the positive tail, anda52.8460.12 for the negative tail.
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B. Scaling of the distribution of returns for Dt<1 day

The next logical step would be to extend the previo
procedure to time scales longer than 5 min. However,
approach leads to unreliable results, the reason being tha
estimate of the time averaged volatility—used to define
normalized returns of Eq.~5!—has estimation errors that in
crease withDt. For the distribution of 5-min returns, th
previous procedure relies on 40 000 data points per comp
for the estimation of the time averaged volatility. For 50
min returns the number of data points available is reduce
400 per company which leads to a much larger error in
estimate ofv i(Dt).

To circumvent the difficulty arising from the large unce
tainty in v i(Dt), we use an alternative procedure for estim
ing the volatility @28–31# which relies on two observations
The first is that volatility decreases with market capitaliz

FIG. 3. The inverse local slope ofP(g), z21(g)[
2@d ln P(g)/d ln g# as a function of the inverse normalized retur
1/g for ~a! the negative tail and~b! the positive tail@16,27#. Each
data point shown is an average over 1000 events and the line
linear regression fits to the data. The linear regression fit over
range 0<g<0.2 yields the values of the inverse asymptotic slop
1/a; we find a52.8460.12 for the positive tail anda52.73
60.13 for the negative tail. Note that the average over all eve
used would be identical to the estimator for the asymptotic sl
proposed by Hill@27#.
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tion ~Fig. 4!. The second is that companies with similar ma
ket capitalization typically have similar volatilities. Based o
these observations, we make the hypothesis that the ma
capitalization is an influential factor in determining the vol
tility:

v i5v i~S,Dt !. ~9!

Hence we group the returns of all the companies into ‘‘bin
according to the market capitalization of each company
the beginning of the interval for which the return is com
puted. We then compute the conditional probability of theDt
returns for each of the bins of market capitalization. W
defineGS[GS(t,Dt) as theDt returns of the subset of al
companies with market capitalizationS, and we then calcu-
late the cumulative conditional probabilityP(GS>xuS). Fig-
ure 5~a! showsP(GS>xuS) for 30-min returns for four dif-
ferent bins ofS. The functional form for each of the fou
distributions is consistent with a power-law.

We define a normalized return

are
e
,

ts
e

FIG. 4. Log-log plot of the standard deviation of the distributio
of returns as a function of market capitalization forDt51 day. Our
preliminary data suggest a power-law dependence with expo
b'0.2. This value is not unlike what was observed for the fi
sales (b'1/6) @28#, GDP of countries (b'1/6) @29#, and research
budgets (b'1/4) @30#. For large values of market capitalization
this power law is followed by a ‘‘flat’’ region.
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FIG. 5. ~a! Cumulative distribution of the conditional probabilityP(g.xuS) of the 30-min returns, for companies with market capita
zationS, from the TAQ database. We define uniformly spaced bins on a logarithmic scale. We show the distribution of returns for
bins, 109.8,S<1010.2, 1010.2,S<1010.4, 1010.4,S<1010.6, and 1010.6,S<1010.8. ~b! Cumulative conditional distributions of returns no
malized by the average volatilityvS(Dt) of each bin. Note that we find the same functional form for the different values ofS.
m

il-

s
s,
gS[gS~ t,Dt ![
GS~Dt !2^GS~Dt !&S

vS~Dt !
, ~10!

where^•••&S denotes an average over all returns of all co
panies with market capitalizationS. The average volatility
vS[vS(Dt) is defined through the relation
-

vS
2[^GS

2&S2^GS&S
2 . ~11!

In Fig. 5~b! we show the cumulative conditional probab
ity of the normalized 30-min returnsP(gS>xuS) for the
same four bins shown in Fig. 5~a!. Visually, it seems clear
that these distributions have power-law functional form
with similar values ofa. Hence, to obtain better statistic
zed
he

t large
FIG. 6. ~a! Cumulative distribution of normalized returns forDt530 min. The filled squares show the distribution for returns normali
by the time-averaged volatility for each company, as defined in Eq.~5!. The circles show the distribution for returns normalized by t
average volatility for each size bin@Eq. ~10!#, showing the consistency of these two methods.~b! The distribution of returns for different time
scalesDt<1 day. The exponents from the power-law regression fits are summarized in Table I.~c! Fractional moments from 0<k,3 for
the normalized returns for the same scales as in~b!. Note that the moments are not converging to Gaussian behavior, for example, a
k the moments forDt580 min is to the right ofDt5320 min. The thick full line shows the Gaussian moments.
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6524 PRE 60VASILIKI PLEROU et al.
we consider the normalized returns for all values ofS and
compute asinglecumulative distribution.

Figure 6~a! shows the distribution of normalized 30-m
returns. We test if our alternative procedure of normaliz
the returns by the time averaged volatility for each bin
market capitalizationS is consistent with the previous proce
dure of normalizing by the time averaged volatility for ea
company through Eq.~5!. To this end, in Fig. 6~a!, we also
show the distribution of normalized 30-min returns using
normalization of Eq.~5!. The distribution of returns obtaine
by both procedures are consistent with a power-law deca

TABLE I. The values of the exponenta for different time scales
Dt obtained by~a! a power-law regression fit to the cumulativ
distribution and~b! the Hill estimator. The non-daggered values a
computed using the TAQ database, which contains tick data, w
the daggered values are computed using the CRSP database,
contains records withDt51 day andDt51 month sampling. Note
that we use the conversion 1 day5 390 min and 1 month5 22 day.

Dt ~min! Power-law fit Hill estimator
Positive Negative Positive Negative

5 3.1060.03 2.8460.12 2.8460.12 2.7360.13
10 3.3260.08 2.8960.13 3.1460.10 2.6860.14
20 3.2560.08 2.7560.10 3.3260.18 2.4160.10
40 3.2860.08 2.6160.10 3.3960.16 2.6260.11
80 3.5060.13 2.4960.11 3.6560.26 2.5360.14
160 3.4760.08 2.4260.09 2.960.4 2.5360.17
320 3.6060.10 2.5460.10 3.3260.08 3.1960.05
390† 2.9660.09 2.7060.10 3.0560.13 2.9560.15
780† 3.0960.03 2.6260.04 3.1160.09 2.9060.12
1560† 3.1860.05 2.7560.09 3.2060.08 2.9060.10
3120† 3.3160.08 2.7160.03 3.2560.06 2.9460.09
6240† 3.4360.04 2.7460.12 3.3560.04 2.9360.07
12 480† 3.7360.04 2.6360.06 3.5460.05 2.9360.08
24 960† 3.9860.09 2.7860.07 3.8960.09 3.0060.10
49 920† 4.2460.09 2.8460.07 4.5260.22 3.1060.18
99 840† 5.0660.07 3.0160.07 4.560.6 2.9260.19
199 680† 5.2460.12 3.3260.06 5.661.0 3.1460.13
399 360† 6.4360.29 3.4860.07 5.1160.03 3.4560.02
g
f

e

of

the same form as Eq.~6!. Power-law regression fits to th
positive tail yield estimates ofa53.2160.08 for the former
method anda53.2360.05 for the latter, confirming the con
sistency of the two procedures. The values of the expon
for 30-min time scales,a53.2160.08 ~positive tail! anda
53.0160.12 ~negative tail!, are also consistent with the es
timates@Eq. ~7!# for 5-min normalized returns.

Next we compute the distribution of returns for long
time scalesDt. Figure 6~b! shows the cumulative distribu
tion of the normalized returns for time scales from 5 min
to 1 day. We observe good ‘‘data collapse’’ with consiste
values ofa which suggests that the distribution of retur
appears to retain its functional form for largerDt, beyond a
lower bound which is approximately the same for differe
Dt. Note that we do not find any indication of the distrib
tion converging to Gaussian behavior for small returns. F
example, consider the sum of independent, nonstable, po
law distributed random variables. Then the power-law b
havior is pushed further out into the tails with an increas
number of variables summed, with Gaussian behavior
low values. However, our results are inconsistent with t
possibility, as we do not observe any indication of such c
vergence to Gaussian behavior. The estimates of the e
nenta from power-law regression fits to the cumulative d
tribution and from the Hill estimator are listed in Table
Note also that the scaling of the distribution of returns
individual companies is consistent with previous results
the distribution of the S&P 500 index returns@7,16#.

C. Scaling of the moments forDt<1 day

In Sec. III B we reported that the distribution of return
retains the same functional form for 5 min,Dt, 1 day. We
can further test this scaling behavior by analyzing the m
ments of the distribution of normalized returnsg,

mk[^uguk&, ~12!

where^•••& denotes an average over all the normalized
turns for all the bins. Sincea'3, we expectmk to diverge
for k>3, and hence we computemk for k,3.

le
ich
ket
tribution
s

FIG. 7. ~a! Cumulative distribution of the conditional probabilityP(g.xuS) of the returns for companies with starting values of mar
capitalization S forDt51 day from the CRSP database. We define uniformly spaced bins on a logarithmic scale and show the dis
of returns for the bins, 105,S<106, 106,S<107, 107,S<108, and 108,S<109. ~b! Cumulative conditional distributions of return
normalized by the average volatilityvS(Dt) of each bin.
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FIG. 8. ~a! Cumulative distribution of normalized daily returns computed from the CRSP database contrasted with the same dis
from the TAQ database, normalized by the average volatility. Regression fits yield estimatesa52.9660.09 ~positive tail!, anda52.70
60.10 ~negative tail! for the CRSP data, anda53.2760.19 ~positive tail! and a52.9860.21 ~negative tail! for the TAQ data. The
regression fits were performed for the region 2<g<80. ~b! Positive and~c! negative tails of the cumulative distribution of normalize
returns forDt51,4, and 16 day. Estimates of the exponents are listed in Table I.~d! The fractional momentsmk[^uguk& for the normalized
returns for the same time scales. The thick full line shows the Gaussian moments.
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Figure 6~c! shows the moments of the normalized retur
g for different time scales from 5 min up to 1 day. Th
moments do not vary significantly for the above time sca
thus confirming the scaling behavior of the distribution o
served in Fig 6~b!.

IV. DISTRIBUTION OF RETURNS FOR
1 DAY <Dt<16 DAY

For time scales of 1 day or longer, we analyze data fr
the CRSP database. We analyze approximately 3.53107

daily records for about 16 000 companies for the 35-yr
riod 1962–96. We expect the market capitalization of a co
pany to change dramatically in such a long period of tim
Further, we expect small companies to be more volatile t
large companies. Hence large changes that might occu
the market capitalization of a company will lead to lar
changes in its average volatility. To control these change
market capitalization, we adopt the method that was use
the previous subsection forDt.5 min.

Thus, we compute the cumulative conditional probabil
P(GS>xuS) that the returnGS[GS(t,Dt) is greater thanx,
for a given bin of average market capitalizationS. We first
divide the entire range ofS into bins of uniform length in
s

s,
-

-
-
.
n
in

in
in

logarithmic scale. We then compute a separate probab
distribution for the returnsGS which belong to a bin of av-
erage market capitalizationS.

Figure 7~a! shows the cumulative distribution of daily re
turnsP(GS.xuS) for different values ofS. Since the widths
of these distributions are different for differentS, we analyze
the normalized returnsgS , which were defined in Eq.~10!.

Figure 7~b! shows the cumulative distributionP(gS.x)
of the normalized daily returnsgS . These distributions ap
pear to have similar functional forms for different values
S. In order to improve statistics, we compute asinglecumu-
lative distributionP(gS.x) of the normalized returns for al
S. We observe a power-law behavior of the same form as
~6!. Regression fits yield estimates for the exponent,a
52.9660.09 for the positive tail anda52.7060.10 for the
negative tail.

Figure 8~a! compares the cumulative distributions of th
normalized 1-day returns obtained from the CRSP and T
databases. The estimates of the power-law exponents
tained from regression fits are in good agreement for th
two databases.

Figures 8~b! and 8~c! show the distributions of normalize
returns forDt51, 4, and 16 day. The estimates of the exp
nent a increase slightly in value for the positive tail, whil
for the negative tail the estimates ofa are approximately
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FIG. 9. ~a! Positive and~b! negative tails of the cumulative distribution of the normalized returns forDt516, 64, 256, and 1024 day
The positive tail shows clear indication of convergence to Gaussian behavior, whereas for the negative tail the power-law beh
seems to hold, although the statistics at the tail are limited for the longer time scales. Estimates of the exponents are listed in Table~c! The
fractional momentsmk , 0<k,3, of the normalized returns forDt516, 64, 256, and 1024 day show clear indication of convergenc
Gaussian behavior with increasingDt.
p
-

l-

tive
sian
nts
constant. The increase ina for the positive tail is also re-
flected in the moments@Fig. 8~d!#.

V. DISTRIBUTION OF RETURNS FOR Dt>16 DAY

The scaling behavior of the distributions of returns a
pears to break down forDt>16 day, and we observe indica
-

tions of slow convergence to Gaussian behavior. In Figs. 9~a!
and 9~b! we show the cumulative distributions of the norma
ized returns forDt>16 day. For the positive tail, we find
indications of convergence to a Gaussian, while the nega
tail appears not to converge. The convergence to Gaus
behavior is also apparent from the behavior of the mome
for these time scales@Fig. 9~c!#.
on of

rger than
ehavior.
FIG. 10. The values of the exponenta characterizing the asymptotic power-law behavior of the distribution of returns as a functi
the time scaleDt obtained using~a! a power-law fit, and~b! the Hill estimator. The values ofa for Dt,1 day are calculated from the TAQ
database, while forDt>1 day they are calculated from the CRSP database. The unshaded region, corresponding to time scales la
(Dt)3'16 day~6240 min!, indicates the range of time scales where we find results consistent with slow convergence to Gaussian b
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FIG. 11. ~a! Positive and~b! negative tails of the cumulative distribution for the normalized returns for the individual companies an
S&P 500 index. Both the distributions show the same functional form, in spite of being a nonstable law.~c! Cumulative distribution for the

shuffled returnsg̃(N)(t,Dt) for N51, 10, 100, and 500. The dotted curve is the cumulative distribution for the S&P 500. With incre
N the curves progressively approach a Gaussian, implying that without the cross-dependencies between companies, the cumula
bution for the S&P 500 would be almost Gaussian.
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To summarize our results for the distribution of individu
company returns, we find that~i! the distribution of normal-
ized returns for individual companies is consistent with
power-law behavior characterized by an exponenta'3; ~ii !
the distributions of returns retain the same functional fo
for a wide range of time scalesDt, varying over three orders
of magnitude, 5 min<Dt<6240 min5 16 day; and~iii ! for
Dt.16 day; the distribution of returns appears to slow
converge to a Gaussian@Fig. 10#.

VI. CROSS-CORRELATIONS

In this section we address the second question that
posed initially. That is, why is it that the distribution of re
turns for individual companies and for the S&P 500 ind
have the same asymptotic form? In the previous sections
presented evidence that the distribution of returns scales
wide range of time intervals. In a previous study@16#, we
demonstrated that this scaling behavior is possibly due
time dependencies, in particular, volatility correlations. Ne
we will show that as the time correlations lead to the tim
scaling of the distributions of returns, so do cros
correlations among different companies lead to a functio
form of the distribution of returns of indices similar to th
for single companies.

A direct way of analyzing the cross-correlations is
e

e
r a

to
,

-
al

computing the cross-correlation matrix@32–34#. Here we
take a different approach, by analyzing the distribution
returns as a function of market capitalization.

First we compare the distributions of the S&P 500 ind
and that of individual companies. Figures 11~a! and 11~b!
show the cumulative distributionP(g>x) for individual
companies and for the S&P 500 index. The distributio
show the same power-law behavior for 3<g<80. This is
surprising, because the distribution of index retur
GSP500(t,Dt) does not show convergence to Gauss
behavior—even though the 500 distributions of individu
returnsGi(t,Dt) are not stable. Consider the family of inde
returns defined as the partial sum@35#

G(N)~ t,Dt ![(
i 51

N

wi Gi~ t,Dt !, ~13!

where the weightswi[Si /( j 51
N Sj have weak time depen

dencies@36#. From the central limit theorem for random var
ables with finite variance, we expect that the probability d
tribution of G(N) would change systematically withN and
approach a Gaussian for largeN, provided there are no sig
nificant dependencies among the returnsGi for different i.
Instead, we find that the distribution ofG(N) has the same
asymptotic behavior as that for individual companies.
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In order to show that the scaling behavior may be due
cross-correlations between companies, we first destroy
existing dependencies among the returns of different com
nies by randomizing each of the 1000 time seriesGi(t). By
adding up the shuffled series, we construct a shuffled in
return G(N)

sh (t) out of statistically independent compani
with the same distribution of returns. Figure 11~c! shows the
cumulative distribution of the shuffled index return
G(N)

sh (t,Dt) for increasingN andDt55 min. The distribution
changes withN, and approaches a Gaussian shape for la
N, which indicates that the scaling in Fig. 11~a! is caused by
nontrivial dependencies between different companies.

VII. DISCUSSION

We have presented a systematic analysis, on two diffe
databases, of the distribution of returns for individual co
panies for time scalesDt ranging from 5 min up to'4 yr.
We find that the distribution of returns is consistent with
power-law asymptotic behavior, characterized by an ex
nent a'3—well outside the stable Le´vy regime
0,a,2—for time scales up to approximately 16 day. F
longer time scales, the scaling behavior appears to b
down and we observe ‘‘slow’’ convergence to Gaussian
havior.

We also find that the distribution of returns of individu
companies and the S&P 500 index have the same asymp
behavior. This scaling behavior does not hold when
cross-correlations between companies are destroyed,
gesting the existence of correlations between companies
occurs in strongly interacting physical systems where pow
law correlations at the critical point result in scale-invaria
properties@37#. Recent studies of the cross-correlation mat
using methods of random matrix theory@32–34# also show
the existence of correlations that are present through a w
-
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range of time scales from 30 min@34# up to 1 day@32,33#.
These studies@32–34# show that the largest eigenvalue of th
cross-correlation matrix corresponds to correlations that p
vade the entire market, and a few other large eigenva
correspond to clusters of companies that are correla
amongst each other.
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APPENDIX: DEPENDENCE OF VOLATILITY ON SIZE

We find that the average volatility for each bin,vS(Dt)
shows an interesting dependence on the market capita
tion. In Fig. 4, we plot the standard deviation as a function
size on a log-log scale forDt51 day. We find a power-law
dependence of the standard deviation of the returns on
market capitalization, with exponentb'0.2 very similar to
the values reported for the annual sales of firms@28–31#, the
Gross Domestic Product of countries@29# and the university
research budgets@30#. For larger time scales the expone
gradually decreases, approaching the valueb'0.09 for Dt
51000 day.
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