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We model trading and price formation in a market under the assumption that order arrival and
cancellations are Poisson random processes. This model makes testable predictions for the most basic
properties of markets, such as the diffusion rate of prices (which is the standard measure of financial
risk) and the spread and price impact functions (which are the main determinants of transaction cost).
Guided by dimensional analysis, simulation, and mean-field theory, we find scaling relations in terms of
order flow rates. We show that even under completely random order flow the need to store supply and
demand to facilitate trading induces anomalous diffusion and temporal structure in prices.
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There have recently been efforts to apply physics meth-
ods to problems in economics [1]. This effort has yielded
interesting empirical analyses and conceptual models.
However, with the exception of refinements to option
pricing theory, thus far it has had little success in pro-
ducing theories that make falsifiable predictions about the
most important properties of markets. In this Letter, we
develop a mechanistic random process model of the con-
tinuous double auction, which is the standard method for
trade matching in modern financial markets. This model
differs from standard models in economics in that it
makes no assumptions about agent rationality. The model
makes falsifiable predictions based on parameters that
can all be measured in real data, and preliminary results
indicate that it has substantial explanatory power [2].

The random walk model was originally introduced by
Bachelier to describe prices, five years before Einstein
used it to model Brownian motion. Although this is one of
the most widely used models of prices in financial eco-
nomics, there is still no understanding of its most basic
property, namely, its diffusion rate. We present a theory
for how the diffusion rate of prices depends on the flow of
orders into the market, deriving scaling relations based on
dimensional analysis, mean-field theory, and simulation.
We also make quantitative predictions of other basic
market properties, such as the gap between the best prices
for buying and selling, the density of stored demand vs
price, and the impact of trading on prices.

Most modern financial markets operate continuously.
The mismatch between buyers and sellers that typically
exists at any given instant is solved via an order-based
market with two basic kinds of orders. Impatient traders
submit market orders, which are requests to buy or sell a
given number of shares immediately at the best available
price. More patient traders submit limit orders, which also
state a limit price, corresponding to the worst allowable
price for the transaction. Limit orders often fail to result
in an immediate transaction, and are stored in a queue
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called the limit order book. Buy limit orders are called
bids, and sell limit orders are called offers or asks. We will
label the logarithm of the best (lowest) offering price a(z)
and the best (highest) bid price b(z). There is typically a
nonzero price gap between them, called the spread s(t) =
a(t) — b(y).

As market orders arrive, they are matched against limit
orders of the opposite sign in order of price and arrival
time. Because orders are placed for varying numbers of
shares, matching is not necessarily one-to-one. For ex-
ample, suppose the best offer is for 200 shares at $60 and
the next best is for 300 shares at $60.25; a buy market
order for 250 shares buys 200 shares at $60 and 50 shares
at $60.25, moving the best offer a(z) from $60 to $60.25.
A high density per price of limit orders results in high
liquidity for market orders; i.e., it implies a small price
movement when a market order of a given size is placed.

We analyze the queueing properties of such order-
matching algorithms with the simple random order place-
ment model shown in Fig. 1. All the order flows are
modeled as Poisson processes. We assume that market
orders in chunks of o shares arrive at a rate of p shares
per unit time, with an equal probability for buy orders and
sell orders. Similarly, limit orders in chunks of o shares
arrive at a rate of a shares per unit price and per unit
time. Offers are placed with uniform probability at inte-
ger multiples of a tick size dp in the range b(r) < p < oo,
and similarly for bids on —oco < p < a(t). p represents the
logarithm of the price, and dp is a logarithmic price
interval [3]. (To avoid repetition the word price will
henceforth refer to the logarithm of price.) When a mar-
ket order arrives it causes a transaction. Under the as-
sumption of constant order size, a buy market order
removes an offer at price a(¢), and a sell market order
removes a bid at price b(f). Alternatively, limit orders
can be removed spontaneously by being canceled or by
expiring. We model this by letting any order be removed
randomly with constant probability é per unit time.
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FIG. 1. Schematic of the order-placement process. Stored
limit orders are shown ‘“‘stacked” along the price axis, with
bids (buy limit orders) negative and offers (sell limit orders)
positive. New limit orders are visualized as “falling’” randomly
onto the price axis. New offers can be placed at any price
greater than the best bid, and new bids can be placed at any
price less than the best offer. Limit orders can be removed by
random spontaneous deletion or by market orders of the oppo-
site sign.

This order placement process is designed to permit an
analytic solution. The model builds on previous work
modeling the continuous double auction [4]. While the
assumption of limit-order placement over an infinite
interval is clearly unrealistic [5], it provides a tractable
boundary condition for modeling the behavior of the
limit-order book in the region of interest, near the mid-
point price m() = [a(t) + b(r)]/2. It is also justified be-
cause limit orders placed far from the midpoint usually
expire or are canceled before they are executed. For our
analytic model, we use a constant order size o. In simu-
lations we also use variable order size, e.g., half-normal
distributions with standard deviation /2/7o, which
gives similar results.

For simplicity in our model, we do not directly allow
limit orders that cross the best price. For example, a buy
limit order of size x + y may have a limit price that is
higher than the best ask, so that x shares immediately
result in a trade, and y shares remain on the book. Such an
order is indistinguishable from a market order for x shares
immediately followed by a noncrossing limit order for y
shares. By definition, our model implicitly allows such
events, though it neglects the resulting correlation in
order placement.

Dimensional analysis simplifies the analysis of this
model and provides rough estimates of its scaling proper-
ties. The three fundamental dimensions are shares, price,
and time. There are five parameters: three order flow rates
and two discreteness parameters. The order flow rates are
M, the market order arrival rate, with dimensions of
shares per time; «, the limit-order arrival rate per unit
price, with dimensions of shares per price per time; and
6, the rate of limit-order decays, with dimensions of
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1/time. The two discreteness parameters are the price
tick size dp, with dimensions of price, and the order size
o, with dimensions of shares. Because there are five
parameters and three dimensions, and because the di-
mensionality of the parameters is sufficiently rich, all
the properties of the limit-order book can be described
by functions of two independent parameters.

We perform the dimensional reduction by taking ad-
vantage of the fact that the effect of the order flow rates is
primary to that of the discreteness parameters. This leads
us to construct nondimensional units based on the order
flow parameters alone, and take nondimensionalized ver-
sions of the discreteness parameters as the independent
parameters whose effects remain to be understood. There
are three order flow rates and three fundamental dimen-
sions. Temporarily ignoring the discreteness parameters,
there are unique combinations of the order flow rates with
units of shares, price, and time. These define a character-
istic number of shares N. = u /28, a characteristic price
interval p, = w/2a, and a characteristic time scale ¢, =
1/8. (The factors of 2 are a matter of convenience; they
occur because we have defined the market order rate for
either a buy or a sell order to be w/2.) These characteristic
values can be used to define nondimensional coordinates
p = p/p. for price, N = N/N, for shares, and 7 = t/1,
for time.

A nondimensional scale parameter based on order size
is constructed by dividing the typical order size o (which
is measured in shares) by the characteristic number of
shares N, i.e., € = o/N, = 280/ . € characterizes the
granularity of the orders stored in the limit-order book. A
nondimensional scale parameter based on tick size is
constructed by dividing by the characteristic price, i.e.,
dp/p. = 2adp/ . The theoretical analysis and the sim-
ulations show that there is a sensible continuum limit as
the tick size dp — 0, in the sense that there is nonzero
price diffusion and a finite spread. Furthermore, the
dependence on tick size is usually weak, and for many
purposes the limit dp — 0 approximates the case of finite
tick size fairly well.

Space constraints do not permit us to review the theo-
retical development of the model in this Letter; it is
presented in detail in Ref. [6]. We write an approximate
master equation for the number of shares at each price
level p at time ¢, and then find a self-consistent mean-
field theory steady-state solution. We also develop an
independent interval approximation, borrowing methods
from the study of reaction-diffusion phenomena [7].
We find that theory fits the simulation results accurately
for large values of €. For small values of €, theory
continues to capture the mean spread very well. The
predictions of other properties remain qualitatively
correct, but are no longer quantitatively accurate. The
results we quote here are all from simulations; for the
development of the theory and comparisons to simulation
see Ref. [6].
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In the following, we explore the predictions of the
model for the basic properties of markets. As already
noted, neglecting the effects of the discreteness parame-
ters gives three dimensional quantities and three parame-
ters, which we call the continuum approximation. For the
continuum approximation dimensional analysis alone
yields simple estimates for the most relevant economic
properties of the models. We have refined these estimates
by simulation and mean-field theory, which take the
effects of € and dp/p,. into account. The results are
summarized in Table I, and described in more detail
below.

The bid-ask spread is the difference between the best
price for buying and selling. It is an important determi-
nant of transaction costs. The spread has dimensions of
price and therefore scales under the continuum approxi-
mation as u/a@. Simulations and theory show that the
spread varies as (u/a)f (e, dp/p.), where f is a fairly flat
function with f(e, dp/p.) = 1/2 across much of the
range of interest (see Ref. [6]).

Another interesting quantity is the average depth pro-
file n(p) = (n(p, 1)), which is the density of shares per
price interval. The average depth profile is relatively small
near the midpoint and increases to an asymptotic value
far from the midpoint, as shown in Fig. 2. The approach to
an asymptotic value is a consequence of our assumption
of uniform order placement over an infinite range. It
should be viewed as a convenient boundary condition
for understanding the depth near p = 0, where trans-
actions occur. From dimensional analysis the asymptotic
depth, which has units of shares/price is /8. This result
is exact.

An important property of the depth profile is its slope
near the origin, which determines the price response to
the placement of a small market order. From continuum
dimensional analysis, the slope of the average depth
profile scales as A ~ a?/ud. This is altered by effects
due to the granularity of orders. For large €, the depth
profile is a concave function with nonzero values at
p = 0, whereas for small €, n(0) = 0 and n(p) is convex
near p = 0.

In addition to the spread, the price response for execut-
ing a market order is also a key factor determining trans-
action costs. It can be characterized by a price impact
function Ap = ¢(w, 7, t), where Ap is the price shift at

TABLE L

0 05 1 15 2 25 3
p/pc

FIG. 2. The mean depth profile versus price in nondimen-
sional coordinates A = np./N.=né/a vs p = p/p.=
2ap/m. The origin p/p. = 0 corresponds to the midpoint.
We show three different values of the nondimensional gran-
ularity parameter: € = 0.2 (solid line), € = 0.02 (dashed line),
€ = 0.002 (dotted line), all with tick size dp = 0.

time ¢t + 7 caused by a market order w at time ¢. Here we
study the average instantaneous price impact ¢(w) =
(¢(w, 0, 1)), where the average is taken over time f, and
the limit 7 — 0 corresponds to the change in quoted
midpoint price immediately after a market order is
placed. ¢(w) can be understood in terms of the depth
profile, as explained in Ref. [6]. Price impact causes
market friction, since selling tends to drive the price up
and buying tends to drive it down, so executing a circuit
causes a loss. The price impact is closely related to the
demand function, providing a natural starting point for
theories of statistical or dynamical properties of markets
[8]. A naive argument predicts that the price impact ¢(w)
should increase at least linearly [6]. In contrast, from
empirical studies ¢(w) for buy orders grows more slowly
than linearly [9], and the most accurate measurements
make it clear that it is strongly concave [2,10].

The ¢(w) predicted by our model is shown in Fig. 3. It
approaches a linear function for large €, but for smaller
values of € it is strongly concave, particularly near the
midpoint. Plotting this on log-log scale, this function
does not follow a pure power law. For example, for
€ = 0.002, the exponent is 8 = (.5 for small orders, and
B = 0.2 for larger orders. This is in agreement with the

Predictions of scaling of market properties vs order flow. The third column contains predictions from the continuum

analysis, in which the discreteness parameters are ignored, and the fourth column gives more accurate predictions from theory and
simulation. The functions f and g are the order of magnitude of one throughout the relevant ranges of variation of € and dp/p..

Quantity Dimensions Continuum scaling relation Scaling from simulation and theory
Asymptotic depth shares/price d~a/d d=a/b
Spread price s~ p/a s = (u/a)f(e dp/p.)
Slope of depth profile shares/price? A~a?/ud=d/s A= (a?/ud)ge dp/p.)
Price diffusion rate price?/time D~ u*é/a? (71— 0,dp— 0) Dy ~ u?8/a’e %>

(1> 00,dp = 0) Dy ~ p?8/a’e?
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FIG. 3. The average price impact corresponding to the results
in Fig. 2. The average instantaneous movement of the non-
dimensional midprice, {dm)/p. caused by an order of size
N/N,= Ne/o. € = 0.2 (solid line), € = 0.02 (dashed line),
€ = 0.002 (dotted line).

best empirical measurements for the New York Stock
Exchange and the London Stock Exchange [2,10].

The price diffusion rate is a property of central interest.
In finance, it is typically characterized in terms of the
standard deviation of prices at a particular time scale,
which is referred to as volatility. Volatility is a measure of
the uncertainty of price movements and is the standard
way to characterize risk. We have made simulations of the
variance of the change in the midpoint price at time scale
7, i.e., the variance of m(¢t + 7) — m(¢). The slope is the
diffusion rate, which at any fixed time scale is propor-
tional to the square of the volatility. It appears that there
are at least two time scales involved, with a faster dif-
fusion rate for short time scales and a slower diffusion
rate for long time scales. Such correlated diffusion is not
predicted by mean-field analysis. Simulation results show
that the diffusion rate is correctly described by the prod-
uct of the estimate from continuum dimensional analysis
u?8/a?, and a T-dependent power of the nondimensional
granularity parameter € = 280/u, as summarized in
Table I. We cannot currently explain why this power is
—1/2 for short term diffusion and 1/2 for long-term
diffusion.

This model contains numerous simplifying assump-
tions. Nevertheless, it is its very simplicity that allows
us to make unambiguous predictions about the most basic
properties of real markets. Our prediction for the price
impact function agrees with the best empirical measure-
ments on the New York and London Stock Exchanges
[2,10], and suggests that concavity is a robust feature
deriving from institutional structure rather than ration-
ality. The fact that in both markets appropriate rescaling
allows a collapse onto a function of the type we predict
suggests the existence of universal supply and demand
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functions. Futhermore, the results indicate remarkable
explanatory power for the average daily spread [2].
Even though we do not expect the predictions of this
model to be exact in every detail, they provide a simple
benchmark that can guide future improvements. Our
model illustrates how the need to store supply and de-
mand gives rise to interesting temporal properties of
prices and liquidity even under assumptions of perfectly
random order flow, and demonstrates the importance of
making realistic models of market mechanisms.
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