Financial markets as adaptive ecosystems
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Option markets offer an interesting example of adaptation of a population (the
traders) to a complex environment, through trial and error and natural selection (un-
efficent traders disappear quickly). The problem is the following: an ‘option’ is an
insurance contract protecting its owner against the rise (or fall) of financial assets,
such as stocks, currencies, etc. The problem of knowing the value of such contracts
became extremely acute when organized option markets opened twenty five years ago,
allowing one to buy or sell options much like stocks. Almost simultaneously, Black and
Scholes (BS) proposed their famous option pricing theory, based on a simplified model
for stock fluctuations, namely the (geometrical) Brownian motion model. The most
important parameter of the model is the ‘volatility’ o, which is the standard devia-
tion of the market price’s relative fluctuations. Guided by the Black-Scholes theory,
but constrained by the fact that ‘bad’ prices lead to arbitrage opportunities, option
markets agree on prices which are close, but significantly and systematically different
from the BS formula. Surprisingly, a detailed study of the observed market prices
clearly shows that, despite the lack of an appropriate model, traders have empirically
adapted to incorporate some subtle information on the real statistics of price changes.

More precisely, a ‘call’ option is such that if the price z(7) of a given asset at time T (the
‘maturity’) exceeds a certain level z. (the ‘strike’ price), the owner of the option receives the
difference #(7T') — z.. Conversely, if z(T) < z., the contract is lost. To make a long story short
[1,2, 3], if T is small enough (a few months) so that interest rate and average returns are negligible
compared to fluctuations, the ‘fair’ price C of the option today (T = 0), knowing that the price of
the asset now is zg is given by:
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where P(x',T|xg,0) is the conditional probability density that the stock price at time 7" will be
equal to z’, knowing its present value is zg. Eq. (1) means that the option price is such that on



average, there is no winning party. Pricing correctly an option is thus tantamount to having a
good model for the conditional probability P (', T|zg,0).

There is fairly strong evidence that beyond a time scale 7 of the order of ten minutes, the fluc-
tuations of stock values (on the major markets) are uncorrelated [4], but not identically distributed
variables [5]. More precisely, one can write:

o(I) =20+ Y by (2)
where the increments dzj are distributed as:
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which means that dz is obtained as the product of a random variable, the distribution of which
is independent of k, times a scale factor 45 which stochastically depends on & (see below).

Let us first consider the case where 75 = 7¢ independent of k, corresponding to the classical
problem of a sum of independent, identically distributed variables. Although P(dz) is strongly
non Gaussian (see, e.g. [6]), the Central Limit Theorem [7] tells us that for N = T'/7 large,
P(a',Txo,0) will be close to a Gaussian. Using then Eq. (1) essentially leads back to the BS
formula (although in principle BS use a log-normal, rather than a normal distribution, the difference
is not relevant for the present discussion). For finite N, however, there are corrections to the
Gaussian, and thus corrections to the BS price. A useful way to characterize these corrections is
to introduce the cumulants of the elementary increments dz. To a very good approximation, the
distribution Py(dz) is even [6]; a classical result is then that the leading correction when N is large
is proportional to the kurtosis r, defined as k = (dz*)/(dz?)? — 3 [7], which vanishes if dz is itself
Gaussian, and measures the ‘fatness’ of the tails of the distribution as compared to a Gaussian. It
is then easy to show that the leading correction to the BS price can be reproduced by using the BS
formula, but with a modified value for the volatility o = /(d22?) (which traders call the ‘implied
volatility’ ¥), which depends both on the strike price 2. and on the maturity 7' through:
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which is called the ‘smile effect’, because the plot of ¥ versus z. has the shape of a smile (see Fig
1). That the volatility had to be smiled up was realized long ago by traders — this reflects the well
known fact that the elementary increments have rather ‘fat’ tails: markets are much more jerky
than what a Gaussian random walk would look like.

As shown in Fig. 1, the smile formula (4) reproduces correctly the observed option prices on
the ‘Bund’ market provided the kurtosis k becomes itself N dependent. The shape of the ‘implied’
kurtosis kimp(N) as a function of N is given in Fig. 2; kimp (V) is seen to increase steadily. Why
is this so?

Let us study directly the kurtosis of the distribution of the underlying stock, P(z,T|xzo,0), as
a function of N = T'/r. If the increments dz were independent and identically distributed (i.e.
Y& = o), one should observe that ky = £/N. In Fig. 2, we have also shown kg = Nky as a
function of N. One can notice that not only &eg is not constant (as it should if 2 were identically
distributed), but actually keg matches quantitatively (at least for N < 200) with the evolution
of the implied kurtosis kimp! In other words, the price over which traders agree capture rather
precisely the anomalous evolution of Ke.

As we shall show now, this non trivial behaviour of kg is related to the fact that the scale
of the fluctuations v, is actually itself a time dependent random variable [5]. This could come
from the fact that new information induces reactions of arbitrary sign, increasing the scale of



fluctuations; conversely, when fluctuations are too large, risk-averse operators leave the market
and this decreases the scale of fluctuations. It is thus reasonnable to assume that g oscillates
around a mean value, with random fluctuations, possibly correlated in time. Writing 77 = 1 + n,

with g7y = g(|k — ¢]) ((...) refers now to an average over the scale fluctuations), one finds that
Eq. (4) still holds, but with & replaced by an effective kurtosis keg given by:
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where kg is the kurtosis of Py(dx). The simplest possibility is that 7 follows an Ornstein-Uhlenbeck
process [7], in which case g(k) = goa®, where a < 1 is related to the correlation time of the 5
variable. The solid line in Fig. 2 shows a rather good fit of k() with this formula, with s ~ 20,
go ~ 4 and a = 0.9913, corresponding to a correlation time of 7.2 days. Note that the effect of
a non zero kurtosis on the BS prices was previously investigated in [8, 9], although the relation
between keg and &imp, or their N dependence, was not investigated.

In conclusion, we have shown by studying in detail the market price of options that traders have
evolved from the simple, but inadequate BS formula to an empirical know-how which encodes two
important statistical features of asset fluctuations: ‘fat tails’ (i.e. a rather large kurtosis) and more
subtle non stationary effects (i.e. the fact that the scale of fluctuations is itself time dependent).
These features, although not explicitly included in the theoretical pricing models used by traders,
are nevertheless reflected rather precisely in the price fixed by the market as a whole. Financial
markets thus behave as adaptive systems with efficient emerging properties.

Figure Captions.

Fig 1: Example of a smile curve: Implied volatility ¥(z.,T) vs distance from strike price
(z — x) for a given T'. The data shown correspond to all 227 transactions of December options on
the German Bund future (LIFFE) on November 13, 1995. This is a very ‘liquid’ market, meaning
that price anomalies are expected to be small, in particular for short maturities 7. Both call and
put options are included with put options transformed into call options using the put-call parity
[2]. Volatilities are expressed as annualized standard deviation of price differences. According to
Eq. (4) the data should fall on a parabola. From a fit of the curvature of this parabola, we extract
the ‘implied kurtosis’ &imp for a given N = % In this particular case we find Kimp = 276 at
N =144 (9 trading days).

Fig 2: Plot of the implied kurtosis kimp (determined as in Fig. 1) and of the historical kurtosis
Keft (determined directly from the historical movements of the Bund contract), as a function of
the reduced time scale N = %, 7 = 30 minutes. All transactions of options on the Bund future
from 1993 to 1995 were analyzed along with 5 minute tick data of the Bund future for the same
period. The growth of the error bars for the latter quantity comes from the fact that less data
is available for larger N, and that a factor N comes in the definition of k.g. Finally, a fit with
formula (5), corresponding to a simple Ornstein-Uhlenbeck evolution of the scale parameter v is
shown for comparison. This allows one to extract a correlation time for these fluctuations of the
order of a week.
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