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The time dependence of the recently introduced minimum spanning tree description of correlations
between stocks, called the “asset tree” have been studied to reflect the economic taxonomy. The
nodes of the tree are identified with stocks and the distance between them is a unique function of the
corresponding element of the correlation matrix. By using the concept of a central vertex, chosen
as the most strongly connected node of the tree, an important characteristic is defined by the mean
occupation layer (MOL). During crashes the strong global correlation in the market manifests itself
by a low value of MOL. The tree seems to have a scale free structure where the scaling exponent of
the degree distribution is different for ‘business as usual’ and ‘crash’ periods. The basic structure
of the tree topology is very robust with respect to time. We also point out that the diversification
aspect of portfolio optimization results in the fact that the assets of the classic Markowitz portfolio
are always located on the outer leaves of the tree. Technical aspects like the window size dependence

of the investigated quantities are also discussed.

I. INTRODUCTION

In spite of the traditional wisdom “Money does not
grow on trees”, here we wish to show that the concept
of trees (graphs) have potential applications in financial
market analysis. This concept was recently introduced by
Mantegna as a method for finding a hierarchical arrange-
ment of stocks through studying the clustering of compa-
nies by using correlations of asset returns [1l]. With an ap-
propriate metric, based on the correlation matrix, a fully
connected graph was defined in which the nodes are com-
panies, or stocks, and the ‘distances’ between them are
obtained from the corresponding correlation coefficients.
The minimum spanning tree (MST) was generated from
the graph by selecting the most important correlations
and it is used to identify clusters of companies.

In this paper, we study the time dependent properties
of the minimum spanning tree and call it a ‘dynamic asset
tree’. It should be mentioned that several attempts have
been made to obtain clustering from the huge correlation
matrix, like the Potts super paramagnetic method ﬂ],
a method based on the maximum likelihood [d] or the
comparison of the eigenvalues with those given by the
random matrix theory E] We have chosen the MST
because of its uniqueness and simplicity. The different
methods are compared in

Financial markets are often characterized as evolving
complex systems [H]. The evolution is a reflection of
the changing power structure in the market and it man-
ifests the passing of different products and product gen-
erations, new technologies, management teams, alliances
and partnerships, among many other factors. This is why

exploring the asset tree dynamics can provide us new in-
sights to the market. We believe that dynamic asset trees
can be used to simplify this complexity in order to grasp
the essence of the market without drowning in the abun-
dance of information. We aim to derive intuitively un-
derstandable measures, which can be used to characterize
the market taxonomy and its state. A further characteri-
zation of the asset tree is obtained by studying its degree
distribution [6]. We will also study the robustness of tree
topology and the consequences of the market events on
its structure. The minimum spanning tree, as a strongly
pruned representative of asset correlations, is found to be
robust and descriptive of stock market events.

Furthermore, we aim to apply dynamic asset trees in
the field of portfolio optimization. Many attempts have
been made to solve this central problem from the clas-
sical approach of Markowitz [Z] to more sophisticated
treatments, including spin glass type studies E] In all
the attempts to solve this problem, correlations between
asset prices play a crucial role and one might, there-
fore, expect a connection between dynamic asset trees
and the Markowitz portfolio optimization scheme. We
demonstrate that although the topological structure of
the tree changes with time, the companies of the mini-
mum risk Markowitz portfolio are always located on the
outer leaves of the tree. Consequently, asset trees in ad-
dition to their ability to form economically meaningful
clusters, could potentially contribute to the portfolio op-
timization problem. Then with a lighter key one could
perhaps say that “some money may grow on trees”, after
all.

The paper is organized as follows. In Section 2 we in-



troduce the data, discuss some properties of asset return
correlation distributions and construct and characterize
trees. Section 3 deals with tree occupation and central
vertex considerations, followed with Section 4 which ad-
dresses the important question of economic meaningful-
ness of tree clusters. Then Section 5 is devoted to the
study of the scale free character of the asset trees. Sec-
tion 6 deals with tree evolution through the concepts of
two different types of survival ratios, which can be used
to describe decaying of connections and determine tree
half-lives. In the subsequent Section 7, we investigate
how asset trees can contribute to the portfolio optimiza-
tion problem. Finally, in Section 8, we draw conclusions
and summarize our findings.

II. RETURN CORRELATIONS AND DYNAMIC
ASSET TREES

The financial market, for the largest part in this pa-
per, refers to a set of data commercially available from
the Center for Research in Security Prices (CRSP) of
the University of Chicago Graduate School of Business.
Here We will study the split-adjusted daily closure prices
for a total of N = 477 stocks traded at the New York
Stock Exchange (NYSE) over the period of 20 years,
from 02-Jan-1980 to 31-Dec-1999. This amounts a to-
tal of 5056 price quotes per stock, indexed by time vari-
able 7 =1,2,...,5056. For analysis and smoothing pur-
poses, the data is divided time-wise into M windows
t=1,2,..., M of width T corresponding to the number
of daily returns included in the window. Several consecu-
tive windows overlap with each other, the extent of which
is dictated by the window step length parameter 7', de-
scribing the displacement of the window, measured also
in trading days. The choice of window width is a trade-off
between too noisy and too smoothed data for small and
large window widths, respectively. The results presented
in this paper were calculated from monthly stepped four-
year windows, i.e. 6T = 20.8 days and 7" = 1000 days.
We have explored a large scale of different values for both
parameters, and the given values were found optimal [9].
With these choices, the overall number of windows is
M =195.

In order to investigate correlations between stocks we
first denote the closure price of stock 4 at time 7 by P;(7)
(Note that 7 refers to a date, not a time window). We
focus our attention to the logarithmic return of stock
i, given by r;(7) = In Pi(7) — In P;(7 — 1) which, for a
sequence of consecutive trading days, i.e. those encom-
passing the given window ¢, form the return vector r!.
In order to characterize the synchronous time evolution
of assets, we use the equal time correlation coefficients
between assets ¢ and j defined as

where (...) indicates a time average over the consecu-
tive trading days included in the return vectors. Due to
Cauchy-Schwarz inequality, these correlation coefficients
fulfill the condition —1 < p;; < 1 and form an N X NV cor-
relation matrix C?, which serves as the basis of dynamic
asset trees to be discussed later.

Let us first characterize the correlation coefficient dis-
tribution by its first four moments and their correlations
with one another. The first moment is the mean correla-
tion coefficient defined as
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where we consider only the non-diagonal (i # j) elements

pi; of the upper (or lower) triangular matrix. We also

evaluate the higher order moments for the correlation

coefficients, so that the variance is

Z pi; — 0% (3)
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The mean, variance, skewness and kurtosis of the correla-
tion coefficients are plotted as functions of time in Figure
m

In this figure the effect and repercussions of Black Mon-
day (October 19, 1987) are clearly visible in the behavior
of all these quantities. For example, the mean correla-
tion coefficient is clearly higher than average on the in-
terval between 1986 and 1990. The length of this interval
corresponds to the window width 7', and Black Monday
coincides with the mid-point of the interval [10]. The
increased value of the mean correlation is in accordance
with the observation by Drozdz et al. [11], who found
that the maximum eigenvalue of the correlation matrix,
which carries most of the correlations, is very large during
market crashes. We also investigated whether these four
different measures are correlated, as seems clear from the
figure. For this we determined the Pearson’s linear and
Spearman’s rank-order correlation coefficients, which be-
tween the mean and variance turned out to be 0.97 and
0.90, and between skewness and kurtosis 0.93 and 0.96,
respectively. Thus the first two and the last two measures
are very strongly correlated.

We now move on to construct an asset tree. For this we
use the non-linear transformation d;; = 1/2(1 — p;;) to
obtain distances with the property 2 > d;; > 0, forming
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Figure 1: The mean, variance, skewness and kurtosis of the

correlation coefficients as functions of time.

an N x N distance matrix D?. At this point an addi-
tional hypothesis about the topology of the metric space
is required. The working hypothesis is that a useful space
for linking the stocks is an ultrametric space, i.e., a space
where all distances are ultrametric. This hypothesis is
motivated a posteriori by the finding that the associ-
ated taxonomy is meaningful from an economic point of
view. The concept of ultrametricity is discussed in de-
tail by Mantegna [[ll], while the economic meaningfulness
of the emerging taxonomy is addressed later in this pa-
per. Out of the several possible ultrametric spaces, the
subdominant ultrametric is opted for due to its simplic-
ity and remarkable properties. In practice, it is obtained
by using the distance matrix D! to determine the min-
imum spanning tree (MST) of the distances, according
to the methodology of |1l], denoted T*. This is a simply
connected graph that connects all N nodes of the graph
with N — 1 edges such that the sum of all edge weights,
> 4t T di;, is minimum. (Here time (window) depen-
dence of the tree is emphasized by the addition of the
superscript ¢ to the notation.) Asset trees constructed
for different time windows are not independent from each
other, but form a series through time. Consequently, this
multitude of trees is interpreted as a sequence of evolu-
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Figure 2: Plots of (a) the mean correlation coefficient p(t),
(b) the normalized tree length L(¢) and (c) the risk of the
minimum risk portfolio, as functions of time.

tionary steps of a single dynamic asset tree.

As a simple measure of the temporal state of the mar-
ket (the asset tree) we define the normalized tree length
as

L= 3 dy (©)

t t
df; €Tt

where ¢ again denotes the time at which the tree is con-
structed, and N —1 is the number of edges present in the
MST. The normalized tree length is depicted in Figure
%

As expected and as the plots show, the mean correla-
tion coeflicient and the normalized tree length are very
strongly anti-correlated. Pearson’s linear correlation be-
tween the mean correlation coefficient p(t) and normal-
ized tree length L(t) is -0.98, and Spearman’s rank-order
correlation coefficient is -0.92, thus both indicating very
strong anti-correlation. Anti-correlation is to be expected
in view of how the distances d;; are constructed from
correlation coefficients p;;. However, the extent of this
anti-correlation is different for different input variables
and is lower if, say, daily transaction volumes are studied
instead of daily closure prices [12].

It should be noted that in constructing the minimum
spanning tree, we are effectively reducing the informa-
tion space from N(N — 1)/2 separate correlation coeffi-
cients to N — 1 tree edges, in other words, compressing
the amount of information dramatically. This follows be-
cause the correlation matrix C! and distance matrix D?
are both N x N dimensional, but due to their symmetry,
both have N(N — 1)/2 distinct upper (or lower) triangle
elements, while the spanning tree has only N — 1 edges.
So, in moving from correlation or distance matrix to the
asset tree, we have pruned the system from N(N —1)/2



to N — 1 elements of information. This, of course, raises
the key question of information theory, whether essen-
tial information is lost in the reduction. As the above
examination of the mean correlation coefficient and nor-
malized tree length shows, the fact that the two mea-
sures are strongly anti-correlated testifies to the success
of the pruning process. Consequently, one is justified to
contemplate the minimum spanning tree as a strongly
reduced representative of the whole correlation matrix,
which bears the essential information about asset corre-
lations.

As further evidence that the MST retains the salient
features of the stock market, it is noted that the 1987
market crash can be quite accurately seen in Figure &
The fact that the market , during crash, is moving to-
gether is thus manifested in two ways. First, the ridge in
the plot of the mean correlation coefficient in Figure BYa)
indicates that the whole market is exceptionally strongly
correlated. Second, the corresponding well in the plot of
the normalized tree length in Figure Pb) shows how this
is reflected in considerably shorter than average length
of the tree so that the tree, on average, is very tightly
packed. Upon letting the window width 7" — 0, the two
sides of the ridge converge to a single date, which coin-
cides with Black Monday [10].

III. TREE OCCUPATION AND CENTRAL
VERTEX

Next we focus on characterizing the spread of nodes on
the tree. In order to do so, we introduce the quantity of
mean occupation layer as

N
It v.) = % > lev(ed) (7)

where lev(v;) denotes the level of vertex v;. The levels,
not to be confused with the distances d;; between nodes,
are measured in natural numbers in relation to the central
vertexr v., whose level is taken to be zero. Here the mean
occupation layer indicates the layer on which the mass of
the tree, on average, is conceived to be located.

Let us now examine the central vertex in more de-
tail, as the understanding of the concept is a prerequisite
for interpreting mean occupation layer results, to follow
shortly. The central vertex is considered the parent of
all other nodes in the tree, also known as the root of the
tree. It is used as the reference point in the tree, against
which the locations of all other nodes are relative. Thus
all other nodes in the tree are children of the central ver-
tex. Although there is arbitrariness in the choice of the
central vertex, we propose that it is central, or impor-
tant, in the sense that any change in its price strongly
affects the course of events in the market on the whole.
We propose three alternative definitions have emerged
for the central vertex in our studies, all yielding similar
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Figure 3: Central vertices according to (a) vertex degree

criterion, (b) weighted vertex degree criterion and (c) center
of mass criterion.

and, in most cases, identical outcomes. The first and sec-
ond definitions of the central vertex are local in nature.
The idea here is to find the node that is most strongly
connected to its nearest neighbors. According to the the
first definition, this is the node with the highest vertex
degree, i.e. the number of edges which are incident with
(neighbor of) the vertex. The obtained results are shown
in Figure

The vertex degree criterion leads to General Electric
(GE) dominating 67.2% of the time, followed by Merrill
Lynch (MER) at 20.5% and CBS at 8.2%. The com-
bined share of these three vertices is 95.9%. The second
definition, a modification of the first, defines the central
vertex as the one with the highest sum of those corre-
lation coefficients that are associated with the incident
edges of the vertex. Therefore, whereas the first defi-
nition weighs each departing node equally, the second
gives more weight to short edges, since a high value of
pij corresponds to a low value of d;;. This is reason-
able, as short connections link the vertex more tightly to
its neighborhood than long ones (the same principle em-
ployed in constructing the spanning tree). This weighted
vertex degree criterion results in GE dominating 65.6% of
the cases, followed by MER at 20.0% and CBS at 8.7%,



the share of the top three being 94.3%. The third defini-
tion deals with the global quantity of center of mass. In
considering a tree T at time ¢, the vertex v; that pro-
duces the lowest value for mean occupation layer (¢, v;)
is the center of mass, given that all nodes are assigned
an equal weight and consecutive layers (levels) are at
equidistance from one another, in accordance with the
above definition. With this center of mass criterion we
find that the most dominant company, again, is GE, as
it is 52.8% of the time the centre of mass, followed by
MER at 15.4% and Minnesota Mining & MFG at 14.9%.
These top three candidates constitute 83.1% of the total.
Should the weight of the node be made proportional to
the size (e.g. revenue, profit etc.) of the company, it is
obvious that GE’s dominance would increase.

As Figure Bl shows, the three alternative definitions for
the central vertex lead to very similar results. The vertex
degree and the weighted vertex degree criteria coincide
91.8% of the time. In addition, the former coincides with
center of mass 66.7% and the latter 64.6% of the time,
respectively. Overall, the three criteria yield the same
central vertex in 63.6% of the cases, indicating consider-
able mutual agreement. The existence of a meaningful
center in the tree is not a trivial issue, and neither is
its coincidence with the center of mass. However, since
the criteria applied, present a mixture of both local and
global approaches, and the fact that they coincide al-
most 2/3 of the time, does indicate the existence of a
well-defined center in the tree. The reason for the coin-
cidence of the criteria seems clear, intuitively speaking.
A vertex with a high vertex degree, the central vertex in
particular, carries a lot of weight around it (the neigh-
boring nodes), which in turn may be highly connected
to others (to their children) and so on. Two different
interpretations may be given to these results. One may
have either (i) static (fixed at all times) or (ii) dynamic
(updated at each time step) central vertex. If the first
approach is opted for, the above evidence well substan-
tiates the use of GE as the central vertex. In the second
approach, the results will vary somewhat depending on
which of the three criteria is used in determining the cen-
tral vertex.

The mean occupation layer [(t) is depicted in FigureHl
where also the effect of different central vertices is demon-
strated. The blue curve results from the static central
vertex, i.e. GE, and the green one to dynamic central
vertex evaluated using the vertex degree criterion. The
two curves coincide where only the blue curve is drawn.
This is true most of the time, as the above central ver-
tex considerations lead us to expect. The two dips at
1986 and 1990, located symmetrically at half a window
width from Black Monday, correspond to the topological
shrinking of the tree associated with the famous market
crash of 1987 [10]. Roughly between 1993 and 1997 I(¢)
reaches very high values, which is in concordance with
our earlier results obtained for a different set of data [13].
High values of [(t) are considered to reflect a finer mar-
ket structure, whereas in the other extreme low dips are
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Figure 4: Plot of mean occupation layer (¢, v.) as a function
of time, with static and dynamic central vertices.

connected to market crashes, where the behavior of the
system is very homogeneous. The finer structure may
result from general steady growth in asset prices during
that period as can be seen, for example, from the S&P
500 index.

IV. TREE CLUSTERS AND THEIR ECONOMIC
MEANINGFULNESS

As mentioned earlier, Mantegna’s idea of linking stocks
in an ultrametric space was motivated a posteriori by the
property of such a space to provide a meaningful eco-
nomic taxonomy. We will now explore this issue further,
as the meaningfulness of the emerging economic taxon-
omy is the key justification for the use of the current
methodology. In [1l], Mantegna examined the meaning-
fulness of the taxonomy by comparing the grouping of
stocks in the tree with a third party reference grouping of
stocks by their industry etc. classifications. In this case,
the reference was provided by Forbes[14], which uses its
own classification system, assigning each stock with a
sector (higher level) and industry (lower level) category..

In order to visualize the grouping of stocks, we con-
structed a sample asset tree for a smaller dataset, shown
in Figuredl This was obtained by studying our previous
dataset [13], which consists of 116 S&P 500 stocks, ex-
tending from the beginning of 1982 to the end of 2000,
resulting in a total of 4787 price quotes per stock [13].
The window width was set at T' = 1000, and the shown
sample tree is located time-wise at ¢ = t*, corresponding
to 1.1.1998. The stocks in this dataset fall into 12 sectors,
which are Basic Materials, Capital Goods, Conglomer-
ates, Consumer/Cyclical, Consumer/Non-Cyclical, En-
ergy, Financial, Healthcare, Services, Technology, Trans-
portation and Utilities. The sectors are indicated in the
tree with different markers, while the industry classifica-
tions are omitted for reasons of clarity.
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Figure 5: Snapshot of a dynamic asset tree connecting the
examined 116 stocks of the S&P 500 index. The tree was
produced using four-year window width and it is centered on
January 1, 1998. Business sectors are indicated according to
Forbes, http://www.forbes.com. In this tree, General Electric
(GE) was used as the central vertex and eight layers can be
identified.

Before evaluating the economic meaningfulness of
grouping stocks, we wish to establish some terminology.
We use the term sector exclusively to refer to the given
third party classification system of stocks. The term
branch refers to a subset of the tree, to all the nodes
that share the specified common parent. In addition to
the parent, we need to have a reference point to indicate
the generational direction (i.e. who is who’s parent) in
order for a branch to be well defined. Without this refer-
ence there is absolutely no way to determine where one
branch ends and the other begins. In our case, the ref-
erence is the central node. There are some branches in
the tree, in which most of the stocks belong to just one
sector, indicating that the branch is fairly homogeneous
with respect to business sectors. This finding is in ac-
cordance with those of Mantegna ﬂ], although there are
branches that are fairly heterogeneous, such as the one
extending directly downwards from the central vertex,
see Figure

Since the grouping of stocks is not perfect at the branch
level, we define a smaller subset whose members are more
homogeneous as measured by the uniformity of their sec-
tor classifications. The term cluster is defined, broadly
speaking, as a subset of a branch, but a more accurate
definition is based on the following four rules. (i) A clus-
ter is named after the cluster parent, which is the node
in the cluster closest to the central vertex and it is the
starting node of the cluster. The cluster is named after
the business sector of the cluster parent. This is why,
for example, Utilities cluster starts from PGL and not
from KO. (ii) If there are more than one potential clus-
ter parent, the one resulting in the most complete cluster
is chosen as the cluster parent. The nodes that are left

outside the formed cluster are considered outliers. (iii)
Only those edges that are required to connect the cluster
are included. Therefore, for example, in the Basic Mate-
rials cluster, the edges DOW-IP and IP-GP are counted,
even though IP is not a Basic Materials company, but it
is needed to render the cluster connected. (iv) If there are
nodes in a cluster which do not belong there, and they do
not have children that belong to the cluster either, they
are not included. For example, again in the Basic Mate-
rials cluster, edges DD-CSX-BNI-UNP are not counted
as they do not have children that belong to the Basic
Materials sector, although the parent DD is a member of
the cluster. Consequently, CSX, BNI and UNP are not
included in the Basic Materials cluster.

Let us now examine some of the clusters that have
been formed in the sample tree. We use the terms com-
plete and incomplete to describe, in rather strict terms,
the success of clustering. A complete cluster contains all
the companies of the studied set belonging to the cor-
responding business sector, so that none are left outside
the cluster. In practice, however, clusters are mostly in-
complete, containing most, but not all, of the companies
of the given business sector, and the rest are to be found
somewhere else in the tree. Only the Energy cluster was
found complete, but many others come very close, typi-
cally missing just one or two members of the cluster.

Building upon the normalized tree length concept, we
can characterize the strength of clusters in a similar man-
ner, as they are simply subsets of the tree. These clus-
ters, whether complete or incomplete, are characterized
by the normalized cluster length, defined for a cluster ¢
as follows

L) =5 3 . ®)
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where NV, is the number of stocks in the cluster. This can
be compared with the normalized tree length, which for
the sample tree in Figure B at time ¢* is L(¢*) ~ 1.05.
A full account of the results is to be found in Appendix
A, but as a short summary of results we state the follow-
ing. The Energy companies form the most tightly packed
cluster resulting in LEnergy(t*) ~ 0.92, followed by the
Health-care cluster with Lyeaith-care(t*) = 0.98. For the
Utilities cluster we have Luyilities(t™) &~ 1.01 and for the
diverse Basic Materials cluster Lpagic materials(t*) =~ 1.03.
Even though the Technology cluster has the fewest num-
ber of members, its mean distance is the highest of the
examined groups of clusters being Lrechnology (t*) ~ 1.07.
Thus, most clusters seem to be more tightly packed than
the tree on average.

One could find and examine several other clusters in
the tree, but the ones that were identified are quite con-
vincing. The minimum spanning tree, indeed, seems to
provide a taxonomy that is well compatible with the
sector classification provided by an outside institution,
Forbes in this case. This is a strong vote for the use of



the current methodology in stock market analysis. Some
further analysis of the identified clusters is presented in
Appendix A.

There are, however, some observed deviations to the
classification, which call for an explanation. For them
the following points are raised. (i) Uncertainty in as-
set prices in the minds of investors causes some seem-
ingly random price fluctuations to take place, and this
introduces “noise” in the correlation matrix. Therefore,
it is not reasonable to expect a one-to-one mapping be-
tween business sectors and MST clusters. (ii) Business
sector definitions are not unique, but vary by the orga-
nization issuing them. In this work, we used the classi-
fication system by Forbes [14], where the studied com-
panies are divided into 12 business sectors and 51 indus-
tries. Forbes has its own classification principle, based
on company dynamics rather than size alone. Alterna-
tively, one could have used, say, the Global Industry
Classification Standard (GICS), released on January 2,
2001, by Standard & Poor’s [16]. Within this frame-
work, companies are divided into 10 sectors, 23 industry
groups, 59 industries and 122 sub-industries. Therefore,
the classification system clearly makes a difference, and
there are discrepancies even at the topmost level of busi-
ness sectors amongst different systems. (iii) Historical
price time series is, by definition, old. Therefore, one
should use contemporary definitions for business sectors
etc., as those most accurately characterize the company.
Since these were not available to the authors, the clas-
sification scheme by Forbes was used. The error caused
by this approach varies for different companies. (iv) In
many classification systems, companies engaged in sub-
stantially different business activities are classified ac-
cording to where the majority of revenues and profits
comes from. For highly diversified companies, these clas-
sifications are more ambiguous and, therefore, less infor-
mative. As a consequence, classification of these types of
companies should be viewed with some skepticism. This
problem has its roots in the desire to categorize compa-
nies by a single label, and the approach fails where this
division is unnatural. (v) Some cluster outliers can be ex-
plained through the MST clustering mechanism, which
is based on correlations between asset returns. There-
fore, one would expect, for example, investment banks
to be grouped with their investments rather than with
other similar institutions. Through portfolio diversifi-
cation, these banks distance themselves from the price
fluctuations (risks) of a single business sector. Conse-
quently, it would be more surprising to find a totally ho-
mogeneous financial cluster than a fairly heterogeneous
one currently observed. (vi) The risks imposed on the
companies by the external environment vary in their de-
gree of uniformity from one business sector to another.
For example, companies in the Energy sector (price of
their stocks) are prone to fluctuations in the world mar-
ket price of oil, whereas it is difficult to think of one
factor having equal influence on, say, companies in the
Consumer/Non-cyclical business sector. This uniformity

of external risks influences the stock price of these com-
panies, in coarse terms, leading to their more complete
clustering than that of companies facing less uniform ex-
ternal risks. In conclusion, regarding all the above listed
factors, the success of the applied method in identifying
market taxonomy is remarkable.

V. SCALE FREE STRUCTURE OF THE ASSET
TREE

So far we have characterized the asset tree as an im-
portant subgraph of the fully connected graph derived
from all the elements of the connectivity matrix. Since
the asset tree is expected to reflect some aspects of the
market and its state, it is therefore of interest to learn
more about its structure. During the last few years, much
attention has been devoted to the degree distribution of
graphs. It has become clear that the so called scale free
graphs, where this distribution obeys a power law, are
very frequent in many fields, ranging from human rela-
tionships through cell metabolism to the Internet |17, [18].
Scale free trees have also been extensively studied (see
e.g., [19]). Recently, examples for scale free networks in
economy and finance have been found [f, 24, 21].

Vandewalle et al. 6] found scale free behavior for the
asset tree in a limited (one year, 1999) time window for
6358 stocks traded at the NYSE, NASDAQ and AMEX.
They proposed the distribution of the vertex degrees f(n)
to follow a power law behavior:

fln) ~n=*, (9)

with the exponent a =~ 2.2. This exponent implies that
the second moment of the distribution would diverge in
the infinite market limit, or in other words, the second
moment of the distribution is always dominated by the
rare but extremely highly connected vertices.

Our aim here is to study the property of scale freeness
in the light of asset tree dynamics. First, we conclude
that the asset tree has, most of the time, scale free prop-
erties with a rather robust exponent @ ~ —2.1 4+ 0.1 for
normal topology (i.e. outside crash periods of ’business
as usual’), a result close to that given in [fl]. For most of
the time the distribution behaves in a universal manner,
meaning that the exponent « is a constant within the
error limits. However, when the behavior of the market
is not ’business as usual’ (i.e. within crash periods), the
exponent also changes, although the scale free character
of the tree is still maintained. For the Black Monday
period, we have a ~ —1.8 & 0.1. This result is in full
agreement with the observation of the shrinking of the
tree during market crashes, which is accompanied by an
increase in the degree, thus explaining the higher value
of the exponent. The observation concerning the change
in the value of the exponent for normal and crash period
is exemplified in Figure [l

When fitting the data, in many cases we found one



Figure 6: Typical plots of vertex degree for normal (left) and
crash topology (right), for which the exponents and goodness
of fit are a ~ —2.15, R*> ~ 0.96 and o =~ —1.75, R? ~ 0.92,
respectively. The plot on the left is centered at 28.2.1994 and
the right one at 1.5.1989, and for both 7" = 1000.

or two outliers, i.e. vertices whose degrees did not fit
to the overall power law behavior since they were much
too high. In all cases these stocks corresponded either to
the highest connected node (i.e. the central vertex) or
were nodes with very high degrees. This result suggest
that it could be useful to handle these nodes with spe-
cial care, thus providing further support to the concept
of the central node. However, for the purpose of fitting
the observed vertex degree data, such nodes were con-
sidered outliers. To give an overall measure of goodness
of the fits, we calculated the R? coefficient of determina-
tion, which can be interpreted as the fraction of the total
variation that is explained by the least-squares regression
line. We obtained, on average, values of R? ~ 0.86 for the
entire dataset with outliers included, and R? ~ 0.93 with
outliers excluded. Further, the fits for the normal market
period were better than those obtained for the crash pe-
riod as characterized by the average values of R? ~ 0.89
and R? =~ 0.93, respectively, with outliers excluded. In
addition to the market period based dependence, the ex-
ponent a was also found to depend on the window width.
We examined a range of values for the window width T°
between 2 and 8 years and found, without excluding the
outliers, the fitted exponent to depend linearly on 7.

In conclusion, we have found the scaling exponent to
depend on the market period, i.e. crash vs normal market
circumstances and on the window width. These results
also raise the question of whether it is reasonable to as-
sume that different markets share the scaling exponent.
In case they do not, one should be careful when pooling
stocks together from different markets for the purpose of
vertex degree analysis.

VI. ASSET TREE EVOLUTION

In order to investigate the robustness of asset tree
topology, we define the single-step survival ratio of tree
edges as the fraction of edges found common in two con-
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Figure 7: Single-step survival ratio o(t) as a function of time.

secutive trees at times ¢t and ¢t — 1 as

L

o(t) = 5

\E() N E(t —1)|. (10)

In this E(t) refers to the set of edges of the tree at time
t, N is the intersection operator and |...| gives the num-
ber of elements in the set. Under normal circumstances,
the tree for two consecutive time steps should look very
similar, at least for small values of window step length
parameter 67. With this measure it is expected that
while some of the differences can reflect real changes in
the asset taxonomy, others may simply be due to noise.
On letting 6T — 0, we find that o(t) — 1, indicating
that the trees are stable in this limit [9].

A sample plot of single-step survival ratio for 7' = 1000
and 6T ~ 20.8 is shown in Figure [ The following ob-
servations are made. (i) A large majority of connections
survives from one time window to the next. (ii) The
two prominent dips indicate a strong tree reconfiguration
taking place, and they are window width T apart, po-
sitioned symmetrically around Black Monday, and thus
imply topological reorganization of the tree during the
market crash|10]. (iii) Single-step survival ratio o(t) in-
creases as the window width T increases while 67T is kept
constant. Thus an increase in window width renders the
trees more stable with respect to single-step survival of
connections. We also find that the rate of change of the
survival ratio decreases as the window width increases
and, in the limit, as the window width is increased to-
wards infinity 7' — oo, o(t) — 1 for all ¢. The survival
ratio seems to decrease very rapidly once the window
width is reduced below roughly one year. As the win-
dow width is decreased further towards zero, in the limit
asT — 0, o(t) — 0forall t. (iv) Variance of fluctua-
tions around the mean is constant over time, except for
the extreme events and the interim period, and it gets
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Figure 8: Multi-step survival ratio o(¢,k) as a function of
time for different parametric values of 7.

less as the window width increases.

In order to study the long term evolution of the trees,
we introduce the multi-step survival ratio at time t as

ot k) = ﬁw(t)ﬁE(t— Do E(t—k+1)NE(t—k)],

(11)
where only those connections that have persisted for the
whole time period without any interruptions are taken
into account. According to this formula, when a bond
between two companies breaks even once in k steps and
then reappears, it is not counted as a survived connec-
tion. It is found that many connections in the asset trees
evaporate quite rapidly in the early time horizon. How-
ever, this rate decreases significantly with time, and even
after several years there are some connections that are
left intact. This indicates that some companies remain
closely bonded for times longer that a decade. The be-
havior of the multi-step survival ratio for three different
values of window width (2,4 and 6 years) is shown in
Figure B together with the associated fits.

In this figure the horizontal axis can be divided into
two regions. Within the first region, decaying of connec-
tions is roughly exponential, and takes place at different
rates for different values of the window width. Later,
within the second region, when most connections have
decayed and only some 20%-30% remain (for the shown
values of T), there is a cross-over to power law behav-
ior. The exponents obtained for the window widths of
T = 500, T = 1000 and T = 1500 are -1.15, -1.19 and
-1.17, respectively. Thus, interestingly, the power law de-
cay in the second region seems independent of the window
width.

We can also define a characteristic time, the so called
half-life of the survival ratio t,,5, or tree half-life for
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Figure 9: Plot of half-life ¢, /5 as a function of window width
T.

short, as the time interval in which half the number of
initial connections have decayed, i.e., o(t,t,/2) = 0.5.
The behavior of 1,5 as a function of the window width
is depicted in Figure[@ and it is seen to follow a clean lin-
ear dependence on for values of T being between 1 and 5
years, after which it begins to grow faster than a linear
function. For the linear region, the tree half-life exhibits
t1/2 = 0.12T dependence.

This can also be seen in Figure B where the dashed
horizontal line indicates the level at which half of the
connections have decayed. For the studied values of the
window width, tree half-life occurs within the first region
of the multi-step survival plot, where decaying was found
to depend on the window width. Consequently, the de-
pendence of half-life on window width 7" does not contra-
dict the window width independent power law decaying
of connections, as the two occur in different regions. In
general, the number of stocks N, as well as the their
type, is likely to affect the half-lives. Earlier, for a set of
N = 116 S&P 500 stocks, half-life was found to depend
on the window width as t; /5 ~ 0.207" [d]. A smaller tree,
consisting primarily of important industry giants, would
be expected to decay more slowly than the larger set of
NYSE-traded stocks studied in this paper.

VII. PORTFOLIO ANALYSIS

Next, we apply the above discussed concepts and mea-
sures to the portfolio optimization problem, a basic prob-
lem of financial analysis. This is done in the hope that
the asset tree could serve as another type of quantita-
tive approach to and/or visualization aid of the highly
inter-connected market, thus acting as a tool support-
ing the decision making process. We consider a gen-
eral Markowitz portfolio P(t) with the asset weights
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Figure 10: Plot of the weighted minimum risk portfolio layer
lp(t,0 = 0) with no short-selling and mean occupation layer
I(t,v.) against time. Top: static central vertex, bottom: dy-
namic central vertex according to the vertex degree criterion.

wy, Wa, ..., wy. In the classic Markowitz portfolio op-
timization scheme, financial assets are characterized by
their average risk and return, where the risk associated
with an asset is measured by the standard deviation of re-
turns. The Markowitz optimization is usually carried out
by using historical data. The aim is to optimize the asset
weights so that the overall portfolio risk is minimized for
a given portfolio return rp [24]. In the dynamic asset
tree framework, however, the task is to determine how
the assets are located with respect to the central vertex.

Let r,,, and s denote the returns of the minimum and
maximum return portfolios, respectively. The expected
portfolio return varies between these two extremes, and
can be expressed as rpg = (1 — 6)ry, + Oras, where 6 is
a fraction between 0 and 1. Hence, when 6 = 0, we have
the minimum risk portfolio, and when 6§ = 1, we have the
maximum return (maximum risk) portfolio. The higher
the value of 6, the higher the expected portfolio return
rp,9 and, consequently, the higher the risk the investor
is willing to absorb. We define a single measure, the
weighted portfolio layer as

lp(t,0) = Z w; lev(vl), (12)

i€P(t,0)

where sz\; w; = 1 and further, as a starting point, the
constraint w; > 0 for all 7, which is equivalent to assum-
ing that there is no short-selling. The purpose of this
constraint is to prevent negative values for (p(¢), which
would not have a meaningful interpretation in our frame-
work of trees with central vertex. This restriction will
shortly be discuss further.

Figure [[ shows the behavior of the mean occupation
layer [(t) and the weighted minimum risk portfolio layer
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Figure 11: Plot of the weighted minimum risk portfolio layer
lp(t,0 = 0) with short-selling allowed and mean occupation
layer I(t,v.) against time. Top: static central vertex, bot-
tom: dynamic central vertex according to the vertex degree
criterion.

Ip(t,60 = 0). We find that the portfolio layer is higher
than the mean layer at all times. The difference between
the layers depends on the window width, here set at T' =
1000, and the type of central vertex used. The upper plot
in Figure [[ is produced using the static central vertex
(GE), and the difference in layers is found to be 1.47. The
lower one is produced by using a dynamic central vertex,
selected with the vertex degree criterion, in which case
the difference of 1.39 is found.

Above we assumed the no short-selling condition.
However, it turns out that, in practice, the weighted port-
folio layer never assumes negative values and the short-
selling condition, in fact, is not necessary. Figure [ re-
peats the earlier plot, this time allowing for short-selling.
The weighted portfolio layer is now 99.5% of the time
higher than the mean occupation layer and, with the
same central vertex configuration as before, the differ-
ence between the two is 1.18 and 1.14 in the upper and
lower plots, respectively. Thus we conclude that only mi-
nor differences are observed in the previous plots between
banning and allowing short-selling, although the differ-
ence between weighted portfolio layer and mean occupa-
tion layer is somewhat larger in the first case. Further,
the difference in layers is also slightly larger for static
than dynamic central vertex, although not by much.

As the stocks of the minimum risk portfolio are found
on the outskirts of the tree, we expect larger trees (higher
L) to have greater diversification potential, i.e., the scope
of the stock market to eliminate specific risk of the mini-
mum risk portfolio. In order to look at this, we calculated
the mean-variance frontiers for the ensemble of 477 stocks
using 7' = 1000 as the window width. In Figure, we plot
the level of portfolio risk as a function of time, and find
a similarity between the risk curve and the curves of the
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Figure 12: Plots of the weighted minimum risk portfolio layer
lp(t,0) for different values of 6.

mean correlation coefficient p and normalized tree length
L. Earlier, when the smaller dataset of 116 stocks - con-
sisting primarily important industry giants - was used,
we found Pearson’s linear correlation between the risk
and the mean correlation coefficient p(t) to be 0.82, while
that between the risk and the normalized tree length L(t)
was —0.90. Therefore, for that dataset, the normalized
tree length was able to explain the diversification po-
tential of the market better than the mean correlation
coefficient. For the current set of 477 stocks, which in-
cludes also less influential companies, the Pearson’s linear
and Spearman’s rank-order correlation coefficients be-
tween the risk and the mean correlation coefficient are
0.86 and 0.77, and those between the risk and the nor-
malized tree length are -0.78 and -0.65, respectively. It
should be noted again that the minimum spanning tree
with only N — 1 elements represents a pruned version
of the entire system of N(N — 1)/2 elements. Further,
as N increases, the proportion of elements in the tree
to the elements in the correlation matrix gets less and,
consequently, the tree is based on a smaller fraction of
the available information. Therefore, although our ear-
lier finding is not reproduced here to the same extent, the
result does indicate the strength of pruning the applied
methodology is able to provide.

So far, we have only examined the location of stocks in
the minimum risk portfolio, for which § = 0. As we in-
crease 0 towards unity, portfolio risk as a function of time
soon starts behaving very differently from the mean cor-
relation coefficient and normalized tree length as shown
in Fig. MA Consequently, it is no longer useful in de-
scribing diversification potential of the market. However,
another interesting result emerges: The average weighted
portfolio layer Ip(t,0) decreases for increasing values of
f. This means that out of all the possible Markowitz
portfolios, the minimum risk portfolio stocks are located
furthest away from the central vertex, and as we move to-
wards portfolios with higher expected return, the stocks
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included in these portfolios are located closer to the cen-
tral vertex. When static central node is used, the av-
erage values of the weighted portfolio layer Ip(t,68) for
60 =0,1/2,1/2,3/4 are 6.03, 5.70, 5.11 and 4.72, respec-
tively. Similarly, for a dynamic central node, we obtain
the values of 5.68, 5.34, 4.78 and 4.37. We have not in-
cluded the weighted portfolio layer for § = 1, as it is
not very informative. This is due to the fact that the
maximum return portfolio comprises only one asset (the
maximum return asset in the current time window) and,
therefore, lp(t,0 = 1) fluctuates wildly as the maximum
return asset changes over time.

We believe these results to have potential for practi-
cal application. Due to the clustering properties of the
MST, as well as the overlap of tree clusters with busi-
ness sectors as defined by a third party institution, it
seems plausible that companies of the same cluster face
similar risks, imposed by the external economic environ-
ment. These dynamic risks influence the stock prices of
the companies, in coarse terms, leading to their clustering
in the MST. In addition, the radial location of stocks de-
pends on the chosen portfolio risk level, characterized by
the value of 6. Stocks included in low risk portfolios are
consistently located further away from the central node
than those included in high risk portfolios. Consequently,
the radial distance of a node, i.e. its occupation layer, is
meaningful. Thus, it can be conjectured that the location
of a company within the cluster reflects its position with
regard to internal, or cluster specific, risk. Characteriza-
tion of stocks by their branch, as well as their location
within the branch, enables us to identify the degree of in-
terchangeability of different stocks in the portfolio. For
example, in most cases we could pick two stocks from dif-
ferent asset tree clusters, but from nearby layers, and in-
terchange them in the portfolio without considerably al-
tering the characteristics of the portfolio. Therefore, dy-
namic asset trees provide an intuition-friendly approach
to and facilitate incorporation of subjective judgment in
the portfolio optimization problem.

VIII. SUMMARY AND CONCLUSION

In summary, we have studied the distribution of cor-
relation coefficients and found that the mean and the
variance of the distribution are positively correlated, as
well as the skewness and the kurtosis. We have also stud-
ied the dynamics of asset trees and applied it to portfo-
lio analysis. We have shown that the tree evolves over
time and have found that the normalized tree length de-
creases and remains low during a crash, thus implying
the shrinking of the asset tree particularly strongly dur-
ing a stock market crisis. We have also found that the
mean occupation layer fluctuates as a function of time,
and experiences a downfall at the time of market crisis
due to topological changes in the asset tree. Further, our
studies of the scale free structure of the MST show that
this graph is not only hierarchical in the sense of a tree



but there are special, highly connected nodes and the hi-
erarchical structure is built up from these. As for the
portfolio analysis, it was found that the stocks included
in the minimum risk portfolio tend to lie on the outskirts
of the asset tree: on average the weighted portfolio layer
can be almost one and a half levels higher, or further
away from the central vertex, than the mean occupation
layer for window width of four years. Correlation be-
tween the risk and the normalized tree length was found
to be strong, though not as strong as the correlation be-
tween the risk and the mean correlation coefficient. Thus
we conclude that the diversification potential of the mar-
ket is very closely related to the behavior of the normal-
ized tree length. Finally, the asset tree can be viewed as
a highly graphical tool, and even though it is strongly
pruned, it still retains all the essential information of the
market and can be used to add subjective judgment to
the portfolio optimization problem.
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Appendix A

The five sample clusters that were identified in the asset
tree of Figure Bl for ¢ = t*, corresponding to 1.1.1998,
are examined here in closer detail. It is emphasized that
for purposes of visualization, the tree was constructed
from a smaller dataset of 116 S&P 500 stocks. It is also
important to bear in mind that the words business sector
and industry are classifications assigned by a third party
institution, in this case Forbes [14]. In contrast, the word
cluster is used to mean a branch or part of a branch in the
tree, where most nodes are members of a single business
sector.

Energy cluster: Lgnergy(t*) ~ 0.92. In the dataset
there are eleven companies operating in the Energy sec-
tor, represented by red asterisks in Figure Bl They form a
complete Energy cluster, which extends diagonally from
the center to the bottom left corner of the tree. The in-
dustry classifications are mainly Oil & Gas Operations.

12

Ounly two companies, Halliburton (HAL) and Schlum-
berger (SLB), are classified as Oil Well Services & Equip-
ment.

Health-care cluster: Lyeath-care(t*) = 0.98. The in-
complete Health-care cluster extends from the center to-
wards the upper left corner of the tree. All seven Health-
care sector companies, Pfizer (PFE), Eli Lilly (LLY),
Merck & Co. (MRK), Johnson & Johnson (JNJ), Bristol-
Myers Squibb (BMY), American Home Products (AHP)
and Pharmacia (PHA), are classified in the Major Drugs
industry. As the remaining four health care companies
operate in different industries, this cluster is complete
industry wise.

Utilities cluster: Luygities(t*) =~ 1.01. A total of thir-
teen companies belong to the Utilities business sector,
represented by the blue asterisks. Twelve of them can be
found in the incomplete Utilities cluster, which extends
diagonally from the center to the top right corner of the
tree. Williams Companies (WMB) is the only company
that is not part of it, but is located in a sibling branch
instead. WMB along with Peoples Energy (PGL) are as-
signed to the Natural Gas Utilities industry, where as all
other Utilities sector companies are assigned to Electric
Utilities industry. This can explain why WMB is not
part of the main branch in the tree.

Basic Materials cluster: Lpasic materials(t*) =~ 1.03.
There are thirteen companies in the Basic Materials sec-
tor, eleven of which are members of the branch on the
right hand side of the tree. In the incomplete Basic Ma-
terials cluster, we can identify a smaller sub-branch com-
prising Alcoa (AA), Phelps Dodge (PD), Homestake Min-
ing (HM) and Inco (N). AA, PD and N are in the Metal
Mining industry and HM in the Gold & Silver industry.
These are the only four companies within the Basic Ma-
terials sector that provide mining raw materials. Another
interesting sub-branch is that of Georgia-Pacific Group
(GP), Weyerhaeuser (WY), Louisiana-Pacific (LPX) and
Boise Cascade (BCC). These companies function in the
strongly related industries of Paper & Paper Products
and Forestry & Wood Products. We can identify one
more sub-branch, namely the connected pair of DuPont
de Nemours (DD) and Dow Chemical Company (DOW),
located at the beginning of the main Basic Materials
branch. Both companies are in the Chemicals Plastics&
Rubber industry. In the Basic Materials cluster, the are
three companies included that have a different business
sector classification from Basic Materials. Two of them,
Caterpillar (CAT) and Deere & Company (DE), belong
to the Capital Goods business sector and Construction
& Agricultural Machinery industry. Their position in
the branch can be substantiated by their reliance on this
cluster for raw materials. The third exception in the Ba-
sic Materials sector is International Paper (IP), which is
located in front of the GP-WY-(LPX,BCC) sub-branch.
IP belongs to the the Consumer/Non-Cyclical sector and
within that to the Office Supplies industry. Again, it
seems natural that a paper company should be located
together with companies that provide its basic materials.



Technology cluster: Lrechnology(t*) ~ 1.07. An ex-
ample of a clearly incomplete cluster is a group of five
Technology business sector companies extending diago-
nally from the center towards the bottom right corner.
These five technology giants, IBM (IBM), Texas Instru-
ments (TXN), Hewlett-Packard (HWP), Computer Sci-
ences Corp. (CSC) and Motorola (MOT) form the Tech-
nology cluster. There are eight other technology compa-
nies (by business sector) in the set of companies studied,
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but they are mainly distributed around General Elec-
tric. The five companies of the Technology cluster are
grouped together most probably because of their involve-
ment with semiconductor industry. Their industries are
either Semiconductors or Computer Hardware and Com-
puter Services. Motorola as one of the most important
mobile phone manufacturers is classified industry-wise as
Communications Equipment, a field where similar com-
petencies are required as in the previous two.
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