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Abstract

High-frequency data in �nance have led to a deeper understanding on probability distributions
of market prices. Several facts seem to be well established by empirical evidence. Speci�cally,
probability distributions have the following properties: (i) They are not Gaussian and their center
is well adjusted by L�evy distributions. (ii) They are long-tailed but have �nite moments of
any order. (iii) They are self-similar on many time scales. Finally, (iv) at small time scales,
price volatility follows a non-di�usive behavior. We extend Merton’s ideas on speculative price
formation and present a dynamical model resulting in a characteristic function that explains in
a natural way all of the above features. The knowledge of such a distribution opens a new and
useful way of quantifying �nancial risk. The results of the model agree – with high degree of
accuracy – with empirical data taken from historical records of the Standard & Poor’s 500 cash
index. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most important problems in mathematical �nance is to know the proba-
bility distribution of speculative prices. In spite of its importance for both theoretical
and practical applications the problem is yet unsolved. The �rst approach to the prob-
lem was given by Bachelier in 1900 when he modelled price dynamics as an ordinary
random walk where prices can go up and down due to a variety of many independent
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random causes. Consequently, the distribution of prices was Gaussian [1]. The normal
distribution is ubiquitous in all branches of natural and social sciences and this is basi-
cally due to the Central Limit Theorem: the sum of independent, or weakly dependent,
random disturbances, all of them with �nite variance, results in a Gaussian random
variable. Gaussian models are thus widely used in �nance although, as Kendall �rst
noticed [2], the normal distribution does not �t �nancial data especially at the wings
of the distribution. Thus, for instance, the probability of events corresponding to 5
or more standard deviations is around 104 times larger than the one predicted by the
Gaussian distribution, in other words, the empirical distributions of prices are highly
leptokurtic. Is the existence of too many of such events, the so-called outliers, the rea-
son for the existence of “fat tails” and the uselessness of the normal density especially
at the wings of the distribution. Needless to say, the tails of the price distributions are
crucial in the analysis of �nancial risk. Therefore, obtaining a reliable distribution has
deep consequences from a practical point of view [3,4].
One of the �rst attempts to explain the appearance of long tails in �nancial data

was made by Mandelbort in 1963 [5] who, based on Pareto–L�evy stable laws [6],
obtained a leptokurtic distribution. Nevertheless, the price to pay is high: the resulting
probability density function has no �nite moments, except the �rst one. This is indeed
a severe limitation and it is not surprising since Mandelbrot’s approach can still be
considered within the framework of the Central Limit Theorem, that is, the sum of
independent random disturbances of in�nite variance results in the L�evy distribution
which has in�nite variance [6]. On the other hand, the L�evy distribution has been tested
against data in a great variety of situations, always with the same result: the tails of
the distribution are far too long compared with actual data. In any case, as Mantegna
and Stanley have recently shown [7], the L�evy distribution �ts very well the center of
empirical distributions – much better than the Gaussian density – and it also shares
the scaling behavior shown in the data [7–10].
Therefore, if we want to explain speculative price dynamics as a sum of weakly

interdependent random disturbances, we are confronted with two di�erent and in some
way opposed situations. If we assume �nite variance, the tails are “too thin” and the
resulting Gaussian distribution only accounts for a narrow neighborhood at the center
of the distribution. On the other hand, the assumption of in�nite variance leads to
the L�evy distribution which explains quite well a wider neighborhood at the center of
distribution but results in “too fat tails”. The necessity of having an intermediate model
is thus clear and this is the main objective of this paper.
Obviously, since the works of Mandelbrot [5] and Fama [11] on L�evy distributions,

there have been several approaches to the problem, some of them applying cut-o�
procedures of the L�evy distribution [12,13] and, more recently, the use of ARCH
and GARCH models to obtain leptokurtic distributions [14]. The approaches based
on cut-o� procedures are approximations to the distributions trying to better �t the
existing data, but they are not based on a dynamical model that can predict their
precise features. On the other hand, ARCH [15] and GARCH [16] models are indeed
dynamical adaptive models but they do not provide an overall picture of the market
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dynamics resulting in a distinctive probability distribution. In fact, ARCH=GARCH
models usually assume that the market is Gaussian with an unknown time-varying
variance so as to be self-adjusted to obtain predictions.
The paper is organized as follows. In Section 2 we proposed that stochastic model

and set the mathematical framework that leads to a probability distribution of prices. In
Section 3 we present the main results achieved by the model. Conclusions are drawn
in Section 4.

2. Analysis

Let S(t) be a random process representing stock prices or some market index value.
The usual hypothesis is to assume that S(t) obeys a stochastic di�erential equation of
the form

Ṡ
S
= �+ F(t) ; (1)

where � is the instantaneous expected rate of return and F(t) is a random process with
speci�ed statistics, usually F(t) is zero-mean Gaussian white noise, F(t)=�(t), in other
words dW (t)= �(t) dt, where W (t) is the Wiener process or Brownian motion. In this
case, the dynamics of the market is clear since the return R(t) ≡ log[S(t)=S(0)] obeys
the equation Ṙ=�+�(t) which means that returns evolve like an overdamped Brownian
particle driven by the “ination rate” � and, in consequence, the return distribution is
Gaussian.
Let us take a closer look at the price formation and dynamics. Following Merton

[17], we say that the change in the stock price (or index) is basically due to the random
arrival of new information. This mechanism is assumed to produce a marginal change
in the price and it is modelled by the standard geometric Brownian motion de�ned
above. In addition to this “normal vibration” in price, there is an “abnormal vibration”
basically due to the (random) arrival of important new information that has more than
a marginal e�ect on price. Merton models this mechanism as a jump process with two
sources of randomness: the arrival times when jumps occur, and the jump amplitudes.
The result of the overall picture is that the noise source F(t) in price equation is now
formed by the sum of the two independent random components

F(t) = �(t) + f(t) ; (2)

where �(t) is Gaussian white noise corresponding to the normal vibration, and f(t) is
“shot noise” corresponding to the abnormal vibration in price. This shot noise compo-
nent can be explicitly written as

f(t) =
∞∑
k=1

Ak�(t − tk) ; (3)

where �(t) is the Dirac delta function, Ak are jump amplitudes, and tk are jump arrival
times. It is also assumed that Ak and tk are independent random variables with known
probability distributions given by h(x) and  (t), respectively [18].
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We now go beyond this description and specify the “inner components” of the
normal vibration in price, by unifying this with Merton’s abnormal component. We
thus assume that all changes in the stock price (or index) are modelled by di�erent
shot-noise sources corresponding to the detailed arrival of information, that is, we
replace the total noise F(t) by the sum

F(t) =
m∑

n=n0

fn(t) ; (4)

where fn(t) is a set of independent shot-noise processes given by

fn(t) =
∞∑

kn=1

Akn; n�(t − tkn; n) : (5)

The amplitudes Akn; n are independent random variables with zero mean and probability
density function (pdf), hn(x), depending only on a single “dimensional” parameter
which, without loss of generality, we assume to be the standard deviation of jumps �n,
i.e.,

hn(x) = �−1
n h(x�−1

n ) : (6)

We also assume that the occurrence of jumps is a Poisson process, in this case shot
noises are Markovian, and the pdf for the time interval between jumps is exponential:

 (tkn; n − tkn−1; n) = �n exp[− �n(tkn; n − tkn−1; n)] ; (7)

where �n are mean jump frequencies, i.e., 1=�n is the mean time between two con-
secutive jumps [18]. Finally, we order the mean frequencies in a decreasing way:
�n ¡�n−1.
Let X (t) be the zero-mean return, i.e., X (t) ≡ R(t)− �t. For our model X (t) reads

as

X (t) =
m∑

n=n0

∞∑
kn=1

Akn; n�(t − tkn; n) ; (8)

where �(t) is the Heaviside step function. Our main objective is to obtain an
expression for the pdf of X (t); p(x; t), or equivalently, the characteristic function (cf)
of X (t); p̃(!; t), which is the Fourier transform of the pdf p(x; t). Note that X (t) is a
sum of independent jump processes, this allows us to generalize Rice’s methods for a
single Markov shot noise to the present case of many shot noises [19]. The �nal result
is

p̃(!; t) = exp

{
−t

m∑
n=n0

�n[1− h̃(!�n)]

}
: (9)

As it is, X (t) represents a shot-noise process with mean frequency of jumps given by
�=

∑
�n and jump distribution given by h(x)=

∑
�nhn(x)=�. Nevertheless, we make a

further approximation by assuming that (i) n0=−∞, i.e., there is an in�nite number of
shot-noise sources, and (ii) there is no characteristic time scale limiting the maximum
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feasible value of jump frequencies, thus, �n → ∞ as n → −∞. Both assumptions
are based on the fact that the “normal vibration” in price is formed by the addition
of (approximately) in�nitely many random causes, which we have modelled as shot
noises. According to this, we introduce a “coarse-grained” description and replace the
sum in Eq. (9) by an integral as

p̃(!; t) = exp
{
−t

∫ um

−∞
�(u)[1− h̃(!�(u))] du

}
: (10)

In order to proceed further we should specify a functional form for �(u) and �(u). We
note by empirical evidence that the bigger a sudden market change is, the longer is
the time we have to wait until we observe it. Therefore, since �(u) decreases with u
(recall that frequencies are decreasingly ordered) then �(u) must increase with u. We
thus see that �(u) has to be a positive de�nite, regular and monotonically increasing
function for all u. The simplest choice is �(u) = �0eu. On the other hand, there is
empirical evidence of scaling properties in �nancial data [7–10]. We summarize the
above requirements (i.e., inverse relation between � and �, and scaling) by imposing
the “dispersion relation”:

�= �0(�0=�)�: (11)

where � is the scaling parameter. Under these assumptions, the cf of the return X (t)
reads:

p̃(!; t) = exp
{
−�0t��

0

∫ �m

0
z−1−�[1− h̃(!z)] dz

}
; (12)

where �m = �0eum is the maximum value of the standard deviation. We observe that if
�m=∞, which means that some shot-noise source has in�nite variance, then Eq. (12)
yields the L�evy distribution

L̃�(!; t) = exp(−kt!�) ; (13)

where

k = �0��
0

∫ ∞

0
z−1−�[1− h̃(z)] dz : (14)

Hence, if we want a distribution with �nite moments, we have to assume a �nite value
for �m.
Let �m be the mean frequency corresponding to the maximum (�nite) variance.

Recall that, in the discrete case (c.f. Eq. (9)), shot-noise sources are ordered, thus, �m

and �m correspond to the mean frequency and the variance of the last jump source
considered. Our last assumption is that the total number of noise sources in Eq. (8)
increases with the observation time t and, since n0 =−∞, this implies that m=m(t) is
an increasing function of time. Consequently, the mean period of the last jump source,
�−1m , also grows with t. The simplest choice is the linear relation: �mt=a, where a¿ 0
is constant. Therefore, from the dispersion relation, Eq. (11), we see that the maximum
jump variance depends on time as a power law

�2m = (bt)
2=�; (15)
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where b ≡ ��
0�0=a. We �nally have

p̃(!; t) = exp

{
−abt

∫ (bt)1=�

0
z−1−�[1− h̃(!z)] dz

}
: (16)

3. Results

Let us now present the main results and consequences of the above analysis. First,
the volatility of the return is given by

〈X 2(t)〉= a�2m
2− �

=
a

2− �
(bt)2=� ; (17)

which proves that �¡ 2 and the volatility shows super-di�usion. The anomalous di�u-
sion behavior of the empirical data (at least at small time scales) was �rst shown by
Mantegna and Stanley [20,21]. Second, kurtosis is constant and is given by

2 =
(2− �)2h̃

(iv)
(0)

(4− �)a
: (18)

Thus, 2¿ 0 for all t, in other words, we have a leptokurtic distribution in all time
scales. Third, the return probability distribution scales as

p(x; t) = (bt)−1=�p(x=(bt)1=�) (19)

and the model becomes self-similar [7–10].
In Fig. 1, we plot the super-di�usion behavior. Circles correspond to empirical

data from S&P 500 cash index during the period January 1988–December 1996. The
solid line shows the super-di�usive character predicted by Eq. (17) setting � = 1:30
and ab2=� = 2:44 × 10−8 (if time is measured in minutes). Dashed line represents
normal-di�usion 〈X 2(t)〉 ˙ t. Observe that data obey super-di�usion for t610 min,
and when t ¿ 10 min there seems to be a “crossover” to normal di�usion.
We �nally study the asymptotic behavior of our distribution. It can be shown from

Eq. (12) that the center of the distribution, de�ned by |x|¡ (bt)1=�, is again ap-
proximated by the L�evy distribution de�ned above. On the other hand, the tails
of the distribution are solely determined by the jump pdf h(u) by means of the
expression

p(x; t) ∼ abt
|x|1+�

∫ ∞

|x|=�m

u�h(u) du; (|x|/(bt)1=�) : (20)

Therefore, return distributions present fat tails and have �nite moments if jump distribu-
tions behave in the same way. This, in turn, allows us to make a statistical hypothesis
on the form of h(u) based on the empirical form and moments of the pdf.
In Fig. 2, we plot the probability density p(x; t) of the S&P 500 cash index returns

X (t) observed at time t = 1 min (circles). � = 1:87 × 10−4 is the standard deviation
of the empirical data. The dotted line corresponds to a Gaussian density with standard
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Fig. 1. Second moment of the zero-mean return. Circles correspond to empirical data from S&P 500
cash index (January 1988–December 1996). Solid line shows the super-di�usive character predicted by
Eq. (17).

deviation given by �. The solid line shows the Fourier inversion of Eq. (12) with
� = 1:30; �m = 9:07 × 10−4, and a = 2:97 × 10−3. We use the gamma distribution of
the absolute value of jump amplitudes,

h(u) = ��|u|�−1e−�|u|=2�(�) ; (21)

with � = 2:39, and � =
√

�(� + 1) = 2:85. The dashed line represents a symmetrical
L�evy stable distribution of index �=1:30 and the scale factor k=4:31×10−6 obtained
from Eq. (14). We note that the values of �m and � predict that the Pareto–L�evy
distribution fails to be an accurate description of the empirical pdf for x/5� (see
Eq. (20)).
We chose a gamma distribution of jumps because (i) as suggested by the empirical

data analyzed, the tails of p(x; t) decay exponentially, and (ii) one does not favor too
small size jumps, i.e., those jumps with almost zero amplitudes. In any case, it would
be very useful to obtain a more microscopic approach (based, for instance, in a “many
agents” model [3,22]) giving some inside on the particular form of h(u).
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Fig. 2. Probability density function p(x; t) for t = 1 min. Circles represent empirical data from S&P 500
cash index (January 1988–December 1996). � is the standard deviation of empirical data. The dotted line
corresponds to the Gaussian density. The dashed line is the L�evy distribution and the solid line is the Fourier
inversion of Eq. (22) with a gamma distribution of jumps (see the text for details).

4. Conclusions

Summarizing, by means of a continuous description of random pulses, we have
obtained a dynamical model leading to a probability distribution for the speculative
price changes. This distribution which is given by the following characteristic function:

p̃(!; t) = exp

{
−a

∫ 1

0
z−1−�[1− h̃(!z�m(t))] dz

}
; (22)

where �m(t) = (bt)1=�, depends on three positive constants: a; b, and �¡ 2. The char-
acteristic function (22) also depends on an unknown function h̃(!), the unit-variance
characteristic function of jumps, also to be conjectured and �tted from the tails of the
empirical distribution. Therefore, starting from simple and reasonable assumptions we
have developed a new stochastic process that possesses many of the features, i.e., fat
tails, self-similarity, superdi�usion, and �nite moments, of �nancial time series, thus
providing us with a di�erent point of view on the dynamics of the market. We �nally
point out that the model does not explain any correlation observed in empirical data
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as some markets seem to have [4,23,24]. This insu�ciency is due to the fact that
we have modelled the behavior of returns through a mixture of independent sources
of white noise. The extension of the model to include non-white noise sources and,
hence, correlations will be presented soon.
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