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Abstract

Market efficiency tests that rely on the martingale difference be-
havior of returns can be based on various volatility measures. This
paper argues that, to be able to differentiate between dependence and
fat-tailedness. one should look simultaneously at plots based on ab-
solute returns and variances. If the distribution is heavy-tailed, this
shows up in the absolute moment plots, but not in the variance re-
lated plots. Linear dependence. by contrast, is revealed in both plots.
We provide and discuss an analytical and a simulation experiment
illustrating these points.

1 Introduction and Main Results

The efficiency of financial markets is a long-standing issue in the scientific
literature. One way to test the efficient’ market hypothesis for financial time
series. e.g. stock prices and foreign exchange rates, is by checking the mar-
tingale difference behavior of the associated returns. This can be done. for



example, usng variance ratio tests as in Liu and He (1991), Lo and MacKin-
lay (1988, 1989), Poterba and Summers (1989), and Richardson and Stock
(1989). Alternatively, one can use absolute moment ratio tests as put forward
in Guillaume et d. (1994) and Miiller et d. (1990), which are based on the
mean absolute price change rather than the variance as a measure of volatil-
ity. Miiller et a. (1990), usng three years of intra-dally and fifteen years of
dally data, present empirica evidence of a so-cdled scaing law, which relaes
the mean absolute value of the price change over a certain period to the sze
of the time intervd in which the price change occurred.

The intuition behind the scding law is quite draightforward. Consider
the following smple random wak modd,

Pt = pt1 + €, (1)

where p, denotes the log price process, and where the disturbances ¢, are
independent and identically distributed (i.i.d). For dmplicity, we consder
the case where ¢, follows a normd didribution with mean zero and variance
o’. Let r}' denote the n-period return a time t,i.e, r! = p,—p,_,,. Usng (1),
we obtan by repeated substitution

Ty = €t—i- (2)

Due to the independence of the innovations ¢, the variance of 7' is equa to
no?. If we plot the logarithm of the variance of the n-period return againgt
the logarithm of the return horizon, we find a linear function with dope equd
to 1. We can thus test whether the random wak modd is a vaid description
of the time series under invedigation by checking whether the vaiance of
the n-period return is linear in n with dope coefficient 1.

In this paper, we introduce a more generalized representation of the test-
ing approach sketched above that smultaneoudy covers both the variance
and the absolute variation as measures of volatility. Specificaly, we propose

to plot
log <E < DT?IC» - log <E (Irtl ‘C>) (3)

veraus the logarithm of n, with 0 < ( € 2. Here F denotes the expectations
operator. Note that by subtracting log(E(|r}|¢)) from the n-period return
measure, we force the plot to pass through the origin. For ( = 2, we obtain
the variance related plot that was adready discussed above, whereas for ( = 1
the plot is based on the expected absolute returns.



It can be shown (Groenendijk et d. (1997)) that, for the class of didri-
butions which lie in the domain of attraction of a (symmetric) stable law,
the rdationship between (3) and log(n) is indeed asymptoticdly linear in
n. Moreover, the dope of the correponding linear function is equd to (/a,
where o € (0, 2] denotes the index of stability.! Consequently, we obtain a
dope coefficient of 1 for variance related plots (( = 2) and digtributions that
lie in the domain of attraction of the Gausdan digtribution (o« = 2). For the
expected absolute returns. by contrast. we obtain a line with dope coefficient
05 for finite variance innovations ¢;. The next section presents an andytica
and a dmulation experiment illusraing these findings.

2 Analytical and Monte Carlo Evidence

This section uses smple anayticd derivations and Monte Carlo techniques
to illustrate some of the points made in the previous section. Specificadly,
we provide plots of (3) againgt the logaithm of the retun horizon for two
stochastic processes for the one-period return series. First, we focus on a one-
period return series that follows an autoregressve moving average (ARMA)
process of order (1.1). Second, we consder one-period returns that are i.i.d.
according to a fat-tailed Student-t distribution.

We fird turn to the case where the one-period returns are linearly depen-
dent. Congder the following dationary Gaussan ARMA( 1.1) process for the
one-period return series:

1 — 1
Tt - %'Tt_l + € - 963_1

(4)

t-2
= &'ro e — T e + Z’\Pi(#@ —0e-n el < 1,
=0

where the ¢, ae iid dsandard normd. Using straightforward subditution,
one can derive that

n-1
M1 = Zré
t=0
_ -1 n-2t-1
1 (pn ] = 99n 1 n
zr‘é ISP 960+ZE v+ (¢ 9)2 o€y
¥ L t=1 t=0 i=0 (5)
- n—-1 n-2 —t—1
1 = (pn 1 Am—1 1 — Lpn
1 b
=T — 960 + &+ 6 E t—=
Tl-g 1-¢ t:zl ) t=1 L-¢

‘Stable distributions are extensively discussed in Samorodnitsky and Tagqu (1994),
which provides a comprehensive treatment: see also Ibragimov and Linnik (1971. ch. 2).
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For the variance, this implies that for n > 1,

2 2 n—1\ 2
Wy (1=em\? (1-206+6 1 )
E((T”‘l))_<1—<ﬂ> ( e G e A

26(1 = ¢")(1 = ") ( 1—¢>2
- + 1+ 1+ (p—6 . (6
1= o) ; (¢ )1_@ (6)
For n = 1, we obtain
2 1—2909—}-02
E(()) =" ")

For the AR(1) case, i.e., § = 0, (6) results in

E(r))) _1-¢  20(-¢")
E ((W) 1 =¢2 (-9

(8)

Il
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Note that for the absolute return case (( = 1), we simply take the square
root of the right-hand side of (8).

Equation (8) is plotted for several values of ¢ in Figures la-lb for { =1
and in Figures lc-Id for ¢ = 2. Note that Figures Ib and 1d are plots of the
deviations from the relevant reference line, which has slope 0.5 for { = 1 and
slope 1 for { = 2, as explained in Section 1. For the case ( = 1, it appears
that the dominating factor in (8) is of the order +/n for large n. Therefore,
when plotting the logarithm of (3) as a function of the logarithm of the return
horizon n, we expect a curve that converges to a linear function a + blog(n),
with a = 271 log( ( 1—¢?)/(1 —)?),and b= 1/2. This is clearly demonstrated
in Figures la-lb. Apparently, not much is gained by considering the expected
absolute return as a measure of volatility. The pattern of the plots for ( = 2
and ( = 1 are very similar, such that sticking to the traditional measure of
volatility (( = 2) seems adequate for linearly dependent one-period returns.
We now turn to our second example, which shows in which cases the { =1
plots may contain useful additional information over the ( = 2 plots.

In our second example we consider Student-t distributions with v =
2, ... 7 degrees of freedom. These distributions are fat-tailed, a character-
istic that is shared by many empirical financial datasets, see, e.g., Campbell
et al.” (1997) and de Vries (1994). Figures 2a-2d depict plots of Equation (3)
versus log(n) for the Student-t distributions. For comparison, the normal
distribution (v = oco) is plotted as well. Figures 2a and 2b present graphs
based on absolute returns ({ = 1), while Figures 2c¢ and 2d are based on the
variance as a volatility measure. Figure 2 is based on simulated data.
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Figure 1. Analytical absolute moment and ‘variance ratio curves when returns are
AR(1), with » as indicated.

The simulation experiment, is set up as follows. We draw 100 one-period
return series of length 25 000 from the distribution under investigation. Then
we compute the n-period return series from the one-period returns. with n
ranging from 1 to 1000. For each of these seriess we estimate the (th absolute
moment by averaging over the observed returns, i.e. by using the estimator

) T
T-ntl ; T (9)

with T = 25 000 denoting the sample size. Finaly. we average over the 100
simulations performed. Note that since we use overlapping data to estimate
the (th power of the n-period returns. the number of observed returns ranges
from 25 000 for n = 1 to 24001 for n = 1000. whereas. if we were to use non-
overlapping data. the number of returns would be 25 000 and 25, respectively.

There are three notable features of Figure 2. The first is that for ( = 1,
the curves rise more steeply than the reference line (v = oo), especialy for
low values of n. For large values of n. the curves become linear and parale
to the line through the origin with slope coefficient 0.5. The second notable



= |(a) ¢=1 (b) ¢= 1; deviations
1.84--Vv=2 ~ 0.30,
1.6 ....... I/:U ’,,' > 0-26
14} V=5 T £ o022
—1.2 o =0 T o0
S - 22.5 - o 0.18
=10 e -
= P ! 0.14
= 0.8 vl —_
o Y. ow A
— 04 e = 0.06
0.2} _»* W 002} 2
0.0 . - A S -0.02 ‘ —
05 10 15 20 25 3.0 05 1.0 15 2.0 25 3.0
log(n) log(n)
(c) ¢=2 (d) ¢=2; deviations
3.2 . = 0.012 ‘
2.0 ~— 0.008 . H
=18}
G 24 o)
Z22.0 { 0.004 . PO
16 & 0.000 freer—aio >3 ;
3 12 £ -0.004 '
208} st
oal ~;-0.008
0.0 . < .0.012 .
05 1.0 1.5 20 25 3.0 05 1.0 15 2.0 25 3.0
log(n) log(n)

Figure 2: Simulated absolute moment and variance ratio curves for Student-t(v)
distributed €, with v as indicated.

feature is that the levd difference with the reference line is decreasing in the
degrees of freedom parameter v, ie., the fater the tals of the digribution,
the larger the devidions from the 225 degrees line, and the more time it
takes for the dopes of the scding law plots to converge to ther limiting vaue.
The third is that dmogt no information is obtaned from the variance ratio
plots, which dl lie on the 45 degrees line (the deviations plotted in Fgure
2d are of negligible magnitude). This illudrates tha it is not, informative to
consder variance rétio plots when one is interested in the tal shape of the
digribution, as is the case in, for ingance, risk management decisons.

The results of expected absolute return related plots for the Student,-t
digribution as given in Figure 2 have important, consequences for market,
efficiency testing procedures which are based on these plots. The procedure
that is usudly followed for edimating the dope of the reevant, curve (3),
fits a linear function of the foom f(n) = 4 . log(n) to this curve, with §
some condant. If the curve one tries to fit is in redity nonlinear, as is the
cae with the Student-t didribution, the edtimate of the (asymptotic) dope
of the linear function will be generdly biased. Specificdly, the edimae of



3 will be above the asymptotic dope coefficient of 0.5 if too many vaues
of n near the origin are taken into account and the one-period return series
is sufficiently fat-tailed. This illustrates that one should be very caeful in
conduding market ineffidency if the estimate of [ departs from the reference
vadue. snce this result might jus as wedl be due to nonnormdity if too many
low vaues of n ae taken into account. Note tha the scding law plots for
the Student-t digtribution closdy resemble the curves for pogtive vaues of
the autoregressve parameter p (Figure 1). This indicates that, it is difficult.
if not impossble, to distinguish between certain forms of dependence and
leptokurtosis when looking only a one of the two types of plots. This problem
disappears if one consders both plots smultaneoudy.

3 Concluding Remarks

A popular way of teding the efficient market. hypothess relies on the andyss
of the martingde difference behavior of returns Although the variance is by
fa the most commonly used messure of volatility, other disperson measures.
such as the absolute return have been used in the literaiure as well. This
paper argues that, the mogt, informative testing procedure is to look Smulta:
neoudy a plots based on both measures. If the returns exhibit some forrn
of (linear) dependence. this shows up in both graphs. If the digtribution of
the return series has fat tals this is reveded only in the absolute moment
plot. Disentangling linear dependence and leptokurtoss is thus possble only
by jointly consdeing absolute moments and variances.
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