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Abstract: We propose a picture of stock market crashes as critical points
in a hierachical system with discrete scaling. The critical exponent is then
complex, leading to log-periodic fluctuations in stock market indexes. We
present “experimental” evidence in favor of this prediction. This picture is
in the spirit of the known earthquake-stock market analogy and of recent
work on log-periodic fluctuations associated with earthquakes.

The study of earthquakes as critical points has been of interest for some
time now [1, 2, 3, 4, 5]. At a critical point one expects a scaling regime to set
in. Recently it has been suggested [6, 7] that the underlying scale invariance
is discrete, as expected for a hierarchical system. Then the critical exponent
is complex and the scaling law near the critical point is “decorated” by log-
periodic corrections (ℜτα+iω = τα cos(ω log τ)) Evidence for such log-periodic
fluctuations was found [6] in measurements of the concentration of Cl− and
SO−−

4 ions in mineral water collected over the 20 months immediately pre-
ceeding the 1995 Kobe earthquake at a source close to its epicenter. Similar
evidence was also found [7] in the cumulative Benioff strain in connection
with the 1989 Loma Prieta earthquake. It was proposed [6] that monitoring
log-periodic fluctuations may ultimately prove useful in earthquake predic-
tion.

Such fluctuations seem generic in hierarchically organized rupture pro-
cesses. In the spirit of an earthquake-stock market analogy, this has led us
to consider the possibility that log-periodic fluctuations may appear in stock
market indices over a period preceding a crash. The stock market index (S&P
500, Dow-Jones, NIKKEI, ...) is to play here the same role as the Cl− ion
concentration played in the the analysis of the Kobe earthquake. Fortunately
such indices are closely monitored and good data are plentiful. The scaling
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variable is again time t. Call c(t) the index as a function of time. Truncating
at the first harmonic of a general log-periodic correction, we can then write
for c(t) the same formula as that given in [6] for the ion concentration

c(t) = A + B(tc − t)α [1 + C cos[ω log(tc − t) + ϕ]] . (1)

As a first test of this idea let us consider the crash which occured in New
York on October 19, 1987. As the relevant index let us use the S&P 500,
which dropped by more than 20% that day. In figure 1a we present a fit
of the 1986-1987 weekly S&P 500 using Eq. (1) . One can see clearly two
full periods of the log-periodic oscillation and some more oscillatory behavior
close to the time of the crash. We only fit data up to three weeks before the
crash, where the fit starts very fast oscillations. A reasonable fit is obtained
this way with parameters given in Table 1 (where we omitted the parameters
A, B and ϕ, which depend on the arbitrary normalization of the index or on
the time scale).

Error bars of ±10 were assigned to each data point for purposes of cal-
culating χ2. To a certain extent this is arbitrary, but it also reflects the
possibility of higher harmonics neglected in our fit and of noise. This error
assignment will be used in all other fits except the next one. Concerning the
values of tc for this and our other fits as well, the actual crash dates have
been used as input. Given that here we used weekly, and in all other fits
monthly, data, the small discrepancies between the crash dates in Table 1
(given there in the yy/mm/dd format) and the real crash dates are devoid
of significance.

In figure 1b we fit a NY crash (defined here as a drop in the index by more
than 10%) in 1962, using monthly S&P 500 data. This time the error bars
used to calculate χ2 were set at ±2.5, since the S&P 500 was considerably
lower in the Fifties than in the Eighties. In figure 1c the 1929 NY crash (using
monthly Dow-Jones data) is fit. The parameters for all these fits are given
in table 1. We also considered the 1990 Tokyo crash using scanned NIKKEI
data and found similar log-periodic behavior, but we intend to refine this
with tabulated data.

There is evidence for log-periodicity in these fits. While log-periodicity
is indicative of an impending crash, one can easily think of crashes not asso-
ciated with any log-periodic behavior, for instance those caused by sudden
unexpected world events. We should add that we defined a crash as a change

2



by 10% or more of an index over a short time interval (e.g 1 day in 1987). In
all cases the change is negative (a crash) rather than positive (an upsurge).

Notice that all these fits range over time intervals of 2-8 years before the
crash. By contrast, let us attempt to fit the S&P 500 for the time interval
1991-1994 during (and immediately after) which no crash occured. This is
done in figure 1d and its parameters can be found in table 1. The parameter
C which measures the relative importance of the log-periodic fluctuations
is now two orders of magnitude smaller than in all previous fits and that
there are therefore no detectable oscillations. The critical time tc itself is in
the past. Restricting to a shorter calm period, say 1992-1993, no significant
oscillations are observed either. This further supports the discrete scaling
picture advocated here.

Let us now return to the 1987 crash. We have fitted Eq. (1) to the 1986-
1987 interval leading up to this crash. One might discern further periods of
the log-periodic fluctuations over a longer time period. In fact if we select
the interval 1980-1987, then six oscillation periods come into view. Can one
fit these to equation (1)? The answer is yes and the corresponding best fit
is given in Fig. 1e and the parameters again in table 1. There is a problem
now, for the frequency ω is now quite different from that obtained from the
1986-1987 fit. One might think that relaxing the assumed constancy of the
background parameter A might alleviate this problem. Yet assuming A to be
a quadratic polynomial in time (at the expense of two added parameters) has
no significant effect. The eight-year fit involves a higher frequency ω, which
makes it overoscillate in the overlap region with the two-year fit, so that over
the final years 1986 and 1987 a new complex critical exponent takes over.

The next phenomenological question concerns the accuracy with which
the time tc of the crash can be predicted from the monitoring of log-periodic
fluctuations. This is an interesting question indeed and through much more
detailed statistical study one could settle it for past crashes. The authors
of ref. [6] have expressed optimism concerning the corresponding problem
for earthquakes, namely predicting earthquakes on the basis of monitoring
log-periodic fluctuations at the “right” sites. But seismic activity is a nat-
ural phenomenon impervious to human monitoring. By contrast, if in the
future large groups of investors, who believe they have observed a pattern of
log-periodic fluctuations in a stock market index, proceed on that basis to
predict a crash time, they may find such a prediction both unprofitable and
“counterproductive”.
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As a rule, discrete scaling is connected with hierarchical models [7]. It
is thus natural to invoke a hierarchical structure to account for the discrete
scaling connected with log-periodic fluctuations in stock market indexes. A
clear hierarchical structure is present among investors which range from the
individual small investor to the largest mutual funds. At the other end, the
stocks themselves arrange themselves in subsectors, sectors, industries, ... A
fiber bundle-like model [5] exploiting these hierarchies can be envisaged and
we hope to return to this subject elsewhere. Here we prefer to keep the discus-
sion “phenomenological” and content ourselves with the above presentation
of evidence for log-periodic fluctuations in stock market indexes .

While this work was being completed, we learned that D. Sornette and
coworkers have also considered this problem with similar results.
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Table 1

years/index figure C α ω tc χ2/degrees freedom
86-87/S&P 500 1a -0.035 0.2 8.06 87/10/19 45.41/76
53-62/S&P 500 1b 0.19 0.68 7.41 62/01/04 78.17/88
20-29/DJ 1c -0.014 0.14 8.73 29/10/22 101/103
91-94/S&P 500 1d 0.00058 0.57 12.01 90/05/07 60.79/41
80-87/S&P 500 1e -0.036 0.2 12.94 87/10/15 99.47/84
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Figure Caption

Figure 1. Fits with Eq. (1) of the: a) 1986-1987 S&P 500 ; b) 1953-1962
S&P 500; c) 1920-1929 Dow-Jones; d) 1990-1994 S&P 500; e) 1980-1987 S&P
500. The values of the parameters and the χ2 for each of these fits are given
in Table 1.
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