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Abstract

hlarket  efficiency tests that rely on the martingale difference be-
havior of returns can be based on various volatility measures. This
paper argues that, to be able to differentiate between dependence and
fat-tailedness. one should look simultaneously at plots based on ab-
solute returns and variances. If the distribution is heavy-tailed, this
shows up in the absolute moment plots, but not in the variance re-
lated plots. Linear dependence. by contrast, is revealed in both plots.
We provide and discuss an analytical and a simulation experiment
illustrating these points.

1 Introduction and Main Results

The efficiency of financial markets is a long-standing issue in the scientific
lit,erat,ure.  One way to test the efficient’ market hypothesis for financial time
series. e.g. stock prices and foreign exchange rates, is by checking the mar-
tingale difference behavior of the associated returns. This can be done. for



example, using variance ratio tests as in Liu and He (1991),  Lo and MacKin-
lay (1988, 1989),  Poterba and Summers (1989),  and Richardson and Stock
(1989). Alternatively, one can use absolute moment ratio tests as put forward
in Guillaume et al. (1994) and Miiller  et al. (1990):  which are based on the
mean absolute price change rather than the variance as a measure of volatil-
ity. Miiller  et al. (1990), using three years of intra-daily and fifteen years of
daily data, present empirical evidence of a so-called scaling law, which relates
the mean absolute value of the price change over a certain period to the size
of the time interval in which the price change occurred.

The intuition behind the scaling law is quite straightforward. Consider
the following simple random walk model,

Pt = Pt-1 + Et! (1)

where pt denotes the log price process, and where the disturbances et  are
independent and identically dist,ributed  (i.i.d.). For simplicity, we consider
the case where Et follows a normal distribution with mean zero and variance
CJ’.  Let r: denote the n-period return at time t, i.e., T; = pt-pt--7L.  Using (l),
we obtain by repeated substitution

n-1

rt” = cet-z. (2)
2=0

Due to the independence of the innovations Et,  the variance of T: is equal to
rd. If we plot the logarithm of the variance of the n-period return against
the logarithm of the return horizon, we find a linear function with slope equal
to 1. We can thus test whether the random walk model is a valid description
of the time series under investigation by checking whether the variance of
the n-period return is linear in n with slope coefficient 1.

In this paper, we introduce a more generalized representation of the test-
ing approach sketched above that simultaneously covers both the variance
and the absolute variation as measures of volatility. Specifically, we propose
to plot

1% (E ( IMC)) - 1% (E (IT:  If)) (3)

versus the logarithm of n, with 0 < < < 2. Here E denotes the expectations
operator. Note that by subtracting log(E(IrilC))  from the n-period return
measure, we force the plot to pass through the origin. For ( = 2, we obtain
the variance related plot that was already discussed above, whereas for < = 1
the plot is based on the expected absolute returns.
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* It can be shown (Groenendijk et al. (1997)) that, for the class of distri-
butions which lie in the domain of att.ract,ion of a (symmet,ric)  stable law,
t.he  relationship between (3) and log(n) is indeed asymptotically linear in
n. Iloreover:  the slope of the corresponding linear function is equal to C/Q,
where CP  E (0,2] denotes t,he  index of st,ability.’  Consequently, we obtain a
slope coefficient of 1 for variance related plots (<  = 2) and distributions that
lie in the domain of attract’ion  of the Gaussian distribution (LIZ  = 2). For the
expected absolute returns. by cont,rast. we obt,ain  a line with slope coefficient
0.5 for finite variance innovations Et. The next section presents an analytical
and a simulation experiment illustrating these findings.

2 Analytical and Monte Carlo Evidence

This section uses simple analytical derivations and Monte Carlo techniques
t,o  illustrat,e  some of the points made in the previous section. Specifically,
we provide plots of (3) against t,he  logarithm of the return horizon for two
stochast,ic  processes for the one-period return series. First, we focus on a one-
period return series that’ follows an autoregressive moving average (ARMA)
process of order (1.1). Second, we consider one-period returns that are i.i.d.
according to a fat,-t)ailed  Student-t distribution.

We first turn t,o  the case where t,he  one-period returns are linearly depen-
dent. Consider the following stationary Gaussian ARILLIA(  1.1) process for the
one-period return series:

7-t  = & + Et -  Bet-1

7=0

where t,he  et  are i.i.d. standard normal. Using st,raightforward  substitution,
one can derive that

n-l$1 = c 1
rt

t=o

1 1  - (y 1  - q-1 n-1 n - 2  t - 1

=T ___-
Olq  1-F

&I + 1  E t  +  (q - Q) c c $G&

t=1 t=lJ  z=o (5)
1  1  - p”n 1  - pn-1 n-1 n - 2

=royY- 1-q
&o +  c Ef  + ($9  - 0)  c E t  l;  Tn;-‘.

t=1 t=1

‘Stable distributions are extensively discussed in Samorodnitsky and Taqqu (1994),
which provides a comprehensive treatment: see also Ibragimov and Linnik (1971. ch. 2).

3



For the variance, this implies that for n > 1,

E((7.,:p1)2)  = (J$g2 (‘-1”yQ2) + (‘;$1)2192
_ 28(1 -  cp”)(l -  cp”-‘)

n - 2

(1 - 4”
+1+x  l+(@)S

t=1 ( >

2

. (6)

For n = 1, we obtain

E ( (Tg2)  = 1 y”“>  02.

For the AR(l) case, i.e., 8 = 0, (6) results in

E ((6)“)  = 1 - ‘p2 2941  - CF”)
E ((#) (1  - d2n - (1  - 4” .

PI

(8)

Note that for the absolute return case (C  = l),  we simply take the square
root of the right-hand side of (8).

Equation (8) is plotted for several values of cp in Figures la-lb for < = 1
and in Figures lc-ld for < = 2. Note that Figures lb and Id are plots of the
deviations from the relevant reference line, which has slope 0.5 for < = 1 and
slope 1 for 5 = 2, as explained in Section 1. For the case < = 1, it appears
that the dominating factor in (8) is of the order fi for large n. Therefore,
when plotting the logarithm of (3) as a function of the logarithm of the return
horizon n,  we expect a curve that converges to a linear function a + blog(n),
with a = 2-i  log( ( l-(p2)/(  1 -cp)“),  and b  = l/2. This is clearly demonstrated
in Figures la-lb. Apparently, not much is gained by considering the expected
absolute return as a measure of volatility. The pattern of the plots for < = 2
and < = 1 are very similar, such that sticking to the traditional measure of
volatility ([  = 2) seems adequate for linearly dependent one-period returns.
We now turn to our second example, which shows in which cases the 5 = 1
plots may contain useful additional information over the < = 2 plots.

In our second example we consider Student-t distributions with v =
2, . . . ,7 degrees of freedom. These distributions are fat-tailed, a character-
istic that is shared by many empirical financial datasets, see, e.g., Campbell
et al.’ (1997) and de Vries (1994). Figures 2a-2d  depict plots of Equation (3)
versus log(n) for the Student-t distributions. For comparison, the normal
distribution (v  = oo)  is plotted as well. Figures 2a and 2b present graphs
based on absolute returns (< = l), while Figures 2c and 2d are based on the
variance as a volatility measure. Figure 2 is based on simulated data.
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Figure 1: Analytical absolute moment and ‘variance ratio curves when returns are
AR(l). wzth p as indicated.

The simulation experiment, is set up as follows. We draw 100 one-period
return series of length 25 000 from the distribution under investigation. Then
we compute the n-period return series from the one-period returns. with n
ranging from 1 to 1000. For each of these series: we estimate the <t.h  absolute
moment by averaging over the observed returns, i.e.. by using the estimator

(9)

wit,h T = 25 000 denoting the sample size. Finally. we average over the 100
simulations performed. Xote  that since we use overlapping data to estimate
t,he  Cth power of t,he  n-period ret,urns.  the number of observed returns ranges
from 25 000 for n = 1 to 24001 for n = 1000. whereas. if we were to use non-
overl’apping  dat,a.  the number of returns would be 25 000 and 25, respectively.

There are three notable features of Figure 2. The first is that for C = 1,
the curves rise more st,eeply  than t,he  reference line (U = m): especially for
low values of n. For large values of n. the curves become linear and parallel
to the line through the origin with slope coefficient 0.5. The second not,able
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Figure 2: Simulated absolute moment and variance ratio curves  for Student-t(v)
distributed et, with v as indicated.

feature is that the level difference with the reference line is decreasing in the
degrees of freedom parameter V, i.e.: the fatter the tails of the distribution,
the larger the deviations from the 22.5 degrees line, and the more time it
takes for the slopes of the scaling law plots to converge to their limiting value.
The third is that almost no information is obtained from the variance ratio
plots, which all lie on the 45 degrees line (the deviations plott#ed  in Figure
2d are of negligible magnitude). This illustrates that it is not, informative to
consider variance ratio plots when one is interested in the tail shape of the
distribution, as is the case in, for instance, risk management decisions.

The results of expected absolute return related plots for the Student,-t
distribution as given in Figure 2 have important, consequences for market,
efficiency testing procedures which are based on these plots. The procedure
that is usually followed for estimating the slope of the relevant, curve (3),
fits & linear function of the form f(n) = p . log(n) to this curve, with ,O
some constant. If the curve one tries to fit is in reality nonlinear, as is the
case with the Student-t distribution, the estimate of the (asymptotic) slope
of the linear function will be generally biased. Specifically, the estimate of
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,‘3  will be above the asympt,ot’ic  slope coefficient of 0.5 if too many values
of n near the origin are taken into account and the one-period return series
is sufhciently  fat-t,ailed.  This illustrates that one should be very careful in
concluding market inefficiency if the &imate  of /3 departs from the reference
value. since this result might just as well be due to nonnormality if too many
low values of n are t,aken  into account. Not,e  that the scaling law plots for
the Student-t distribution closely resemble the curves for positive values of
the autoregressive parameter v (Figure 1). This indicat,es  that, it is difficult.
if not impossible, to distinguish between certain forms of dependence and
leptokurtosis when looking only at one of the t,wo  types of plots. This problem
disappears if one considers both plots simultaneously.

3 Concluding Remarks

A popular way of testing the efficient market. hypothesis relies on the analysis
of the martingale difference behavior of returns. Although the variance is by
far t,he  most commonly used measure of volat,ility,  other dispersion measures.
such as the absolute return have been used in the literature as well. This
paper argues that, the most, informative testing procedure is to look simulta-
neously at plots based on both measures. If the returns exhibit some forrn
of (linear) dependence. this shows up in both graphs. If the distribution of
the return series has fat, tails. t,his is revealed only in the absolute moment
plot. Disent’angling  linear dependence and leptokurtosis is thus possible only
by jointly considering absolut,e moments and variances.
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