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Abstract

In this paper, we investigate the scaling properties of foreign exchange volatility. Our method-
ology is based on a wavelet multi-scaling approach which decomposes the variance of a time
series and the covariance between two time series on a scale by scale basis through the appli-
cation of a discrete wavelet transformation. It is shown that foreign exchange rate volatilities
follow di�erent scaling laws at di�erent horizons. Particularly, there is a smaller degree of persis-
tence in intra-day volatility as compared to volatility at one day and higher scales. Therefore, a
common practice in the risk management industry to convert risk measures calculated at shorter
horizons into longer horizons through a global scaling parameter may not be appropriate. This
paper also demonstrates that correlation between the foreign exchange volatilities is the lowest at
the intra-day scales but exhibits a gradual increase up to a daily scale. The correlation coe�cient
stabilizes at scales one day and higher. Therefore, the bene�t of currency diversi�cation is the
greatest at the intra-day scales and diminishes gradually at higher scales (lower frequencies).
The wavelet cross-correlation analysis also indicates that the association between two volatilities
is stronger at lower frequencies. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In �nancial risk management, risk is assessed at di�erent horizons which vary from
intervals as small as a few minutes to longer horizons such as days or even months.
A common practice in the risk management industry is that risk measures calculated
at shorter horizons are converted into longer horizons by taking the corresponding
scaling quantity into account. For instance, if a risk measure (e.g. standard deviation)

∗ Corresponding author. Tel.: +1-519-2534232; fax: +1-519-9737096.
E-mail address: gencay@uwindsor.ca (R. Gen�cay).

0378-4371/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(00)00456 -8



250 R. Gen�cay et al. / Physica A 289 (2001) 249–266

is calculated at a 12 hour frequency, it is converted to a 30-day risk measure by
multiplying this half-day standard deviation by

√
60. This type of scaling is only valid

if the underlying data is identically and independently distributed which is not the case
for �nancial time series.1 Therefore, the type of scaling pointed out above may provide
misleading inferences for �nancial time series. Diebold et al. [4] demonstrate this point
with a simple volatility model and present a critical view of this practice.
In the literature, a number of authors have reported empirically observed scaling

laws for foreign exchange and security markets. M�uller et al. [5,6] and Guillaume et al.
[7] report empirical evidence for scaling of absolute returns for foreign exchange rates.
Mantegna and Stanley [8] and Ghashghaie et al. [9] provide examples of scaling prop-
erties for �nancial time series. Recently, Andersen et al. [10] provide further evidence
that there are precise scaling laws for daily volatility of foreign exchange returns.2

An important issue is whether �nancial time series follow a single-scaling law across
all horizons or whether scaling properties are themselves time varying, adhering to a
multi-scaling law. This paper provides evidence that there is no unique global scaling
in �nancial time series but rather scaling can be time varying.3 In this paper, we in-
vestigate the scaling properties of high-frequency exchange rates based on a wavelet
multi-scaling approach which decomposes the variance of a time series and the co-
variance between two time series on a scale by scale basis through the application of
a discrete wavelet transformation. The wavelet methodology is speci�cation free and
therefore is robust to misspeci�cations which may originate from assuming a particular
distribution of returns.
Our results indicate that exchange rate volatilities have di�erent scaling law prop-

erties at di�erent horizons. Particularly, there is a smaller degree of persistence in
intra-day volatility as compared to volatility at one day or higher scales. The implica-
tion of these �ndings is that a multi-scale approach to scaling is more in line with the
foreign exchange rates as opposed to a single-scaling constant (or exponent) for all
horizons. Our �ndings further reinforce the fact that pragmatic scaling practices used
in the �nancial risk management industry are inappropriate and may lead to wrong
inferences and practices.

1 As pointed out by Mandelbrot [1], Clark [2], Mantegna and Stanley [3], and many others, the return
distributions of �nancial time series are leptokurtic. In Mandelbrot [1], the return distribution was studied
to be a symmetric L�evy stable distribution. Mantegna and Stanley [3] has re-con�rmed that the return
distribution is L�evy stable for high-frequency returns except for tails, which are approximately exponential.
The Gaussianity of the returns only reveal themselves at longer times scales over a month.
2 Other authors, such as LeBaron [11] studied what might be responsible for the observed scaling laws by
showing that a simple stochastic volatility model calibrated to actual data is capable of giving a power
scaling type of results. LeBaron [11] indicates that this is a mere illusion since a simple stochastic volatility
model is not scale invariant theoretically. Barndor�–Nielsen and Praue [12] argue that empirically observed
scaling laws are largely due to the semi-heavy tailedness of the underlying distributions rather than to real
scaling.
3 In a recent paper, Pasquini and Serva [13] provide evidence on stock index series that volatility correlations
follow power laws but the scaling exponent is not unique in supporting the multi-scaling hypothesis.
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An important question for a portfolio manager or a trading manager is whether
the individual volatilities move together.4 In this study, estimated wavelet correlations
indicate that the correlation coe�cient between two volatilities increases with an in-
creasing scale, up to one day. However, the correlation coe�cient remains constant for
scales one day and higher. These results imply that the bene�ts to portfolio diversi�ca-
tion are the greatest at the lowest scale (intra-day horizons) and diminish with scales
corresponding to one day and longer horizons.
In practice, trading managers focus on intra-day co-movements while the portfolio

managers are usually interested in one day and higher dynamics as they have a longer
investment horizon. Therefore, it is important to distinguish co-movements of volatil-
ities at di�erent scales (horizons). The wavelet multi-scale cross-correlations provide
a convenient method of disentangling the cross-correlations on a scale by scale basis
to determine the contribution of each scale to the overall cross-correlation dynamics.
At low scales, there is hardly any signi�cant cross-correlations, whereas middle scales
are dominated by the intra-day seasonalities. At higher scales (lower frequencies), a
persistent cross-correlation dynamics becomes more visible.
This paper is organized as follows: The wavelet methodology, including the max-

imum overlap discrete wavelet transformation, wavelet variance, wavelet covariance
and wavelet correlation, is described in Section 2. Empirical results are presented in
Section 3. We then conclude.

2. Scaling and wavelet analysis

2.1. Aggregation versus multiresolution

To search for a possible scaling behavior in a discrete stochastic process xt , a com-
mon procedure 5 is to aggregate the process over non-overlapping time intervals (hori-
zons) to form

�at(�) ≡ 1
�

∫ t�

(t−1)�
xs ds; t = 0;±(T + 1);±2(T + 1); : : : : (1)

The aggregated process �at(�) has the same distributional properties of the original
process through rescaling via ��. The quantity of interest � is the scaling parameter,
allowing us to scale up or down the process to di�erent time horizons. Since we are
simply averaging across time, the aggregated process also becomes more Gaussian-like
with increasing �. A useful alternative is to compute all possible shifted time intervals
of length �, thus producing the process ãt(�). This is implemented by allowing the
computation in Eq. (1) to be performed for all integers instead of only integer multiples

4 The existence of co-movements of di�erent volatilities is explored in a series of multivariate volatility
models such as factor models, as in Ref. [14] or common persistent components as studied by Bollerslev
and Engle [15].
5 Aggregation is used in the recent literature by, for example, Pasquini and Serva [13] and LeBaron [11].
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of T + 1. These two competing processes will be investigated further when we de�ne
the wavelet variance.
Aggregation is closely related to multiresolution analysis via the discrete wavelet

transform (DWT). The key to multiresolution analysis is to represent a process through
a series of coarse approximations and details [16]. This approximation is performed by
�rst de�ning an orthonormal basis of shifted and translated functions.

{�j; k(t) = 2−j=2�(2−jt − k)} (2)

based on a single function �. The scaling coe�cients v1; k are de�ned via

v1; k ≡
∫ ∞

−∞
xt�1; k(t) =

∫ ∞

−∞
xt
√
2�(t=2− k) dt :

There is an inherent downsampling (removal of every other value) present that guar-
antees orthogonality of this transform. As with the aggregation process, we may ignore
the downsampling and perform additional rescaling of the wavelet function in order to
produce a “maximally overlapped” sequence of scaling coe�cients ṽ1; k . Coarser ap-
proximations are obtained by simply projecting the process xt ≡ v0; k onto higher-order
scaling functions.
The information contained in the di�erence between two adjacent approximations,

say v0; k and v1; k , is given by the wavelet coe�cients w1; k . Under a multiresolution
framework, the wavelet coe�cients are obtained through a projection of the process
onto shifted and translated versions of a wavelet function  . Combining the two sub-
series, one scaling coe�cients and the other wavelet coe�cients, we arrive at the next
�ner approximation to the original process.
If we consider the Haar scaling function

�(H)(t) =
{
1; −1¡t60 ;
0; otherwise ;

then it is easy to see that the aggregate process �at(�) and the scaling coe�cients vj; k
are identical under the condition �= 2 j. This is an indication of how aggregation and
multiresolution analysis are related. We can go beyond this simple identity and utilize
the wavelet coe�cients instead of the scaling coe�cients to characterize self-similar
behavior in observed stochastic processes. We may also use higher order Daubechies
wavelet functions to compute the transform. If the scaling coe�cients for level j are
associated with averages of length 2 j, then the level j wavelet coe�cients (which are
di�erences of averages half this length) are associated with changes at scale �j ≡ 2 j−1.
This is true for all families of Daubechies compactly supported wavelets.

2.2. The wavelet variance

The wavelet variance is introduced here in order to estimate the scaling parameter
of a stochastic process. Abry et al. [17] and Percival and Walden [18] both advocate
using such an estimator for investigating scaling behavior. We restrict ourselves to
analyzing realizations of stationary processes with �nite length N . This brings the
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issue of boundary conditions into the computation procedure. We choose to simply
re
ect the time series at the �nal observation, thus producing a series of length 2N ,
and computing the wavelet transform on this series using periodic boundary conditions.
Let h̃l = {h̃0; h̃1; : : : ; h̃N−1} denote the rescaled wavelet �lter coe�cients from a

Daubechies compactly supported wavelet family (rescaled such that h̃ = h=21=2) and
let g̃l be the corresponding rescaled scaling �lter coe�cients, de�ned via the quadra-
ture mirror relationship g̃1;m = (−1)m+1h̃1;L−1−m. For an observed series X of length
N , applying these �lter coe�cients, and not downsampling the output, produces J ≡
blog2 Nc vectors of wavelet coe�cients

W̃j = {W̃ j; 0; W̃ j; 1; : : : ; W̃ j; N−1}; j = 1; : : : ; J ; (3)

computed via

W̃ j; t ≡
Lj−1∑
l=0

h̃j; lXt−lmod N ; t = 0; : : : ; N − 1 ;

and one vector of scaling coe�cients ṼJ = {Ṽ J; 0; Ṽ J;1; : : : ; Ṽ J;N−1} through

Ṽ J; t ≡
LJ−1∑
l=0

g̃J; lXt−lmod N ; t = 0; : : : ; N − 1 :

This is known as the maximal overlap discrete wavelet transform (MODWT).6 As
discussed when comparing aggregation and multiresolution analysis, the term “maximal
overlap” is used to indicate that all possible shifted time intervals were computed.
Thus, orthogonality of the transform is lost but it has been shown that the wavelet
variance utilizing MODWT coe�cients is more e�cient than the one obtained through
the orthonormal DWT. Percival [19] gives the asymptotic relative e�ciencies for the
wavelet variance estimator based on the orthonormal DWT compared to the estimator
based on the MODWT using a variety of power law processes.
The wavelet variance is de�ned to be the variance of the wavelet coe�cients at scale

�j; i.e., �2X (�j) ≡ Var{W̃ j; t}. In fact, due to the inherent di�erencing associated with
wavelet functions, if a su�ciently long wavelet �lter is used the wavelet coe�cients
have mean zero and thus �2X (�j) ≡ E{W̃ 2

j; t}. To form an unbiased estimator of the
wavelet variance using the MODWT, we remove all coe�cients a�ected by the periodic
boundary conditions to yield

�̃2X (�j) ≡
1

Ñ j

N−1∑
t = Lj−1

W̃
2
j; t ;

where Ñ j = N − Lj + 1 and Lj ≡ (2 j − 1)(L − 1) + 1 is the length of the scale �j
wavelet �lter. The wavelet variance decomposes the variance of a process on a scale
by scale basis, thus allowing us to inspect how di�erent horizons behave relative to one
another. This is related to the fact that the spectrum (modulus squared of its Fourier

6 For details on the MODWT and its relationship to the orthonormal DWT see Percival and Walden [18].
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transform) decomposes the variance of a process on a frequency by frequency basis.
For example, if the process we observe is a power law process with spectrum given
by SX (f)˙ |f|�, then the wavelet variance has the following approximate relation to
wavelet scale:

�2X (�j)˙ �−�−1
j :

Observing a linear relationship between log(�2X (�j)) and log(�j) would thus indicate
scaling behavior. We use this property when analyzing 10 year records of 5-min foreign
exchange rates.

2.3. Con�dence intervals for the wavelet variance

The asymptotic variance of the MODWT-based estimator of the wavelet variance is
given by

lim
N→∞

Ñ j Var{�̃2X (�j)}= 2
∫ 1=2

−1=2
S2Wj
(f) df ≡ 2Vj ;

where SWj (f) is the spectrum of the scale �j wavelet coe�cients. It follows that the
random interval[

�̃2X (�j)− �−1(1− p)
(
2Vj

Ñ j

)1=2
; �̃2X (�j) + �−1(1− p)

(
2Vj

Ñ j

)1=2]
;

captures the true wavelet variance and corresponds to a 100(1 − 2p)% con�dence
interval for �2X (�j). For Gaussian processes, the quantity Vj will have to be estimated
using the autocovariance sequence of the scale �j MODWT wavelet coe�cients to
obtain an approximate con�dence interval.7

The last sentence of the previous paragraph made the important assumption of
Gaussianity with regard to the MODWT coe�cients at all scales. We may relax this
assumption and slightly modify the results from above to develop an approximate
con�dence interval valid for non-Gaussian processes. Let Ũj be the vector of mean-

corrected squared wavelet coe�cients; i.e., Ũ j; t= W̃
2
j; t −E{W̃ 2

j; t} for t=0; 1; : : : ; N −1.
Serroukh et al. [20] showed that the asymptotic variance of �̃2X (�j) is given by

lim
N→∞

Ñ j Var{�̃2X (�j)}= SW 2
j −�2X (�j)

(0) = SUj (0) ;

and further proposed a multitaper spectral estimator for the spectrum evaluated at fre-
quency zero on the right-hand side. This approach enables us to produce an approximate
con�dence interval applicable to non-Gaussian processes.

2.4. The wavelet covariance and correlation

The wavelet scale analysis of univariate time series may be easily generalized to
multiple time series by de�ning the concept of the wavelet covariance between X

7 See Percival [19] and Percival and Walden [18] for an extensive discussion of approximate con�dence
intervals for the wavelet variance.
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and Y. The wavelet covariance is de�ned to be the covariance between the scale �j
wavelet coe�cients of X and Y, i.e., 
XY (�j) ≡ Cov{W̃ j; t; X ; W̃ j; t; Y }. As with the
wavelet variance, assuming a su�cient length for the wavelet �lter guarantees each
series of wavelet coe�cients has mean zero and therefore 
XY (�j) ≡ E{W̃ j; t; X W̃ j; t; Y}.
An unbiased estimator of the wavelet covariance using the MODWT is given by


̃XY (�j) ≡ 1

Ñ j

N−1∑
t = Lj−1

W̃ j; t; X W̃ j; t; Y ;

where all wavelet coe�cients a�ected by the boundary are removed. The wavelet
covariance decomposes the covariance between two processes on a scale by scale
basis and provides a unique method for attributing levels of association between the
processes with di�erent horizons. Whereas complicated associations may be present
in the observed processes, the wavelet covariance is able to determine which scales
(horizons) are signi�cantly contributing to these associations.8

Just as the usual correlation coe�cient is a function of the covariance between two
series of observations, standardized by their standard deviations, the wavelet correlation
is composed of the wavelet covariance between X and Y and the square root of their
wavelet variance; i.e., �XY (�j) ≡ 
XY (�j)=[�X (�j)�Y (�j)]. An unbiased estimator of the
wavelet correlation using the MODWT is given by simply replacing the true wavelet
covariance and wavelet variances by their unbiased estimators via

�̃XY (�j) ≡

̃XY (�j)

�̃X (�j)�̃Y (�j)
:

2.5. Con�dence intervals for the wavelet covariance and correlation

The asymptotic variance of the MODWT-based estimator of the wavelet covariance
is given by

lim
N→∞

Ñ j Var{
̃XY (�j)}=
∫ 1=2

−1=2
SWj; X (f)SWj; Y (f) df+

∫ 1=2

−1=2
S2Wj; X ;Wj; Y

(f) df≡�j ;

where SWj; X (f) and SWj; Y (f) are the spectra for the scale �j wavelet coe�cients of X
and Y, respectively, and SWj; X ;Wj; Y (f) is the cross spectrum between the two series of
scale �j wavelet coe�cients. We can construct the random interval[


̃XY (�j)− �−1(1− p)
(
�j

Ñ

)1=2
; 
̃XY (�j) + �−1(1− p)

(
�j

Ñ

)1=2]
;

that captures the true wavelet covariance and forms a 100(1− 2p)% con�dence inter-
val. In order to calculate an approximate con�dence interval for Gaussian processes,
�j can be estimated using the autocovariance and cross-covariance sequences of the
scale �j wavelet coe�cients from X and Y which is similar to the construction of an
approximate con�dence interval for the wavelet variance.

8 See Whitcher [21] and Whitcher et al. [22] for a more thorough introduction to the wavelet covariance
and its application to observed multivariate time series.
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We may relax the assumed Gaussianity in the two series of wavelet coe�cients
to obtain approximate con�dence intervals applicable to non-Gaussian time series.
Let Ũj; XY be the vector of mean-corrected products of the wavelet coe�cients, i.e.,
Ũ j; t; XY =W̃ j; t; X W̃ j; t; Y −E{W̃ j; t; X W̃ j; t; Y}. Serroukh and Walden [23] showed that the
asymptotic variance of 
̃XY (�j) is given by

lim
N→∞

Ñ j Var{
̃XY (�j)}= SW (X )
j W (Y )

j
− 
XY (�j)(0) = SUj; XY (0) ;

and proposed a multitaper spectral estimator for SUj; XY (0) in order to produce an ap-
proximate con�dence interval applicable to non-Gaussian processes.
We now turn our attention to the wavelet correlation. Given the inherent non-

normality of the correlation coe�cient for small sample sizes, a nonlinear transfor-
mation is sometimes required in order to construct a con�dence interval. Let h(�) ≡
tanh−1(�) de�ne Fisher’s z-transformation. For the estimated correlation coe�cient �̂,
based on N independent samples,

√
N − 3[h(�̂)−h(�)] is approximately distributed as

a Gaussian with mean zero and unit variance. The random interval
tanh


h[�̃XY (�j)]− �−1(1− p)√

N̂ j − 3


 ; tanh


h[�̃XY (�j)] +

�−1(1− p)√
N̂ j − 3






captures the true wavelet correlation and provides an approximate 100(1− 2p)% con-
�dence interval. The quantity N̂ j is the number of wavelet coe�cients associated with
scale �j computed via the DWT – not the MODWT. This assumption of uncorrelated
observations in order to use Fisher’s z-transformation is only valid if we believe no
systematic trends or non-stationary features exist in the wavelet coe�cients at each
scale. The DWT is know to approximately decorrelate a wide range of power-law
processes and thus provides a reasonable measure of the scale-dependent sample size.
Notice that the approximate con�dence interval for the estimated wavelet correlation

does not utilize any information regarding the distribution of the wavelet coe�cients.
Hence, no adjustment is made regarding the distribution of the incoming wavelet co-
e�cients; they may be Gaussian or non-Gaussian.

3. Empirical �ndings

Before we examine the results, we provide some basic properties of the possible
long-memory data generating processes which may underlie the foreign exchange mar-
kets. These data generating processes are the fractional Gaussian noise process, pure
power law process and the fractionally di�erenced process.9

9 An extensive discussion of long-memory processes and their properties can be found in Percival and
Walden [18].
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Table 1
The properties of the fractional Gaussian noise, pure power law and fractionally di�erenced processes for a
range of H , � and d values. d is related to � such that d =−�=2, Ref. [18]

Process type Nonstationary long Stationary long White noise Stationary short
memory process memory process process memory process

Fractional Gaussian noise — 0:5¡H ¡ 1 H = 0:5 0¡H60:5
Pure power law �6− 1 −1¡�¡ 0 � = 0 �¿0
Fractionally di�erenced d¿0:5 0¡d¡ 0:5 d = 0 d60

Mandelbrot and Van Ness [24] studied the fractional Gaussian noise process whose
spectral density function is given by

S(f) = 4�2XCH sin
2(�f)

∞∑
j=−∞

1
|f + j|2H+1 ; −0:56f60:5 ; (4)

where �2X is the variance of the process, CH ¿ 0 and H is the so-called Hurst exponent.
This process exhibits stationary long-memory dynamics when 0:5¡H ¡ 1 and reduces
to white noise when H = 0:5.
On the other hand, the spectral density of a pure power-law process is given by

S(f) = CS |f|�; −0:56f60:5 ; (5)

where CS ¿ 0 and � is the scaling parameter. When −1¡�¡ 0, this process has
stationary long memory features. It is nonstationary for �6 − 1 and can be made
stationary through di�erencing.
Another type of long-memory process is the fractionally-di�erenced type, which was

introduced by Granger and Joyeux [25] and Hosking [26]. The fractionally di�erenced
process is de�ned by (1− L)dXt = �t where �t is a Gaussian white noise. The spectral
density of this process is given by

S(f) =
�2�

(4 sin2(�f))d
; −0:56f60:5 : (6)

For 0¡d¡ 0:5, the fractional di�erence process has the stationary long memory dy-
namics and becomes a white noise for d=0. The link between H; � and d is summa-
rized in Table 1.
The studied data sets are the �ve-minute Deutschemark–US dollar (DEM-USD) and

Japanese Yen–US dollar (JPY-USD) price series for the period from December 1,
1986 to December 1, 1996.10 Bid and ask prices at each 5 min interval are obtained
by linear interpolation over time as in M�uller et al. [5] and Dacorogna et al. [27].
Prices are computed as the average of the logarithm of the bid and ask prices

Pt = 1
2 [logP(bid)t + logP(ask)t]; t = 1; : : : ; 751; 645 : (7)

Olsen and Associates applied data cleaning �lters to the price series (as received from
Reuters) in order to correct for data errors and to remove suspected outliers. We also

10 The data set is provided by Olsen and Associates in Z�urich, Switzerland.
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removed the weekend quotes from Friday 21 : 05 GMT to Sunday 21:00 GMT. Apart
from this, we did not apply any further �ltering to the data set nor did we exclude
any data points.11 Continuously compounded 5-min returns are calculated as the log
di�erence of the prices:

rt5 = (logPt − logPt−1)× 100 and t5 = 1; : : : ; 751; 644 : (8)

It is often argued that price changes observed at very high frequencies can be overly
biased by the buying and selling intentions and the quoting institutions [7]. We therefore
decided to work with 20-min aggregated returns: 12

rt20 =
3∑

i=0

rt5−i ; t20 = 1; : : : ; 187; 911 : (9)

Therefore, our sample covers 2610 business days in 10 years with 72 observations
per day.13 The 20-min volatilities are de�ned to be the 20-min absolute returns,
|rt;20|.
We use |rt;20| to obtain the MODWT decomposition of the variances of absolute

return series on a scale by scale basis for both the DEM-USD and JPY-USD series.
This study covers scales from 20 min to approximately one month. This coverage is
achieved with a 12 level MODWT decomposition. The Daubechies least asymmetric
family of wavelets (LA(8)) was utilized in the MODWT (see Fig. 1). We have tried
other wavelets such as Daubechies D(4) as well. The results are not sensitive to the
choice of the wavelet family as long as the underlying process is stationary or an
integer di�erence of the process is stationary.
The wavelet variance for each absolute return series and con�dence intervals under

the assumption of Gaussianity 14 is shown in Fig. 2, plotted on a log–log scale. Note
that lower scales correspond to higher frequency bands. For example, the �rst scale
is associated with 20 min changes, the second scale is associated with 2 × 20 = 40
min changes and so on. The �rst six scales capture the frequencies 1=286f6 1

2 ; i.e.,
oscillations with a period length of 2 (40 min) to 128 (2560 min). Since there are

11 Andersen et al. [10] utilizes the same sample of DEM-USD and JPY-USD series. However, they removed
weekends and several (mostly North American) holidays from the sample. They have also excluded the
days containing “�fteen longest zero and constant runs”. Andersen and Bollerslev [28,29] analyzed a shorter
sample of the same data set. They also removed the weekend quotes from their sample. See Bollerslev and
Domowitz [30] for a detailed analysis of quote activity in the interbank market and a justi�cation for the
weekend de�nition above.
12 We could have worked with the raw data set and simply ignored wavelet scales associated with higher
frequencies. However, the aggregation greatly reduces the computational burden.
13 The last day in the sample is a Friday. Since we removed the weekend quotes starting from Friday 21:05,
there are only 63 20-min return observations for the last day in the sample. Therefore, the sample size is
(72× 209) + 63 = 187; 911.
14 The alternative con�dence intervals calculated by relaxing the Gaussianity assumption as suggested in
Section 2.3. These do not di�er signi�cantly and are not plotted in Fig. 2.
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Fig. 1. Daubechies compactly supported wavelet functions: Haar wavelet based on two non-zero coe�cients
(also corresponds to the extremal phase wavelet based on two non-zero coe�cients), the extremal phase
wavelet based on four non-zero coe�cients (D(4)) and the least asymmetric wavelet based on eight non-zero
coe�cients (LA(8)).

72× 20 = 1440 min in one day, we conclude that the �rst six scales are related with
intra-day dynamics of our sample.
The seventh scale, where we observe an apparent break in the variance for both

series, is associated with 64 × 20 = 1280 min changes. Since there are 1440 min in
one day, the seventh scale corresponds to 0.89 day. Therefore, the seventh and higher
scales are taken to be related with one day and higher dynamics.
The relationship between wavelet variance and scale is given by �2X (�j) ˙ �−�−1

j

where � is the scaling parameter in a pure power law process. An estimate of � is
obtained from the ordinary least-squares (OLS) regression of log �2X (�j) on log �

−�−1
j .

Fig. 3 plots the OLS �ts of the sample points for two di�erent regions. Estimated
slopes, −(1 + �̂), for the smallest six scales are −0:48 and −0:59 for DEM-USD and
JPY-USD series, respectively. This result implies that estimated scaling parameter is
�̂=−0:52 for the DEM-USD and �̂=−0:40 for the JPY-USD volatilities for the �rst
six scales (intra-day).
The estimated slopes for the higher scales (from the seventh to the twelfth) are −0:20

and −0:16 for the DEM-USD and JPY-USD volatilities, respectively. The wavelet
variance estimators strongly indicate the presence of di�erent scaling parameters for
volatility at one day and higher scales where �̂ are −0:80 and −0:84 for DEM-USD
and JPY-USD volatilities, respectively.
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Fig. 2. Wavelet variance for 20-min volatilities of (a) DEM-USD and (b) JPY-USD from December 1,
1986 to December 1, 1996 at log–log scale. The straight line is the estimated variance and dashed lines
are approximate 95% con�dence intervals under the assumption of Gaussianity. The alternative con�dence
intervals calculated by relaxing the Gaussianity assumption as suggested in Section 2.3. These do not di�er
signi�cantly and are not plotted here. Each scale is associated with a particular time period. For example
the �rst scale is 20 min, the second scale is 2× 20 = 40 min, the third scale is 4× 20 = 80 min and so on.
The seventh scale is 64× 20 = 1280 min. Since there are 1440 min per day, the seventh scale corresponds
to approximately one day. The last scale is approximately 28 days.

As presented in Table 1, the relationship between d and � is such that d=−�=2. The
results imply that the fractional integration parameters are d=0:26 for the DEM-USD
and d = 0:20 for the JPY-USD volatilities at the lower scales (intra-day). At higher
scales (one day and more) the estimated d values for the DEM-USD and JPY-USD
volatilities are 0.40 and 0.42 indicating less persistence in the intra-day horizon as
compared to the volatilities of one day and higher scales. Note that a fractionally
di�erenced process becomes more persistent as d takes larger positive values.
There are two major implications of these �ndings. The �rst is that the foreign ex-

change volatility is a stationary long-memory process whether it is governed by a pure
power law or a fractionally di�erenced process. The second is that the foreign exchange
volatility has a multi-scaling behavior. There are two di�erent scaling parameters cor-
responding to intra-day and higher scales, respectively. This apparent multi-scaling
behavior occurs approximately at the daily horizon where the intra-day seasonality is
strongly present. The removal of the intra-day seasonality would not eliminate this
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Fig. 3. Wavelet variance for 20-min volatilities of (a) DEM-USD and (b) JPY-USD from December 1, 1986
to December 1, 1996 at log–log scale. The ∗’s are the estimated variances for each scale. The straight lines
are OLS �ts. Each scale is associated with a particular time period. For example the �rst scale is 20 min,
the second scale is 2 × 20 = 40 min, the third scale is 4 × 20 = 80 min and so on. The seventh scale is
64× 20 = 1280 min. Since there are 1440 min per day, the seventh scale corresponds to approximately one
day. The last scale is approximately 28 days.

multi-scaling but the transition between two scaling regions would be more gradual by
exhibiting a concave scaling behavior (see Corsi et al. [31]).
The wavelet correlations between two volatilities are given in Fig. 4. The wavelet

correlation is signi�cantly di�erent from zero for all scales. The correlation coe�cient
at the lowest scale (20min) is 0:415±0:005 15 and increases at higher scales. It reaches
to a maximum at the sixth scale (640 min) with 0:695 ± 0:18. At large scales (one
day and higher), the correlation coe�cient between two series remains constant at
around 0.70. The result is in contrast with the �ndings in Andersen et al. [10]. They
found that volatility correlation between two exchange rates drops at longer horizons,
suggesting that the bene�ts to currency diversi�cation may be greatest over longer
investment horizons. Our �ndings indicate that the bene�ts to currency diversi�cation

15 As pointed out in Section 2.5, the approximate con�dence interval for the estimated wavelet correla-
tion does not utilize any information regarding the distribution of the wavelet correlation. Therefore, these
con�dence intervals are robust to non-Gaussianity.
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Fig. 4. Wavelet correlation for 20-min volatilities of DEM-USD and JPY-USD from December 1, 1986 to
December 1, 1996. The vertical lines form an approximate 95% con�dence intervals. As pointed out in
Section 2.5, the approximate con�dence interval for the estimated wavelet correlation does not utilize any
information regarding the distribution of the wavelet correlation. Therefore, these con�dence intervals are
robust to non-Gaussianity. Each scale is associated with a particular time period. For example, the �rst scale
is 20 min, the second scale is 2×20=40 min, the third scale is 4×20=80 min and so on. The seventh scale
is 64 × 20 = 1280 min. Since there are 1440 min per day, the seventh scale corresponds to approximately
one day. The last scale is approximately 28 days.

are the greatest at the lowest scale and decreases with increasing scale during the
day.
Fig. 5 plots the 20 min cross-correlations of two volatilities for 10 days where

the strong intra-day seasonality is evident. As Gen�cay et al. [32] demonstrates, the
presence of seasonalities in a long memory process obscures the underlying low fre-
quency dynamics. With the wavelet analysis, we disentangle the cross-correlations on
a scale by scale basis which enables us to determine which scales are contributing to
the overall association between two volatilities. This is demonstrated in Fig. 6 which
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 6. Wavelet cross-correlations for 20-min volatilities of DEM-USD and JPY-USD from December 1,
1986 to December 1, 1996. The dashed lines are the approximate con�dence intervals. As pointed out in
Section 2.5, the approximate con�dence interval for the estimated wavelet correlation does not utilize any
information regarding the distribution of the wavelet correlation. Therefore, these con�dence intervals are
robust to non-Gaussianity. Each scale is associated with a particular time period. For example the �rst scale
is 20 min, the second scale is 2 × 20 = 40 min, the third scale is 4 × 20 = 80 min and so on. The sixth
scale is 32× 20 = 640 min.
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Fig. 5. Cross-correlations of 20-min volatilities for DEM-USD and JPY-USD from December 1, 1986 to
December 1, 1996.
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Fig. 7. Wavelet cross-correlations for 20-min volatilities of DEM-USD and JPY-USD from December 1,
1986 to December 1, 1996. The dashed lines are the approximate con�dence intervals. As pointed out in
Section 2.5., the approximate con�dence interval for the estimated wavelet correlation does not utilize any
information regarding the distribution of the wavelet correlation. Therefore, these con�dence intervals are
robust to non-Gaussianity. Each scale is associated with a particular time period. For example, the seventh
scale is 64×20=1280 min, the eight scale is 128×20=2560 min and so on. The last scale is approximately
28 days.

provides wavelet cross-correlations 16 and the corresponding approximate con�dence
intervals 17 for the �rst six scales for 10 days. For scales 1–3 (from 20 to 80 min),
there is a small cross-correlation corresponding to intra-day horizon after which there is
no signi�cant cross-correlation persistence. At scales 4–6, a seasonal cross-correlation
gradually evolves and a daily seasonality dominates in the sixth scale (≈ 10:7 h). In
Fig. 7, the cross-correlations of the scales 7–12 are presented. At these higher scales, a
persistent cross-correlation behavior becomes more visible. At the highest scale (≈ 28:4
days), the rate of the decay in the cross-correlations is more in line with a hyperbolic
decay than an exponential decay.

16 The cross-correlations are roughly symmetric about zero. Therefore, the negative lags are not plotted to
conserve space.
17 As pointed out in Section 2.5, the approximate con�dence interval for the estimated wavelet correla-
tion does not utilize any information regarding the distribution of the wavelet correlation. Therefore, these
con�dence intervals are robust to non-Gaussianity.
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4. Conclusions

We have proposed a simple method for identifying the scaling laws in �nancial time
series. The proposed methodology is based on a wavelet multi-scaling approach which
decomposes the variance of a time series and the covariance between two time series
on scale by scale basis through the application of a non-decimated discrete wavelet
transformation. It is simple to calculate and can easily be implemented as it does not
depend on a particular model selection criterion and model speci�c parameter choices.
It is shown that exchange rate volatility has di�erent scaling properties at di�erent

horizons. The intra-day persistence in volatility is signi�cantly less than the volatility at
one day or higher scales. The correlation between two volatility series increases within
the day but remains constant at one day or higher scales. The wavelet cross-correlation
analysis indicates that the association between two volatilities is stronger at higher
scales (low frequencies).
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