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Dynami
s of market 
orrelations: Taxonomy and portfolio analysisJ.-P. Onnela, A. Chakraborti, K. KaskiLaboratory of Computational Engineering, Helsinki University of Te
hnology, P.O. Box 9203, FIN-02015 HUT, FinlandJ. KertészDepartment of Theoreti
al Physi
s, Budapest University of Te
hnology& E
onomi
s, Budafoki út 8, H-1111, Budapest, Hungary andLaboratory of Computational Engineering, Helsinki University of Te
hnology, P.O. Box 9203, FIN-02015 HUT, FinlandA. KantoDepartment of Quantitative Methods in E
onomi
s and Management S
ien
e,Helsinki S
hool of E
onomi
s, P.O.Box 1210, FIN-00101 Helsinki, FinlandThe time dependen
e of the re
ently introdu
ed minimum spanning tree des
ription of 
orrelationsbetween sto
ks, 
alled the �asset tree� have been studied to re�e
t the e
onomi
 taxonomy. Thenodes of the tree are identi�ed with sto
ks and the distan
e between them is a unique fun
tion of the
orresponding element of the 
orrelation matrix. By using the 
on
ept of a 
entral vertex, 
hosenas the most strongly 
onne
ted node of the tree, an important 
hara
teristi
 is de�ned by the meano

upation layer (MOL). During 
rashes the strong global 
orrelation in the market manifests itselfby a low value of MOL. The tree seems to have a s
ale free stru
ture where the s
aling exponent ofthe degree distribution is di�erent for `business as usual' and `
rash' periods. The basi
 stru
tureof the tree topology is very robust with respe
t to time. We also point out that the diversi�
ationaspe
t of portfolio optimization results in the fa
t that the assets of the 
lassi
 Markowitz portfolioare always lo
ated on the outer leaves of the tree. Te
hni
al aspe
ts like the window size dependen
eof the investigated quantities are also dis
ussed.I. INTRODUCTIONIn spite of the traditional wisdom �Money does notgrow on trees�, here we wish to show that the 
on
eptof trees (graphs) have potential appli
ations in �nan
ialmarket analysis. This 
on
ept was re
ently introdu
ed byMantegna as a method for �nding a hierar
hi
al arrange-ment of sto
ks through studying the 
lustering of 
ompa-nies by using 
orrelations of asset returns [1℄. With an ap-propriate metri
, based on the 
orrelation matrix, a fully
onne
ted graph was de�ned in whi
h the nodes are 
om-panies, or sto
ks, and the `distan
es' between them areobtained from the 
orresponding 
orrelation 
oe�
ients.The minimum spanning tree (MST) was generated fromthe graph by sele
ting the most important 
orrelationsand it is used to identify 
lusters of 
ompanies.In this paper, we study the time dependent propertiesof the minimum spanning tree and 
all it a `dynami
 assettree'. It should be mentioned that several attempts havebeen made to obtain 
lustering from the huge 
orrelationmatrix, like the Potts super paramagneti
 method [2℄,a method based on the maximum likelihood [3℄ or the
omparison of the eigenvalues with those given by therandom matrix theory [4℄. We have 
hosen the MSTbe
ause of its uniqueness and simpli
ity. The di�erentmethods are 
ompared in [3℄.Finan
ial markets are often 
hara
terized as evolving
omplex systems [5℄. The evolution is a re�e
tion ofthe 
hanging power stru
ture in the market and it man-ifests the passing of di�erent produ
ts and produ
t gen-erations, new te
hnologies, management teams, allian
esand partnerships, among many other fa
tors. This is why

exploring the asset tree dynami
s 
an provide us new in-sights to the market. We believe that dynami
 asset trees
an be used to simplify this 
omplexity in order to graspthe essen
e of the market without drowning in the abun-dan
e of information. We aim to derive intuitively un-derstandable measures, whi
h 
an be used to 
hara
terizethe market taxonomy and its state. A further 
hara
teri-zation of the asset tree is obtained by studying its degreedistribution [6℄. We will also study the robustness of treetopology and the 
onsequen
es of the market events onits stru
ture. The minimum spanning tree, as a stronglypruned representative of asset 
orrelations, is found to berobust and des
riptive of sto
k market events.Furthermore, we aim to apply dynami
 asset trees inthe �eld of portfolio optimization. Many attempts havebeen made to solve this 
entral problem from the 
las-si
al approa
h of Markowitz [7℄ to more sophisti
atedtreatments, in
luding spin glass type studies [8℄. In allthe attempts to solve this problem, 
orrelations betweenasset pri
es play a 
ru
ial role and one might, there-fore, expe
t a 
onne
tion between dynami
 asset treesand the Markowitz portfolio optimization s
heme. Wedemonstrate that although the topologi
al stru
ture ofthe tree 
hanges with time, the 
ompanies of the mini-mum risk Markowitz portfolio are always lo
ated on theouter leaves of the tree. Consequently, asset trees in ad-dition to their ability to form e
onomi
ally meaningful
lusters, 
ould potentially 
ontribute to the portfolio op-timization problem. Then with a lighter key one 
ouldperhaps say that �some money may grow on trees�, afterall.The paper is organized as follows. In Se
tion 2 we in-



2trodu
e the data, dis
uss some properties of asset return
orrelation distributions and 
onstru
t and 
hara
terizetrees. Se
tion 3 deals with tree o

upation and 
entralvertex 
onsiderations, followed with Se
tion 4 whi
h ad-dresses the important question of e
onomi
 meaningful-ness of tree 
lusters. Then Se
tion 5 is devoted to thestudy of the s
ale free 
hara
ter of the asset trees. Se
-tion 6 deals with tree evolution through the 
on
epts oftwo di�erent types of survival ratios, whi
h 
an be usedto des
ribe de
aying of 
onne
tions and determine treehalf-lives. In the subsequent Se
tion 7, we investigatehow asset trees 
an 
ontribute to the portfolio optimiza-tion problem. Finally, in Se
tion 8, we draw 
on
lusionsand summarize our �ndings.II. RETURN CORRELATIONS AND DYNAMICASSET TREESThe �nan
ial market, for the largest part in this pa-per, refers to a set of data 
ommer
ially available fromthe Center for Resear
h in Se
urity Pri
es (CRSP) ofthe University of Chi
ago Graduate S
hool of Business.Here We will study the split-adjusted daily 
losure pri
esfor a total of N = 477 sto
ks traded at the New YorkSto
k Ex
hange (NYSE) over the period of 20 years,from 02-Jan-1980 to 31-De
-1999. This amounts a to-tal of 5056 pri
e quotes per sto
k, indexed by time vari-able τ = 1, 2, . . . , 5056. For analysis and smoothing pur-poses, the data is divided time-wise into M windows
t = 1, 2, ..., M of width T 
orresponding to the numberof daily returns in
luded in the window. Several 
onse
u-tive windows overlap with ea
h other, the extent of whi
his di
tated by the window step length parameter δT , de-s
ribing the displa
ement of the window, measured alsoin trading days. The 
hoi
e of window width is a trade-o�between too noisy and too smoothed data for small andlarge window widths, respe
tively. The results presentedin this paper were 
al
ulated from monthly stepped four-year windows, i.e. δT ≈ 20.8 days and T = 1000 days.We have explored a large s
ale of di�erent values for bothparameters, and the given values were found optimal [9℄.With these 
hoi
es, the overall number of windows is
M = 195.In order to investigate 
orrelations between sto
ks we�rst denote the 
losure pri
e of sto
k i at time τ by Pi(τ)(Note that τ refers to a date, not a time window). Wefo
us our attention to the logarithmi
 return of sto
k
i, given by ri(τ) = lnPi(τ) − lnPi(τ − 1) whi
h, for asequen
e of 
onse
utive trading days, i.e. those en
om-passing the given window t, form the return ve
tor r

t
i.In order to 
hara
terize the syn
hronous time evolutionof assets, we use the equal time 
orrelation 
oe�
ientsbetween assets i and j de�ned as

ρt
ij =

〈rt
ir

t
j〉 − 〈rt

i〉〈r
t
j〉

√

[〈rt
i
2
〉 − 〈rt

i〉
2][〈rt

j
2
〉 − 〈rt

j〉
2]

, (1)

where 〈...〉 indi
ates a time average over the 
onse
u-tive trading days in
luded in the return ve
tors. Due toCau
hy-S
hwarz inequality, these 
orrelation 
oe�
ientsful�ll the 
ondition −1 ≤ ρij ≤ 1 and form an N×N 
or-relation matrix C
t, whi
h serves as the basis of dynami
asset trees to be dis
ussed later.Let us �rst 
hara
terize the 
orrelation 
oe�
ient dis-tribution by its �rst four moments and their 
orrelationswith one another. The �rst moment is the mean 
orrela-tion 
oe�
ient de�ned as

ρ̄(t) =
1

N(N − 1)/2

∑

ρt
ij
∈Ct

ρt
ij , (2)where we 
onsider only the non-diagonal (i 6= j) elements

ρt
ij of the upper (or lower) triangular matrix. We alsoevaluate the higher order moments for the 
orrelation
oe�
ients, so that the varian
e is

λ2(t) =
1

N(N − 1)/2

∑

(i,j)

(ρt
ij − ρ̄t)2, (3)the skewness is

λ3(t) =
1

N(N − 1)/2

∑

(i,j)

(ρt
ij − ρ̄t)3/λ

3/2
2 (t), (4)and the kurtosis is

λ4(t) =
1

N(N − 1)/2

∑

(i,j)

(ρt
ij − ρ̄t)4/λ2

2(t). (5)The mean, varian
e, skewness and kurtosis of the 
orrela-tion 
oe�
ients are plotted as fun
tions of time in Figure1. In this �gure the e�e
t and reper
ussions of Bla
kMon-day (O
tober 19, 1987) are 
learly visible in the behaviorof all these quantities. For example, the mean 
orrela-tion 
oe�
ient is 
learly higher than average on the in-terval between 1986 and 1990. The length of this interval
orresponds to the window width T , and Bla
k Monday
oin
ides with the mid-point of the interval [10℄. Thein
reased value of the mean 
orrelation is in a

ordan
ewith the observation by Drozdz et al. [11℄, who foundthat the maximum eigenvalue of the 
orrelation matrix,whi
h 
arries most of the 
orrelations, is very large duringmarket 
rashes. We also investigated whether these fourdi�erent measures are 
orrelated, as seems 
lear from the�gure. For this we determined the Pearson's linear andSpearman's rank-order 
orrelation 
oe�
ients, whi
h be-tween the mean and varian
e turned out to be 0.97 and0.90, and between skewness and kurtosis 0.93 and 0.96,respe
tively. Thus the �rst two and the last two measuresare very strongly 
orrelated.We now move on to 
onstru
t an asset tree. For this weuse the non-linear transformation dij =
√

2(1 − ρij) toobtain distan
es with the property 2 ≥ dij ≥ 0, forming
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time (year)Figure 1: The mean, varian
e, skewness and kurtosis of the
orrelation 
oe�
ients as fun
tions of time.an N × N distan
e matrix D
t. At this point an addi-tional hypothesis about the topology of the metri
 spa
eis required. The working hypothesis is that a useful spa
efor linking the sto
ks is an ultrametri
 spa
e, i.e., a spa
ewhere all distan
es are ultrametri
. This hypothesis ismotivated a posteriori by the �nding that the asso
i-ated taxonomy is meaningful from an e
onomi
 point ofview. The 
on
ept of ultrametri
ity is dis
ussed in de-tail by Mantegna [1℄, while the e
onomi
 meaningfulnessof the emerging taxonomy is addressed later in this pa-per. Out of the several possible ultrametri
 spa
es, thesubdominant ultrametri
 is opted for due to its simpli
-ity and remarkable properties. In pra
ti
e, it is obtainedby using the distan
e matrix D

t to determine the min-imum spanning tree (MST) of the distan
es, a

ordingto the methodology of [1℄, denoted T
t. This is a simply
onne
ted graph that 
onne
ts all N nodes of the graphwith N − 1 edges su
h that the sum of all edge weights,

∑

dt
ij
∈Tt dt

ij , is minimum. (Here time (window) depen-den
e of the tree is emphasized by the addition of thesupers
ript t to the notation.) Asset trees 
onstru
tedfor di�erent time windows are not independent from ea
hother, but form a series through time. Consequently, thismultitude of trees is interpreted as a sequen
e of evolu-
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kFigure 2: Plots of (a) the mean 
orrelation 
oe�
ient ρ̄(t),(b) the normalized tree length L(t) and (
) the risk of theminimum risk portfolio, as fun
tions of time.tionary steps of a single dynami
 asset tree.As a simple measure of the temporal state of the mar-ket (the asset tree) we de�ne the normalized tree lengthas

L(t) =
1

N − 1

∑

dt
ij
∈Tt

dt
ij , (6)where t again denotes the time at whi
h the tree is 
on-stru
ted, and N −1 is the number of edges present in theMST. The normalized tree length is depi
ted in Figure2. As expe
ted and as the plots show, the mean 
orrela-tion 
oe�
ient and the normalized tree length are verystrongly anti-
orrelated. Pearson's linear 
orrelation be-tween the mean 
orrelation 
oe�
ient ρ̄(t) and normal-ized tree length L(t) is -0.98, and Spearman's rank-order
orrelation 
oe�
ient is -0.92, thus both indi
ating verystrong anti-
orrelation. Anti-
orrelation is to be expe
tedin view of how the distan
es dij are 
onstru
ted from
orrelation 
oe�
ients ρij . However, the extent of thisanti-
orrelation is di�erent for di�erent input variablesand is lower if, say, daily transa
tion volumes are studiedinstead of daily 
losure pri
es [12℄.It should be noted that in 
onstru
ting the minimumspanning tree, we are e�e
tively redu
ing the informa-tion spa
e from N(N − 1)/2 separate 
orrelation 
oe�-
ients to N − 1 tree edges, in other words, 
ompressingthe amount of information dramati
ally. This follows be-
ause the 
orrelation matrix C

t and distan
e matrix D
tare both N ×N dimensional, but due to their symmetry,both have N(N − 1)/2 distin
t upper (or lower) triangleelements, while the spanning tree has only N − 1 edges.So, in moving from 
orrelation or distan
e matrix to theasset tree, we have pruned the system from N(N − 1)/2



4to N − 1 elements of information. This, of 
ourse, raisesthe key question of information theory, whether essen-tial information is lost in the redu
tion. As the aboveexamination of the mean 
orrelation 
oe�
ient and nor-malized tree length shows, the fa
t that the two mea-sures are strongly anti-
orrelated testi�es to the su

essof the pruning pro
ess. Consequently, one is justi�ed to
ontemplate the minimum spanning tree as a stronglyredu
ed representative of the whole 
orrelation matrix,whi
h bears the essential information about asset 
orre-lations.As further eviden
e that the MST retains the salientfeatures of the sto
k market, it is noted that the 1987market 
rash 
an be quite a

urately seen in Figure 2.The fa
t that the market , during 
rash, is moving to-gether is thus manifested in two ways. First, the ridge inthe plot of the mean 
orrelation 
oe�
ient in Figure 2(a)indi
ates that the whole market is ex
eptionally strongly
orrelated. Se
ond, the 
orresponding well in the plot ofthe normalized tree length in Figure 2(b) shows how thisis re�e
ted in 
onsiderably shorter than average lengthof the tree so that the tree, on average, is very tightlypa
ked. Upon letting the window width T → 0, the twosides of the ridge 
onverge to a single date, whi
h 
oin-
ides with Bla
k Monday [10℄.III. TREE OCCUPATION AND CENTRALVERTEXNext we fo
us on 
hara
terizing the spread of nodes onthe tree. In order to do so, we introdu
e the quantity ofmean o

upation layer as
l(t, vc) =

1

N

N
∑

i=1

lev(vt
i), (7)where lev(vi) denotes the level of vertex vi. The levels,not to be 
onfused with the distan
es dij between nodes,are measured in natural numbers in relation to the 
entralvertex vc, whose level is taken to be zero. Here the meano

upation layer indi
ates the layer on whi
h the mass ofthe tree, on average, is 
on
eived to be lo
ated.Let us now examine the 
entral vertex in more de-tail, as the understanding of the 
on
ept is a prerequisitefor interpreting mean o

upation layer results, to followshortly. The 
entral vertex is 
onsidered the parent ofall other nodes in the tree, also known as the root of thetree. It is used as the referen
e point in the tree, againstwhi
h the lo
ations of all other nodes are relative. Thusall other nodes in the tree are 
hildren of the 
entral ver-tex. Although there is arbitrariness in the 
hoi
e of the
entral vertex, we propose that it is 
entral, or impor-tant, in the sense that any 
hange in its pri
e stronglya�e
ts the 
ourse of events in the market on the whole.We propose three alternative de�nitions have emergedfor the 
entral vertex in our studies, all yielding similar
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Figure 3: Central verti
es a

ording to (a) vertex degree
riterion, (b) weighted vertex degree 
riterion and (
) 
enterof mass 
riterion.and, in most 
ases, identi
al out
omes. The �rst and se
-ond de�nitions of the 
entral vertex are lo
al in nature.The idea here is to �nd the node that is most strongly
onne
ted to its nearest neighbors. A

ording to the the�rst de�nition, this is the node with the highest vertexdegree, i.e. the number of edges whi
h are in
ident with(neighbor of) the vertex. The obtained results are shownin Figure 3.The vertex degree 
riterion leads to General Ele
tri
(GE) dominating 67.2% of the time, followed by MerrillLyn
h (MER) at 20.5% and CBS at 8.2%. The 
om-bined share of these three verti
es is 95.9%. The se
ondde�nition, a modi�
ation of the �rst, de�nes the 
entralvertex as the one with the highest sum of those 
orre-lation 
oe�
ients that are asso
iated with the in
identedges of the vertex. Therefore, whereas the �rst de�-nition weighs ea
h departing node equally, the se
ondgives more weight to short edges, sin
e a high value of
ρij 
orresponds to a low value of dij . This is reason-able, as short 
onne
tions link the vertex more tightly toits neighborhood than long ones (the same prin
iple em-ployed in 
onstru
ting the spanning tree). This weightedvertex degree 
riterion results in GE dominating 65.6% ofthe 
ases, followed by MER at 20.0% and CBS at 8.7%,



5the share of the top three being 94.3%. The third de�ni-tion deals with the global quantity of 
enter of mass. In
onsidering a tree T
t at time t, the vertex vi that pro-du
es the lowest value for mean o

upation layer l(t, vi)is the 
enter of mass, given that all nodes are assignedan equal weight and 
onse
utive layers (levels) are atequidistan
e from one another, in a

ordan
e with theabove de�nition. With this 
enter of mass 
riterion we�nd that the most dominant 
ompany, again, is GE, asit is 52.8% of the time the 
entre of mass, followed byMER at 15.4% and Minnesota Mining & MFG at 14.9%.These top three 
andidates 
onstitute 83.1% of the total.Should the weight of the node be made proportional tothe size (e.g. revenue, pro�t et
.) of the 
ompany, it isobvious that GE's dominan
e would in
rease.As Figure 3 shows, the three alternative de�nitions forthe 
entral vertex lead to very similar results. The vertexdegree and the weighted vertex degree 
riteria 
oin
ide91.8% of the time. In addition, the former 
oin
ides with
enter of mass 66.7% and the latter 64.6% of the time,respe
tively. Overall, the three 
riteria yield the same
entral vertex in 63.6% of the 
ases, indi
ating 
onsider-able mutual agreement. The existen
e of a meaningful
enter in the tree is not a trivial issue, and neither isits 
oin
iden
e with the 
enter of mass. However, sin
ethe 
riteria applied, present a mixture of both lo
al andglobal approa
hes, and the fa
t that they 
oin
ide al-most 2/3 of the time, does indi
ate the existen
e of awell-de�ned 
enter in the tree. The reason for the 
oin-
iden
e of the 
riteria seems 
lear, intuitively speaking.A vertex with a high vertex degree, the 
entral vertex inparti
ular, 
arries a lot of weight around it (the neigh-boring nodes), whi
h in turn may be highly 
onne
tedto others (to their 
hildren) and so on. Two di�erentinterpretations may be given to these results. One mayhave either (i) stati
 (�xed at all times) or (ii) dynami
(updated at ea
h time step) 
entral vertex. If the �rstapproa
h is opted for, the above eviden
e well substan-tiates the use of GE as the 
entral vertex. In the se
ondapproa
h, the results will vary somewhat depending onwhi
h of the three 
riteria is used in determining the 
en-tral vertex.The mean o

upation layer l(t) is depi
ted in Figure 4,where also the e�e
t of di�erent 
entral verti
es is demon-strated. The blue 
urve results from the stati
 
entralvertex, i.e. GE, and the green one to dynami
 
entralvertex evaluated using the vertex degree 
riterion. Thetwo 
urves 
oin
ide where only the blue 
urve is drawn.This is true most of the time, as the above 
entral ver-tex 
onsiderations lead us to expe
t. The two dips at1986 and 1990, lo
ated symmetri
ally at half a windowwidth from Bla
k Monday, 
orrespond to the topologi
alshrinking of the tree asso
iated with the famous market
rash of 1987 [10℄. Roughly between 1993 and 1997 l(t)rea
hes very high values, whi
h is in 
on
ordan
e withour earlier results obtained for a di�erent set of data [13℄.High values of l(t) are 
onsidered to re�e
t a �ner mar-ket stru
ture, whereas in the other extreme low dips are
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Figure 4: Plot of mean o

upation layer l(t, vc) as a fun
tionof time, with stati
 and dynami
 
entral verti
es.
onne
ted to market 
rashes, where the behavior of thesystem is very homogeneous. The �ner stru
ture mayresult from general steady growth in asset pri
es duringthat period as 
an be seen, for example, from the S&P500 index.IV. TREE CLUSTERS AND THEIR ECONOMICMEANINGFULNESSAs mentioned earlier, Mantegna's idea of linking sto
ksin an ultrametri
 spa
e was motivated a posteriori by theproperty of su
h a spa
e to provide a meaningful e
o-nomi
 taxonomy. We will now explore this issue further,as the meaningfulness of the emerging e
onomi
 taxon-omy is the key justi�
ation for the use of the 
urrentmethodology. In [1℄, Mantegna examined the meaning-fulness of the taxonomy by 
omparing the grouping ofsto
ks in the tree with a third party referen
e grouping ofsto
ks by their industry et
. 
lassi�
ations. In this 
ase,the referen
e was provided by Forbes[14℄, whi
h uses itsown 
lassi�
ation system, assigning ea
h sto
k with ase
tor (higher level) and industry (lower level) 
ategory..In order to visualize the grouping of sto
ks, we 
on-stru
ted a sample asset tree for a smaller dataset, shownin Figure 5. This was obtained by studying our previousdataset [13℄, whi
h 
onsists of 116 S&P 500 sto
ks, ex-tending from the beginning of 1982 to the end of 2000,resulting in a total of 4787 pri
e quotes per sto
k [15℄.The window width was set at T = 1000, and the shownsample tree is lo
ated time-wise at t = t∗, 
orrespondingto 1.1.1998. The sto
ks in this dataset fall into 12 se
tors,whi
h are Basi
 Materials, Capital Goods, Conglomer-ates, Consumer/Cy
li
al, Consumer/Non-Cy
li
al, En-ergy, Finan
ial, Health
are, Servi
es, Te
hnology, Trans-portation and Utilities. The se
tors are indi
ated in thetree with di�erent markers, while the industry 
lassi�
a-tions are omitted for reasons of 
larity.
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Figure 5: Snapshot of a dynami
 asset tree 
onne
ting theexamined 116 sto
ks of the S&P 500 index. The tree wasprodu
ed using four-year window width and it is 
entered onJanuary 1, 1998. Business se
tors are indi
ated a

ording toForbes, http://www.forbes.
om. In this tree, General Ele
tri
(GE) was used as the 
entral vertex and eight layers 
an beidenti�ed.Before evaluating the e
onomi
 meaningfulness ofgrouping sto
ks, we wish to establish some terminology.We use the term se
tor ex
lusively to refer to the giventhird party 
lassi�
ation system of sto
ks. The termbran
h refers to a subset of the tree, to all the nodesthat share the spe
i�ed 
ommon parent. In addition tothe parent, we need to have a referen
e point to indi
atethe generational dire
tion (i.e. who is who's parent) inorder for a bran
h to be well de�ned. Without this refer-en
e there is absolutely no way to determine where onebran
h ends and the other begins. In our 
ase, the ref-eren
e is the 
entral node. There are some bran
hes inthe tree, in whi
h most of the sto
ks belong to just onese
tor, indi
ating that the bran
h is fairly homogeneouswith respe
t to business se
tors. This �nding is in a
-
ordan
e with those of Mantegna [1℄, although there arebran
hes that are fairly heterogeneous, su
h as the oneextending dire
tly downwards from the 
entral vertex,see Figure 5.Sin
e the grouping of sto
ks is not perfe
t at the bran
hlevel, we de�ne a smaller subset whose members are morehomogeneous as measured by the uniformity of their se
-tor 
lassi�
ations. The term 
luster is de�ned, broadlyspeaking, as a subset of a bran
h, but a more a

uratede�nition is based on the following four rules. (i) A 
lus-ter is named after the 
luster parent, whi
h is the nodein the 
luster 
losest to the 
entral vertex and it is thestarting node of the 
luster. The 
luster is named afterthe business se
tor of the 
luster parent. This is why,for example, Utilities 
luster starts from PGL and notfrom KO. (ii) If there are more than one potential 
lus-ter parent, the one resulting in the most 
omplete 
lusteris 
hosen as the 
luster parent. The nodes that are left

outside the formed 
luster are 
onsidered outliers. (iii)Only those edges that are required to 
onne
t the 
lusterare in
luded. Therefore, for example, in the Basi
 Mate-rials 
luster, the edges DOW-IP and IP-GP are 
ounted,even though IP is not a Basi
 Materials 
ompany, but itis needed to render the 
luster 
onne
ted. (iv) If there arenodes in a 
luster whi
h do not belong there, and they donot have 
hildren that belong to the 
luster either, theyare not in
luded. For example, again in the Basi
 Mate-rials 
luster, edges DD-CSX-BNI-UNP are not 
ountedas they do not have 
hildren that belong to the Basi
Materials se
tor, although the parent DD is a member ofthe 
luster. Consequently, CSX, BNI and UNP are notin
luded in the Basi
 Materials 
luster.Let us now examine some of the 
lusters that havebeen formed in the sample tree. We use the terms 
om-plete and in
omplete to des
ribe, in rather stri
t terms,the su

ess of 
lustering. A 
omplete 
luster 
ontains allthe 
ompanies of the studied set belonging to the 
or-responding business se
tor, so that none are left outsidethe 
luster. In pra
ti
e, however, 
lusters are mostly in-
omplete, 
ontaining most, but not all, of the 
ompaniesof the given business se
tor, and the rest are to be foundsomewhere else in the tree. Only the Energy 
luster wasfound 
omplete, but many others 
ome very 
lose, typi-
ally missing just one or two members of the 
luster.Building upon the normalized tree length 
on
ept, we
an 
hara
terize the strength of 
lusters in a similar man-ner, as they are simply subsets of the tree. These 
lus-ters, whether 
omplete or in
omplete, are 
hara
terizedby the normalized 
luster length, de�ned for a 
luster cas follows
Lc(t) =

1

Nc

∑

dt
ij
∈c

dt
ij , (8)where Nc is the number of sto
ks in the 
luster. This 
anbe 
ompared with the normalized tree length, whi
h forthe sample tree in Figure 5 at time t∗ is L(t∗) ≈ 1.05.A full a

ount of the results is to be found in AppendixA, but as a short summary of results we state the follow-ing. The Energy 
ompanies form the most tightly pa
ked
luster resulting in LEnergy(t∗) ≈ 0.92, followed by theHealth-
are 
luster with LHealth-
are(t∗) ≈ 0.98. For theUtilities 
luster we have LUtilities(t∗) ≈ 1.01 and for thediverse Basi
 Materials 
luster LBasi
 materials(t∗) ≈ 1.03.Even though the Te
hnology 
luster has the fewest num-ber of members, its mean distan
e is the highest of theexamined groups of 
lusters being LTe
hnology(t∗) ≈ 1.07.Thus, most 
lusters seem to be more tightly pa
ked thanthe tree on average.One 
ould �nd and examine several other 
lusters inthe tree, but the ones that were identi�ed are quite 
on-vin
ing. The minimum spanning tree, indeed, seems toprovide a taxonomy that is well 
ompatible with these
tor 
lassi�
ation provided by an outside institution,Forbes in this 
ase. This is a strong vote for the use of



7the 
urrent methodology in sto
k market analysis. Somefurther analysis of the identi�ed 
lusters is presented inAppendix A.There are, however, some observed deviations to the
lassi�
ation, whi
h 
all for an explanation. For themthe following points are raised. (i) Un
ertainty in as-set pri
es in the minds of investors 
auses some seem-ingly random pri
e �u
tuations to take pla
e, and thisintrodu
es �noise� in the 
orrelation matrix. Therefore,it is not reasonable to expe
t a one-to-one mapping be-tween business se
tors and MST 
lusters. (ii) Businessse
tor de�nitions are not unique, but vary by the orga-nization issuing them. In this work, we used the 
lassi-�
ation system by Forbes [14℄, where the studied 
om-panies are divided into 12 business se
tors and 51 indus-tries. Forbes has its own 
lassi�
ation prin
iple, basedon 
ompany dynami
s rather than size alone. Alterna-tively, one 
ould have used, say, the Global IndustryClassi�
ation Standard (GICS), released on January 2,2001, by Standard & Poor's [16℄. Within this frame-work, 
ompanies are divided into 10 se
tors, 23 industrygroups, 59 industries and 122 sub-industries. Therefore,the 
lassi�
ation system 
learly makes a di�eren
e, andthere are dis
repan
ies even at the topmost level of busi-ness se
tors amongst di�erent systems. (iii) Histori
alpri
e time series is, by de�nition, old. Therefore, oneshould use 
ontemporary de�nitions for business se
torset
., as those most a

urately 
hara
terize the 
ompany.Sin
e these were not available to the authors, the 
las-si�
ation s
heme by Forbes was used. The error 
ausedby this approa
h varies for di�erent 
ompanies. (iv) Inmany 
lassi�
ation systems, 
ompanies engaged in sub-stantially di�erent business a
tivities are 
lassi�ed a
-
ording to where the majority of revenues and pro�ts
omes from. For highly diversi�ed 
ompanies, these 
las-si�
ations are more ambiguous and, therefore, less infor-mative. As a 
onsequen
e, 
lassi�
ation of these types of
ompanies should be viewed with some skepti
ism. Thisproblem has its roots in the desire to 
ategorize 
ompa-nies by a single label, and the approa
h fails where thisdivision is unnatural. (v) Some 
luster outliers 
an be ex-plained through the MST 
lustering me
hanism, whi
his based on 
orrelations between asset returns. There-fore, one would expe
t, for example, investment banksto be grouped with their investments rather than withother similar institutions. Through portfolio diversi�-
ation, these banks distan
e themselves from the pri
e�u
tuations (risks) of a single business se
tor. Conse-quently, it would be more surprising to �nd a totally ho-mogeneous �nan
ial 
luster than a fairly heterogeneousone 
urrently observed. (vi) The risks imposed on the
ompanies by the external environment vary in their de-gree of uniformity from one business se
tor to another.For example, 
ompanies in the Energy se
tor (pri
e oftheir sto
ks) are prone to �u
tuations in the world mar-ket pri
e of oil, whereas it is di�
ult to think of onefa
tor having equal in�uen
e on, say, 
ompanies in theConsumer/Non-
y
li
al business se
tor. This uniformity

of external risks in�uen
es the sto
k pri
e of these 
om-panies, in 
oarse terms, leading to their more 
omplete
lustering than that of 
ompanies fa
ing less uniform ex-ternal risks. In 
on
lusion, regarding all the above listedfa
tors, the su

ess of the applied method in identifyingmarket taxonomy is remarkable.V. SCALE FREE STRUCTURE OF THE ASSETTREESo far we have 
hara
terized the asset tree as an im-portant subgraph of the fully 
onne
ted graph derivedfrom all the elements of the 
onne
tivity matrix. Sin
ethe asset tree is expe
ted to re�e
t some aspe
ts of themarket and its state, it is therefore of interest to learnmore about its stru
ture. During the last few years, mu
hattention has been devoted to the degree distribution ofgraphs. It has be
ome 
lear that the so 
alled s
ale freegraphs, where this distribution obeys a power law, arevery frequent in many �elds, ranging from human rela-tionships through 
ell metabolism to the Internet [17, 18℄.S
ale free trees have also been extensively studied (seee.g., [19℄). Re
ently, examples for s
ale free networks ine
onomy and �nan
e have been found [6, 20, 21℄.Vandewalle et al. [6℄ found s
ale free behavior for theasset tree in a limited (one year, 1999) time window for6358 sto
ks traded at the NYSE, NASDAQ and AMEX.They proposed the distribution of the vertex degrees f(n)to follow a power law behavior:
f(n) ∼ n−α, (9)with the exponent α ≈ 2.2. This exponent implies thatthe se
ond moment of the distribution would diverge inthe in�nite market limit, or in other words, the se
ondmoment of the distribution is always dominated by therare but extremely highly 
onne
ted verti
es.Our aim here is to study the property of s
ale freenessin the light of asset tree dynami
s. First, we 
on
ludethat the asset tree has, most of the time, s
ale free prop-erties with a rather robust exponent α ≈ −2.1 ± 0.1 fornormal topology (i.e. outside 
rash periods of 'businessas usual'), a result 
lose to that given in [6℄. For most ofthe time the distribution behaves in a universal manner,meaning that the exponent α is a 
onstant within theerror limits. However, when the behavior of the marketis not 'business as usual' (i.e. within 
rash periods), theexponent also 
hanges, although the s
ale free 
hara
terof the tree is still maintained. For the Bla
k Mondayperiod, we have α ≈ −1.8 ± 0.1. This result is in fullagreement with the observation of the shrinking of thetree during market 
rashes, whi
h is a

ompanied by anin
rease in the degree, thus explaining the higher valueof the exponent. The observation 
on
erning the 
hangein the value of the exponent for normal and 
rash periodis exempli�ed in Figure 6.When �tting the data, in many 
ases we found one
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al plots of vertex degree for normal (left) and
rash topology (right), for whi
h the exponents and goodnessof �t are α ≈ −2.15, R2
≈ 0.96 and α ≈ −1.75, R2

≈ 0.92,respe
tively. The plot on the left is 
entered at 28.2.1994 andthe right one at 1.5.1989, and for both T = 1000.or two outliers, i.e. verti
es whose degrees did not �tto the overall power law behavior sin
e they were mu
htoo high. In all 
ases these sto
ks 
orresponded either tothe highest 
onne
ted node (i.e. the 
entral vertex) orwere nodes with very high degrees. This result suggestthat it 
ould be useful to handle these nodes with spe-
ial 
are, thus providing further support to the 
on
eptof the 
entral node. However, for the purpose of �ttingthe observed vertex degree data, su
h nodes were 
on-sidered outliers. To give an overall measure of goodnessof the �ts, we 
al
ulated the R2 
oe�
ient of determina-tion, whi
h 
an be interpreted as the fra
tion of the totalvariation that is explained by the least-squares regressionline. We obtained, on average, values of R2 ≈ 0.86 for theentire dataset with outliers in
luded, and R2 ≈ 0.93 withoutliers ex
luded. Further, the �ts for the normal marketperiod were better than those obtained for the 
rash pe-riod as 
hara
terized by the average values of R2 ≈ 0.89and R2 ≈ 0.93, respe
tively, with outliers ex
luded. Inaddition to the market period based dependen
e, the ex-ponent α was also found to depend on the window width.We examined a range of values for the window width Tbetween 2 and 8 years and found, without ex
luding theoutliers, the �tted exponent to depend linearly on T .In 
on
lusion, we have found the s
aling exponent todepend on the market period, i.e. 
rash vs normal market
ir
umstan
es and on the window width. These resultsalso raise the question of whether it is reasonable to as-sume that di�erent markets share the s
aling exponent.In 
ase they do not, one should be 
areful when poolingsto
ks together from di�erent markets for the purpose ofvertex degree analysis.VI. ASSET TREE EVOLUTIONIn order to investigate the robustness of asset treetopology, we de�ne the single-step survival ratio of treeedges as the fra
tion of edges found 
ommon in two 
on-
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Figure 7: Single-step survival ratio σ(t) as a fun
tion of time.se
utive trees at times t and t − 1 as
σ(t) =

1

N − 1
|E(t) ∩ E(t − 1)|. (10)In this E(t) refers to the set of edges of the tree at time

t, ∩ is the interse
tion operator and |...| gives the num-ber of elements in the set. Under normal 
ir
umstan
es,the tree for two 
onse
utive time steps should look verysimilar, at least for small values of window step lengthparameter δT . With this measure it is expe
ted thatwhile some of the di�eren
es 
an re�e
t real 
hanges inthe asset taxonomy, others may simply be due to noise.On letting δT → 0, we �nd that σ(t) → 1, indi
atingthat the trees are stable in this limit [9℄.A sample plot of single-step survival ratio for T = 1000and δT ≈ 20.8 is shown in Figure 7. The following ob-servations are made. (i) A large majority of 
onne
tionssurvives from one time window to the next. (ii) Thetwo prominent dips indi
ate a strong tree re
on�gurationtaking pla
e, and they are window width T apart, po-sitioned symmetri
ally around Bla
k Monday, and thusimply topologi
al reorganization of the tree during themarket 
rash[10℄. (iii) Single-step survival ratio σ(t) in-
reases as the window width T in
reases while δT is kept
onstant. Thus an in
rease in window width renders thetrees more stable with respe
t to single-step survival of
onne
tions. We also �nd that the rate of 
hange of thesurvival ratio de
reases as the window width in
reasesand, in the limit, as the window width is in
reased to-wards in�nity T → ∞, σ(t) → 1 for all t. The survivalratio seems to de
rease very rapidly on
e the windowwidth is redu
ed below roughly one year. As the win-dow width is de
reased further towards zero, in the limitas T → 0, σ(t) → 0 for all t. (iv) Varian
e of �u
tua-tions around the mean is 
onstant over time, ex
ept forthe extreme events and the interim period, and it gets
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Figure 8: Multi-step survival ratio σ(t, k) as a fun
tion oftime for di�erent parametri
 values of T .less as the window width in
reases.In order to study the long term evolution of the trees,we introdu
e the multi-step survival ratio at time t as
σ(t, k) =

1

N − 1
|E(t)∩E(t−1)...E(t−k+1)∩E(t−k)|,(11)where only those 
onne
tions that have persisted for thewhole time period without any interruptions are takeninto a

ount. A

ording to this formula, when a bondbetween two 
ompanies breaks even on
e in k steps andthen reappears, it is not 
ounted as a survived 
onne
-tion. It is found that many 
onne
tions in the asset treesevaporate quite rapidly in the early time horizon. How-ever, this rate de
reases signi�
antly with time, and evenafter several years there are some 
onne
tions that areleft inta
t. This indi
ates that some 
ompanies remain
losely bonded for times longer that a de
ade. The be-havior of the multi-step survival ratio for three di�erentvalues of window width (2,4 and 6 years) is shown inFigure 8, together with the asso
iated �ts.In this �gure the horizontal axis 
an be divided intotwo regions. Within the �rst region, de
aying of 
onne
-tions is roughly exponential, and takes pla
e at di�erentrates for di�erent values of the window width. Later,within the se
ond region, when most 
onne
tions havede
ayed and only some 20%-30% remain (for the shownvalues of T ), there is a 
ross-over to power law behav-ior. The exponents obtained for the window widths of

T = 500, T = 1000 and T = 1500 are -1.15, -1.19 and-1.17, respe
tively. Thus, interestingly, the power law de-
ay in the se
ond region seems independent of the windowwidth.We 
an also de�ne a 
hara
teristi
 time, the so 
alledhalf-life of the survival ratio t1/2, or tree half-life for
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window width (year)Figure 9: Plot of half-life t1/2 as a fun
tion of window width
T .short, as the time interval in whi
h half the number ofinitial 
onne
tions have de
ayed, i.e., σ(t, t1/2) = 0.5.The behavior of t1/2 as a fun
tion of the window widthis depi
ted in Figure 9 and it is seen to follow a 
lean lin-ear dependen
e on for values of T being between 1 and 5years, after whi
h it begins to grow faster than a linearfun
tion. For the linear region, the tree half-life exhibits
t1/2 ≈ 0.12T dependen
e.This 
an also be seen in Figure 8, where the dashedhorizontal line indi
ates the level at whi
h half of the
onne
tions have de
ayed. For the studied values of thewindow width, tree half-life o

urs within the �rst regionof the multi-step survival plot, where de
aying was foundto depend on the window width. Consequently, the de-penden
e of half-life on window width T does not 
ontra-di
t the window width independent power law de
ayingof 
onne
tions, as the two o

ur in di�erent regions. Ingeneral, the number of sto
ks N , as well as the theirtype, is likely to a�e
t the half-lives. Earlier, for a set of
N = 116 S&P 500 sto
ks, half-life was found to dependon the window width as t1/2 ≈ 0.20T [9℄. A smaller tree,
onsisting primarily of important industry giants, wouldbe expe
ted to de
ay more slowly than the larger set ofNYSE-traded sto
ks studied in this paper.VII. PORTFOLIO ANALYSISNext, we apply the above dis
ussed 
on
epts and mea-sures to the portfolio optimization problem, a basi
 prob-lem of �nan
ial analysis. This is done in the hope thatthe asset tree 
ould serve as another type of quantita-tive approa
h to and/or visualization aid of the highlyinter-
onne
ted market, thus a
ting as a tool support-ing the de
ision making pro
ess. We 
onsider a gen-eral Markowitz portfolio P(t) with the asset weights
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Figure 10: Plot of the weighted minimum risk portfolio layer
lP(t, θ = 0) with no short-selling and mean o

upation layer
l(t, vc) against time. Top: stati
 
entral vertex, bottom: dy-nami
 
entral vertex a

ording to the vertex degree 
riterion.
w1, w2, . . . , wN . In the 
lassi
 Markowitz portfolio op-timization s
heme, �nan
ial assets are 
hara
terized bytheir average risk and return, where the risk asso
iatedwith an asset is measured by the standard deviation of re-turns. The Markowitz optimization is usually 
arried outby using histori
al data. The aim is to optimize the assetweights so that the overall portfolio risk is minimized fora given portfolio return rP [22℄. In the dynami
 assettree framework, however, the task is to determine howthe assets are lo
ated with respe
t to the 
entral vertex.Let rm and rM denote the returns of the minimum andmaximum return portfolios, respe
tively. The expe
tedportfolio return varies between these two extremes, and
an be expressed as rP,θ = (1 − θ)rm + θrM , where θ isa fra
tion between 0 and 1. Hen
e, when θ = 0, we havethe minimum risk portfolio, and when θ = 1, we have themaximum return (maximum risk) portfolio. The higherthe value of θ, the higher the expe
ted portfolio return
rP,θ and, 
onsequently, the higher the risk the investoris willing to absorb. We de�ne a single measure, theweighted portfolio layer as

lP(t, θ) =
∑

i∈P(t,θ)

wi lev(vt
i), (12)where ∑N

i=1 wi = 1 and further, as a starting point, the
onstraint wi ≥ 0 for all i, whi
h is equivalent to assum-ing that there is no short-selling. The purpose of this
onstraint is to prevent negative values for lP(t), whi
hwould not have a meaningful interpretation in our frame-work of trees with 
entral vertex. This restri
tion willshortly be dis
uss further.Figure 10 shows the behavior of the mean o

upationlayer l(t) and the weighted minimum risk portfolio layer
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Figure 11: Plot of the weighted minimum risk portfolio layer
lP(t, θ = 0) with short-selling allowed and mean o

upationlayer l(t, vc) against time. Top: stati
 
entral vertex, bot-tom: dynami
 
entral vertex a

ording to the vertex degree
riterion.
lP(t, θ = 0). We �nd that the portfolio layer is higherthan the mean layer at all times. The di�eren
e betweenthe layers depends on the window width, here set at T =
1000, and the type of 
entral vertex used. The upper plotin Figure 10 is produ
ed using the stati
 
entral vertex(GE), and the di�eren
e in layers is found to be 1.47. Thelower one is produ
ed by using a dynami
 
entral vertex,sele
ted with the vertex degree 
riterion, in whi
h 
asethe di�eren
e of 1.39 is found.Above we assumed the no short-selling 
ondition.However, it turns out that, in pra
ti
e, the weighted port-folio layer never assumes negative values and the short-selling 
ondition, in fa
t, is not ne
essary. Figure 11 re-peats the earlier plot, this time allowing for short-selling.The weighted portfolio layer is now 99.5% of the timehigher than the mean o

upation layer and, with thesame 
entral vertex 
on�guration as before, the di�er-en
e between the two is 1.18 and 1.14 in the upper andlower plots, respe
tively. Thus we 
on
lude that only mi-nor di�eren
es are observed in the previous plots betweenbanning and allowing short-selling, although the di�er-en
e between weighted portfolio layer and mean o

upa-tion layer is somewhat larger in the �rst 
ase. Further,the di�eren
e in layers is also slightly larger for stati
than dynami
 
entral vertex, although not by mu
h.As the sto
ks of the minimum risk portfolio are foundon the outskirts of the tree, we expe
t larger trees (higher
L) to have greater diversi�
ation potential, i.e., the s
opeof the sto
k market to eliminate spe
i�
 risk of the mini-mum risk portfolio. In order to look at this, we 
al
ulatedthe mean-varian
e frontiers for the ensemble of 477 sto
ksusing T = 1000 as the window width. In Figure 2, we plotthe level of portfolio risk as a fun
tion of time, and �nda similarity between the risk 
urve and the 
urves of the
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Figure 12: Plots of the weighted minimum risk portfolio layer
lP(t, θ) for di�erent values of θ.mean 
orrelation 
oe�
ient ρ̄ and normalized tree length
L. Earlier, when the smaller dataset of 116 sto
ks - 
on-sisting primarily important industry giants - was used,we found Pearson's linear 
orrelation between the riskand the mean 
orrelation 
oe�
ient ρ̄(t) to be 0.82, whilethat between the risk and the normalized tree length L(t)was −0.90. Therefore, for that dataset, the normalizedtree length was able to explain the diversi�
ation po-tential of the market better than the mean 
orrelation
oe�
ient. For the 
urrent set of 477 sto
ks, whi
h in-
ludes also less in�uential 
ompanies, the Pearson's linearand Spearman's rank-order 
orrelation 
oe�
ients be-tween the risk and the mean 
orrelation 
oe�
ient are0.86 and 0.77, and those between the risk and the nor-malized tree length are -0.78 and -0.65, respe
tively. Itshould be noted again that the minimum spanning treewith only N − 1 elements represents a pruned versionof the entire system of N(N − 1)/2 elements. Further,as N in
reases, the proportion of elements in the treeto the elements in the 
orrelation matrix gets less and,
onsequently, the tree is based on a smaller fra
tion ofthe available information. Therefore, although our ear-lier �nding is not reprodu
ed here to the same extent, theresult does indi
ate the strength of pruning the appliedmethodology is able to provide.So far, we have only examined the lo
ation of sto
ks inthe minimum risk portfolio, for whi
h θ = 0. As we in-
rease θ towards unity, portfolio risk as a fun
tion of timesoon starts behaving very di�erently from the mean 
or-relation 
oe�
ient and normalized tree length as shownin Fig. 12. Consequently, it is no longer useful in de-s
ribing diversi�
ation potential of the market. However,another interesting result emerges: The average weightedportfolio layer lP(t, θ) de
reases for in
reasing values of
θ. This means that out of all the possible Markowitzportfolios, the minimum risk portfolio sto
ks are lo
atedfurthest away from the 
entral vertex, and as we move to-wards portfolios with higher expe
ted return, the sto
ks

in
luded in these portfolios are lo
ated 
loser to the 
en-tral vertex. When stati
 
entral node is used, the av-erage values of the weighted portfolio layer lP(t, θ) for
θ = 0, 1/2, 1/2, 3/4 are 6.03, 5.70, 5.11 and 4.72, respe
-tively. Similarly, for a dynami
 
entral node, we obtainthe values of 5.68, 5.34, 4.78 and 4.37. We have not in-
luded the weighted portfolio layer for θ = 1, as it isnot very informative. This is due to the fa
t that themaximum return portfolio 
omprises only one asset (themaximum return asset in the 
urrent time window) and,therefore, lP(t, θ = 1) �u
tuates wildly as the maximumreturn asset 
hanges over time.We believe these results to have potential for pra
ti-
al appli
ation. Due to the 
lustering properties of theMST, as well as the overlap of tree 
lusters with busi-ness se
tors as de�ned by a third party institution, itseems plausible that 
ompanies of the same 
luster fa
esimilar risks, imposed by the external e
onomi
 environ-ment. These dynami
 risks in�uen
e the sto
k pri
es ofthe 
ompanies, in 
oarse terms, leading to their 
lusteringin the MST. In addition, the radial lo
ation of sto
ks de-pends on the 
hosen portfolio risk level, 
hara
terized bythe value of θ. Sto
ks in
luded in low risk portfolios are
onsistently lo
ated further away from the 
entral nodethan those in
luded in high risk portfolios. Consequently,the radial distan
e of a node, i.e. its o

upation layer, ismeaningful. Thus, it 
an be 
onje
tured that the lo
ationof a 
ompany within the 
luster re�e
ts its position withregard to internal, or 
luster spe
i�
, risk. Chara
teriza-tion of sto
ks by their bran
h, as well as their lo
ationwithin the bran
h, enables us to identify the degree of in-ter
hangeability of di�erent sto
ks in the portfolio. Forexample, in most 
ases we 
ould pi
k two sto
ks from dif-ferent asset tree 
lusters, but from nearby layers, and in-ter
hange them in the portfolio without 
onsiderably al-tering the 
hara
teristi
s of the portfolio. Therefore, dy-nami
 asset trees provide an intuition-friendly approa
hto and fa
ilitate in
orporation of subje
tive judgment inthe portfolio optimization problem.VIII. SUMMARY AND CONCLUSIONIn summary, we have studied the distribution of 
or-relation 
oe�
ients and found that the mean and thevarian
e of the distribution are positively 
orrelated, aswell as the skewness and the kurtosis. We have also stud-ied the dynami
s of asset trees and applied it to portfo-lio analysis. We have shown that the tree evolves overtime and have found that the normalized tree length de-
reases and remains low during a 
rash, thus implyingthe shrinking of the asset tree parti
ularly strongly dur-ing a sto
k market 
risis. We have also found that themean o

upation layer �u
tuates as a fun
tion of time,and experien
es a downfall at the time of market 
risisdue to topologi
al 
hanges in the asset tree. Further, ourstudies of the s
ale free stru
ture of the MST show thatthis graph is not only hierar
hi
al in the sense of a tree



12but there are spe
ial, highly 
onne
ted nodes and the hi-erar
hi
al stru
ture is built up from these. As for theportfolio analysis, it was found that the sto
ks in
ludedin the minimum risk portfolio tend to lie on the outskirtsof the asset tree: on average the weighted portfolio layer
an be almost one and a half levels higher, or furtheraway from the 
entral vertex, than the mean o

upationlayer for window width of four years. Correlation be-tween the risk and the normalized tree length was foundto be strong, though not as strong as the 
orrelation be-tween the risk and the mean 
orrelation 
oe�
ient. Thuswe 
on
lude that the diversi�
ation potential of the mar-ket is very 
losely related to the behavior of the normal-ized tree length. Finally, the asset tree 
an be viewed asa highly graphi
al tool, and even though it is stronglypruned, it still retains all the essential information of themarket and 
an be used to add subje
tive judgment tothe portfolio optimization problem.A
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lusters that were identi�ed in the assettree of Figure 5 for t = t∗, 
orresponding to 1.1.1998,are examined here in 
loser detail. It is emphasized thatfor purposes of visualization, the tree was 
onstru
tedfrom a smaller dataset of 116 S&P 500 sto
ks. It is alsoimportant to bear in mind that the words business se
torand industry are 
lassi�
ations assigned by a third partyinstitution, in this 
ase Forbes [14℄. In 
ontrast, the word
luster is used to mean a bran
h or part of a bran
h in thetree, where most nodes are members of a single businessse
tor.Energy 
luster : LEnergy(t∗) ≈ 0.92. In the datasetthere are eleven 
ompanies operating in the Energy se
-tor, represented by red asterisks in Figure 5. They form a
omplete Energy 
luster, whi
h extends diagonally fromthe 
enter to the bottom left 
orner of the tree. The in-dustry 
lassi�
ations are mainly Oil & Gas Operations.

Only two 
ompanies, Halliburton (HAL) and S
hlum-berger (SLB), are 
lassi�ed as Oil Well Servi
es & Equip-ment.Health-
are 
luster : LHealth-
are(t∗) ≈ 0.98. The in-
omplete Health-
are 
luster extends from the 
enter to-wards the upper left 
orner of the tree. All seven Health-
are se
tor 
ompanies, P�zer (PFE), Eli Lilly (LLY),Mer
k & Co. (MRK), Johnson & Johnson (JNJ), Bristol-Myers Squibb (BMY), Ameri
an Home Produ
ts (AHP)and Pharma
ia (PHA), are 
lassi�ed in the Major Drugsindustry. As the remaining four health 
are 
ompaniesoperate in di�erent industries, this 
luster is 
ompleteindustry wise.Utilities 
luster : LUtilities(t∗) ≈ 1.01. A total of thir-teen 
ompanies belong to the Utilities business se
tor,represented by the blue asterisks. Twelve of them 
an befound in the in
omplete Utilities 
luster, whi
h extendsdiagonally from the 
enter to the top right 
orner of thetree. Williams Companies (WMB) is the only 
ompanythat is not part of it, but is lo
ated in a sibling bran
hinstead. WMB along with Peoples Energy (PGL) are as-signed to the Natural Gas Utilities industry, where as allother Utilities se
tor 
ompanies are assigned to Ele
tri
Utilities industry. This 
an explain why WMB is notpart of the main bran
h in the tree.Basi
 Materials 
luster : LBasi
 materials(t∗) ≈ 1.03.There are thirteen 
ompanies in the Basi
 Materials se
-tor, eleven of whi
h are members of the bran
h on theright hand side of the tree. In the in
omplete Basi
 Ma-terials 
luster, we 
an identify a smaller sub-bran
h 
om-prising Al
oa (AA), Phelps Dodge (PD), HomestakeMin-ing (HM) and In
o (N). AA, PD and N are in the MetalMining industry and HM in the Gold & Silver industry.These are the only four 
ompanies within the Basi
 Ma-terials se
tor that provide mining raw materials. Anotherinteresting sub-bran
h is that of Georgia-Pa
i�
 Group(GP), Weyerhaeuser (WY), Louisiana-Pa
i�
 (LPX) andBoise Cas
ade (BCC). These 
ompanies fun
tion in thestrongly related industries of Paper & Paper Produ
tsand Forestry & Wood Produ
ts. We 
an identify onemore sub-bran
h, namely the 
onne
ted pair of DuPontde Nemours (DD) and Dow Chemi
al Company (DOW),lo
ated at the beginning of the main Basi
 Materialsbran
h. Both 
ompanies are in the Chemi
als Plasti
s&Rubber industry. In the Basi
 Materials 
luster, the arethree 
ompanies in
luded that have a di�erent businessse
tor 
lassi�
ation from Basi
 Materials. Two of them,Caterpillar (CAT) and Deere & Company (DE), belongto the Capital Goods business se
tor and Constru
tion& Agri
ultural Ma
hinery industry. Their position inthe bran
h 
an be substantiated by their relian
e on this
luster for raw materials. The third ex
eption in the Ba-si
 Materials se
tor is International Paper (IP), whi
h islo
ated in front of the GP-WY-(LPX,BCC) sub-bran
h.IP belongs to the the Consumer/Non-Cy
li
al se
tor andwithin that to the O�
e Supplies industry. Again, itseems natural that a paper 
ompany should be lo
atedtogether with 
ompanies that provide its basi
 materials.



13Te
hnology 
luster : LTe
hnology(t∗) ≈ 1.07. An ex-ample of a 
learly in
omplete 
luster is a group of �veTe
hnology business se
tor 
ompanies extending diago-nally from the 
enter towards the bottom right 
orner.These �ve te
hnology giants, IBM (IBM), Texas Instru-ments (TXN), Hewlett-Pa
kard (HWP), Computer S
i-en
es Corp. (CSC) and Motorola (MOT) form the Te
h-nology 
luster. There are eight other te
hnology 
ompa-nies (by business se
tor) in the set of 
ompanies studied,
but they are mainly distributed around General Ele
-tri
. The �ve 
ompanies of the Te
hnology 
luster aregrouped together most probably be
ause of their involve-ment with semi
ondu
tor industry. Their industries areeither Semi
ondu
tors or Computer Hardware and Com-puter Servi
es. Motorola as one of the most importantmobile phone manufa
turers is 
lassi�ed industry-wise asCommuni
ations Equipment, a �eld where similar 
om-peten
ies are required as in the previous two.[1℄ R. N. Mantegna, Eur. Phys. J. B 11, 193 (1999).[2℄ L. Kullmann, J. Kertész and R. N. Mantegna, Physi
a A287, 412 (2000).[3℄ L. Giada and M. Marsili, preprint available at
ond-mat/0204202 (2002).[4℄ L. Laloux et al., Phys. Rev. Lett. 83, 1467 (1999); V.Plerou et al., preprint available at 
ond-mat/9902283(1999).[5℄ W. B. Arthur, S. N. Durlauf and D. A. Lane (eds.),The e
onomy as an evolving 
omplex system II, Addison-Wesley, Reading, Massa
husetts (1997).[6℄ N. Vandewalle, F. Brisbois and X. Tordoir, QuantitativeFinan
e 1, 372-374 (2001).[7℄ G. Kim and H.M. Markowitz, J. Portfolio Management16, 45 (1989).[8℄ S. Gallu
io, J. -P. Bou
haud and M. Potters, Physi
a A259, 449 (1998); A. Gabor and I. Kondor, Physi
a A274, 222 (1999); L. Bongini et al., Eur. Phys. J. B 27,263 (2002).[9℄ J.-P. Onnela, Taxonomy of Finan
ial Assets, M. S
. The-sis, Helsinki University of Te
hnology, Finland (2002).[10℄ J.-P. Onnela, A. Chakraborti, K. Kaski and J. Kertész,Physi
a A (in press, 2002).[11℄ S. Drozdz et al., preprint available at 
ond-mat/9911168

(1999).[12℄ J.-P. Onnela, A. Chakraborti, K. Kaski and J. Kertész,in preparation (2003).[13℄ J.-P. Onnela, A. Chakraborti, K. Kaski and J. Kertész,Eur. Phys. J. B 30, 285-288 (2002).[14℄ Forbes at http://www.forbes.
om/, referen
ed in Mar
h-April, 2002.[15℄ Supplementary material on the dataset is available athttp://www.l
e.hut.�/~jonnela/.[16℄ Standard & Poor's 500 index athttp://www.standardandpoors.
om/, referen
ed inJune, 2002.[17℄ R. Albert and A.-L. Barabasi, Rev. Mod. Phys. 74, 47-97(2002).[18℄ S. N. Dorogovtsev and J. F. F. Mendes, Advan
es inPhysi
s 51, 1079-1187 (2002).[19℄ G. Szabó, M. Alava, and J. Kertész, Phys. Rev. E 66,026101 (2002).[20℄ M. Marsili, preprint available at 
ond-mat/0207156(2002).[21℄ I. Yang, H. Jeong, B. Kahng and A.-L. Barabasi, preprintavailable at 
ond-mat/0301513 (2003).[22℄ Several software pa
kages based on standard pro
eduresare available. We used Matlab with Finan
ial Toolbox.
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