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Apparent multifractality in financial time series
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Abstract. We present a exactly soluble model for financial time series that mimics the long range volatility
correlations known to be present in financial data. Although our model is asymptotically ‘monofractal’ by
construction, it shows apparent multiscaling as a result of a slow crossover phenomenon on finite time
scales. Our results suggest that it might be hard to distinguish apparent and true multifractal behavior in
financial data. Our model also leads to a new family of stable laws for sums of correlated random variables.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 89.90.+n Other topics of general interest to physicists
(restricted to new topics in section 89)

Many time series exhibit interesting scaling properties.
This means that if x(t) denotes the time series, the prob-
ability distribution of the variations δTx = x(t+T )−x(t),
rescaled by a lag-dependent factor ξ(T ), can be written as:

P (δTx, T ) =
1

ξ(T )
F
(
δTx

ξ(T )

)
, (1)

where F(u) is a time independent scaling function. For
example, if x(t) is constructed by summing indepen-
dent identically distributed random variables with fi-
nite variance σ2, one has ξ(T ) = σ

√
T and F(u) =

exp(−u2/2)/
√

2π for large T . Note that often the ‘time’ is
actually a space coordinate, as it is the case in the analy-
sis of turbulent velocity fields (where x is the fluid veloc-
ity) [1], or fracture surfaces (where x is the height of the
profile) [2]. Equation (1) implies that all moments of δTx
that are finite, scale similarly:

mq ≡ 〈|δTx|q〉 = Aqξ(T )q, (2)

where Aq is a q-dependent number. Very often, ξ(T ) be-
haves as a simple power-law: ξ(T ) ∝ T ζ. In this case of
a monofractal process, one therefore has, mq ∝ T ζq , with
ζq ≡ qζ.

This is however not the only possibility, and in some
cases, one can observe multifractal scaling, in the sense
that mq ∝ T ζq , with ζq 6= qζ. Such a possibility has been
advocated for turbulent velocity fields [3–6] and, more re-
cently, for financial time series [7–10], see also [11–13]. In
the case of turbulence, there is strong theoretical evidence
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in favor of such a multifractal behavior [1,4]. One can ac-
tually analytically derive a non trivial function ζq within a
simple (‘passive scalar’) model, which is thought to retain
some essential features of real turbulence [14]. The situ-
ation is much less clear in the case of financial markets,
where the only evidence is based on the empirical analysis
of the moments of several time series (typically curren-
cies or stock indices). The idea of multiplicative cascades,
which is at the heart of the arguments in favor of multi-
scaling in turbulence, is not easily applicable to price time
series (see, however, [15]).

In this note, we study to which extent empirical stud-
ies on multiscaling behavior in finance are sensitive to
crossover behavior that results in apparent multiscaling,
even though the studied process is a monofractal. To that
end we present a soluble model that is based on the study
of financial time series. In the model, the ‘volatility’ (or the
variance) of the elementary price increments is a random
variable with long range correlations, which have been
shown to be present in financial time series [15–19]. The
model is an exact monofractal, but nevertheless it leads
to an apparent multiscaling behavior [20,21]. As we argue
below, one finds effective exponents ζ̃q 6= ζq due to a very
long crossover effect, which leads to a systematic negative
correction to the true asymptotic behavior ζq = qζ. The
correction grows with q and results thereby in a nontrivial
functional form of ζ̃q. The numerical simulation of such a
model, which mimics quite well the observed behavior of
real prices, accurately reproduces the published data in
favor of multiscaling in financial markets.

The model that we propose is also interesting in its own
right. As a function of the strength of the correlations, we
find a transition between a simple Gaussian behavior for
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the scaling function F (together with the usual
√
T scaling

for ξ(T )) for weak correlations, to a new family of stable
laws (with a non trivial scaling of ξ(T )) for strong enough
correlations. This adds to the very few cases where the
limit distribution for sums of correlated random variables
is exactly known.

Our model is the following: we consider that the time
series is built by summing random variables:

x(t) =
N∑
k=1

δxk N =
t

τ
, (3)

where τ is a microscopic time scale. The elementary in-
crements δxk are assumed to be given by the product of
two independent random variables, a ‘sign’ εk and an am-
plitude σk: δxk = |σk|εk. The εk are furthermore assumed
to be independent Gaussian random variables of variance
unity. σ2

k therefore is the (random) variance of the ele-
mentary increments. We choose the σk’s to be Gaussian
random variables of zero mean [22], with a correlation
function given by 〈σkσk+`〉 = C(|`|). All moments mq

of δxk are therefore finite, and the even ones given by
mq = [(q−1)!!]2Cq/2(0), where (q−1)!! ≡ 1 ·3 · . . . (q−1).

The correlation function C(|`|) will be chosen to be
a power law for large arguments: C(|`|) ' γ|`|−ν . From
several studies of financial markets, one knows that the
variance of the price increments is indeed also random,
with a very slowly decaying time correlation function:

〈σ2
i σ

2
i+`〉 − 〈σ2

i 〉2 = 2C2(|`|) '`→∞
2γ2

|`|2ν , (4)

where the exponent ν is found to be on the order of ν = 0.1
– 0.3 for different markets [16–19,15]. The important point
here is that ν < 1/2.

More precisely, we will use the following explicit rep-
resentation of the σ’s:

σk =
s0√
N

N/2∑
m=1

(
2πm
N

)ν−1
2
(
zme

2iπmk
N + z∗me−

2iπmk
N

)
.

(5)

where the zm’s are independent complex Gaussian vari-
ables of unit variance. In the large N limit, the resulting
correlation function C(`) is well defined and decays, for
large `, as a power-law with γ = s2

0Γ (ν) cos(πν/2)/π while
C(0) tends to s2

0π
ν−1/ν [23].

We now turn to the calculation of the cumulants cq
of x(t), as given by equation (3). We will show that these
cumulants scale anomalously with N as soon as n ≥ 2 (for
0 < ν < 1/2).

After making a gauge transform εi → sign(σi)εi, one
finds [24]:

e−GN (z) ≡
∫

dxPN (x)e−izx

=
∫ N∏

j=1

(
dεjdσj

2π

)
1√

det C

× exp

iz
N∑
j=1

σjεj−
N∑
j=1

ε2j
2
−

N∑
j,k=1

σj(C−1)jkσk
2

·
(6)

The Gaussian integrals can be easily performed, and leads
to the following expression for the characteristic function
G(z):

GN (z)=
1
2

Tr log(1+z2C)=
N/2∑
m=1

log(1+z2C̃(m)), (7)

where the bold characters is used for matrices, and where
C̃(m) are the eigenvalues of the matrix C. From the
very construction of the σ’s, one finds that C̃(m) =
s2

0(2πm/N)ν−1, each of which is twofold degenerate.
Expanding GN (z) in powers of z leads to the cumu-

lants cq(N) of PN (x). All odd order cumulants are zero,
while even order cumulants are given by:

cq(N) = 2(q − 1)!
N/2∑
m=1

C̃(m)q/2. (8)

Let us first analyze the case 0 < ν < 1/2. In the large N
limit, the sum over m is convergent when q ≥ 4 and leads
to cumulants which do not scale as N :

cq '
(
N

2π

)(1−ν)q/2

sq0(q − 1)!
∞∑
m=1

m(ν−1)q/2, (9)

while for q = 2 one finds exactly c2 = TrC = NC(0). The
normalized cumulants cq/c

q/2
2 therefore behave as N−qν/2

for q ≥ 4 and vanish for N → ∞. This means that the
distribution of x/

√
N indeed tends to a Gaussian for large

N . However, the approach to the Gaussian is slower than
for sums of independent random variables. In particular,
the kurtosis c4/c22 of PN (x) decays anomalously, as N−2ν ,
for 0 < ν < 1/2. For larger values of ν (i.e. when the
volatility correlations are weaker), one recovers the usual
scaling of the kurtosis as 1/N that holds for independent
increments. Such an anomalous decay of the kurtosis with
time was first reported for financial time series in [21,18].

The important outcome of the above calculation is that
the moments mq of the distribution PN (x) are not simple
power-laws, but sums of power laws with similar expo-
nents. For example:

m4 = A4,0N
2−2ν +A2,2N

2, (10)

m6 = A6,0N
3−3ν +A4,2N

3−2ν +A2,2,2N
3, (11)
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where the A’s are some coefficients. If ν is small, these
sums of power-laws can be fitted on many decades with an
effective exponent ζ̃q such that mq ∝ N ζ̃q . The exponent
ζ̃q is less than q/2, and more and more so as q increases.
However, the true asymptotic behavior predicted by our
model is ζq = q/2. In fact, equations (10, 11) show that
our model (and possibly also real financial data, or even
turbulence data) is better characterized by the cumulants
than by the moments.

In order to illustrate this point numerically, we have
generated a surrogate time series in a way closely related
to the above model. Instead of writing δxi = |σi|εi, we
have chosen to take δxi = exp(σi)εi. This leads to a more
realistic time series as compared with real data from fi-
nancial markets, without changing the crucial feature of
the above model, i.e. the very slow decay of the volatility
correlations. In particular, the distribution of the volatil-
ity has a positively skewed, log-normal shape. The length
of our surrogate time series was taken to be comparable
to those analyzed previously. The moments mq = 〈|δTx|q〉
are plotted as a function of T for different q’s, for the
choice ν = 0.2 (see Fig. 1). The interval of T was cho-
sen to be τ = 1 ≤ T ≤ 6000, again comparable to the
region investigated in previous studies [7–10]. The power
law fits are extremely good, and lead to a function ζ̃q
bending downwards as q increases, shown in Figure 2. For
our choice of parameters, the numerical values of ζ̃q actu-
ally match precisely those reported in [10]. We have also
checked that the same model, but without volatility cor-
relations, leads very precisely to ζ̃q = ζq = q/2.

Note that, by construction, all the moments of our sur-
rogate time series are finite, although the distribution of
price differences has fat tails comparable to those observed
on empirical data. It has however been argued recently
(see [25,27]) that these empirical tails are in fact power-
laws with an exponent around 4, such that the moments
q ≥ 3 are ill-defined. One could generalize our model to
allow for such power-law tails. For empirical studies on
finite-size data sets, even stronger transient effects would
be observed on ζ̃q, mimicking again multifractality.

We now turn to the case ν < 0. This corresponds to
a non stationary process for the volatility, which typi-
cally grows with ` as `−ν/2. More precisely, from equa-
tion (5), one can show that 〈(σk − σk+`)2〉 ∝ `−ν. In
this case, after changing variables to x = x̂

√
N1−ν and

z = ẑ
√

(N/2π)ν−1, one finds that the asymptotic distri-
bution of x̂ has a characteristic function given by:

Gν(ẑ) =
∞∑
m=1

log
(
1 + ẑ2mν−1

)
(12)

(we have set s0 = 1, which amounts to a change of scale
in x.).

The above result means that after rescaling by a factor√
N1−ν , the sum of (strongly) correlated random variables

converges to a non-Gaussian distribution Fν(x̂), obtained
as the Fourier transform of the exponential of −Gν(ẑ)
given by equation (12). Since the expansion of Gν(ẑ) is
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Fig. 1. Simulation of our surrogate financial time series and
determination of the scaling of the moments as a function of
window size T . From top to bottom 〈|δTx|q〉 for q = 1−10.
Each moment scales relatively well with T as indicated by the
10 linear (log-log) fit lines. In this simulation the log-volatility
follows a correlation Gaussian process as defined in the text
with ν = 0.2. The variance of this process has been set so that
the kurtosis at the unit time scale be κ0 = 65. This is a typical
value for high frequency financial data. The simulated data set
contained 500 000 points.
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Fig. 2. Slope ζq of the fitted data of Figure 1. The deviations
from the true asymptotic scaling ζq = q/2 are quite clear. The
value of ζq precisely match those reported in [10].

regular for ẑ → 0, all the moments of Fν are finite.
From the leading singularity of Gν(ẑ) around ẑ = ±i,
one obtains the asymptotic behavior of Fν(x̂) for large
arguments as:

Fν(x̂) 'x̂→∞ e−|x̂|. (13)
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Fig. 3. Graph of the stable distribution P (x) = F−1(x). The
asymptotic behavior F−1(x) ∼ exp(−|x|) is shown as the dot-
ted curve.

In the special case where ν = −1, corresponding to a
‘volatility random walk’, the sum in (12) can be explicitly
performed, and leads to [28]:

G−1(ẑ) = log
(

sinh(πẑ)
πẑ

)
. (14)

This distribution is shown in Figure 3, together with the
predicted asymptotic behavior (dotted line). The kurto-
sis of this distribution is equal to 6/5. Interestingly, Fν
has a shape similar to hyperbolic distributions [29] with
exponential tails which have been proposed in a financial
context (see [21]). The appearance of such laws might thus
be related to the existence of long-ranged correlations in
the volatility.

In summary, the purpose of this paper was to show,
on an exactly soluble ‘stochastic volatility’ model, that an
apparent multiscaling behavior can appear as a result of
very long transient effects, induced by the long range na-
ture of the volatility correlations. This model is inspired
by real price time series, and leads to an effective expo-
nent spectrum ζ̃q in close correspondence that reported
in recent papers on the subject. We therefore suspect that
indications of multifractal behavior found in financial data
might be misleading, as they could be caused by crossover
effects that do not correspond to the true asymptotic be-
havior. To check more carefully for crossover effects, it
might be helpful to analyze not only the moments but
also the cumulants in empirical studies. We also have, en
passant, found a new family of stable laws for sums of cor-
related random variables in the case where the volatility
correlation is growing with time. It would be very inter-
esting to characterize the attraction basin of these new
stable laws.

We thank M. E. Brachet, P. Cizeau, L. Laloux and A.
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for useful comments on the manuscript.
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