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Causal cascade in the stock market from the “infrared” to the
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Modelling accurately financial price variations is an essential step un-

derlying portfolio allocation optimization, derivative pricing and hedging,

fund management and trading. The observed complex price fluctuations

guide and constraint our theoretical understanding of agent interactions

and of the organization of the market. The gaussian paradigm of inde-

pendent normally distributed price increments [1, 2] has long been known

to be incorrect with many attempts to improve it. Econometric nonlin-

ear autoregressive models with conditional heteroskedasticity[3] (ARCH)

and their generalizations [4] capture only imperfectly the volatility correla-

tions and the fat tails of the probability distribution function (pdf) of price

variations. Moreover, as far as changes in time scales are concerned, the

so-called “aggregation” properties of these models are not easy to control.

More recently, the leptokurticity of the full pdf was described by a trun-

cated “additive” Lévy flight model[5, 6] (TLF). Alternatively, Ghashghaie

et al.[7] proposed an analogy between price dynamics and hydrodynamic

turbulence.

In this letter, we use wavelets to decompose the volatility of intraday

(S&P500) return data across scales. We show that when investigating

two-points correlation functions of the volatility logarithms across differ-

ent time scales, one reveals the existence of a causal information cascade
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from large scales (i.e. small frequencies, hence to vocable “infrared”) to

fine scales (“ultraviolet”). We quantify and visualize the information flux

across scales. We provide a possible interpretation of our findings in terms

of market dynamics.

The controversial [6, 8] analogy developed by Ghashghaie et al.[7] implicitly as-

sumes that price fluctuations can be described by a multiplicative cascade along which,

the return at a given scale a < T , is given by:

ra(t) ≡ lnP (t+ a) − lnP (t) = σa(t)u(t) , (1)

where u(t) is some scale independent random variable, T is some coarse “integral”

time scale and σa(t) is a positive quantity that can be multiplicatively decomposed,

for each decreasing sequence of scales {ai}i=0,..,n with a0 = T and an = a, as[9, 10]

σa =
n−1
∏

i=0

Wai+1,ai
σT . (2)

In turbulence, the field σ is related to the energy while in finance σ is called the

volatility. Recall that the volatility has fundamental importance in finance since it

provides a measure of the amplitude of price fluctuations, hence of the market risk.

Using ωa(t) ≡ ln σa(t) as a natural variable, if one supposes that Wai+1,ai
depends

only on the scale ratio ai/ai+1, one can easily show, by choosing the ai as a geometric

series Tsn (s < 1), that eq. (2) implies that the pdf of ω at scale a can be written

as[9, 10]

pa(ω) = (G⊗n
s ⊗ pT )(ω) , (3)

where ⊗ means the convolution product, Gs is the pdf of lnWsa,a and pT is the pdf of

ωT . The above equation is the exact reformulation (in log variables) of the paradigm

that Ghashghaie et al. [7] used to fit foreign exchange (FX) rate data at different

scales. In this formalism, G can be proven to be the pdf of an infinitely divisible

random variable [10] (hence σ is called “log-infinitely divisible”). In ref. [7], G is

assumed to be Normal (the cascade is called “log-normal”) of variance −λ2 ln s.

First, let us comment on the criticisms raised by Mantegna and Stanley [8]. Note

that eq. (3) does not determine the shape of the pdf of the returns ra(t) at a given

scale but specifies how this pdf changes across scales. For a fixed scale, the precise
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form for the pdf depends on both pT and on the law of the variable u(t) (which

determines notably the sign of ra(t)). Therefore, nothing prevents the pdf of ra(t) to

having fat tails at small scales as observed in financial time series [7]. A cascade model

actually accounts for the distribution of the volatility of returns across scales and not

for the precise fluctuations of ra(t). The behavior of the autocorrelation function

ra(t)ra(t+ τ) (τ > a) indeed depends on both the cascade variables and u(t). For

example, if u(t) is a white noise, there will be no correlation between the returns

while their absolute values (or the associated volatilies) are strongly correlated (see

below). This is why the shape of the power spectrum of financial time series cannot

be invoked as an argument against a cascade model. Moreover, as far as scaling

properties of price fluctuations are concerned, it is easy to deduce from eq. (3) that,

if H ln s is the mean of Gs and −λ2 ln s its variance, then the the maximum of the pdf

of σa(t) varies as aH−λ2/2 (H plays the same role as the Lévy index in TLF models

with H = 1/µ) while its standard deviation behaves as aH−λ2

; these features are

observed in both turbulence [9] (H ≃ 0.33 and λ2 ≃ 0.03) and finance [7] (H ≃ 0.6

and λ2 ≃ 0.015). Therefore, as advocated in ref. [7], eq. (3) accounts reasonably

well for one-point statistical properties of financial times series. However, because of

the relatively small statistics available in finance, it is very difficult to demonstrate

that eq. (3) is more pertinent to fit the data than a “truncated Lévy” distribution

[5, 6, 8].

At this point, let us emphasize that eq. (2) imposes much more constraints on the

statistics (it is indeed a model !) than eq. (3) that only refers to one point statistics.

The main difference between the multiplicative cascade model and the truncated Lévy

additive model is that the former predicts strong correlations in the volatility while

the latter assumes no correlation. It is then tempting to compute the correlations of

the log-volatility ωa at different time scales a. For that purpose, we use a natural

tool to perform time-scale analysis, the wavelet transform (WT). Wavelet analysis

has been introduced as a way to decompose signals in both time and scales [11]. The

WT of f(t) = lnP (t) is defined as:

Tψ[f ](t, a) ≡
1

a

∫ +∞

−∞

f(y)ψ
(

y − t

a

)

dy, (4)
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where t is the time parameter, a (>0) the scale parameter and ψ the analyzing wavelet.

Note that for ψ(t) = δ(t− 1)− δ(t), Tψ[f ](t, a) is nothing but the return ra(t). How-

ever, in general, ψ is choosen to be well localized in both time and frequency, so that

the scale a can be interpreted as an inverse frequency. Moreover, if ψ has at least two

vanishing moments and χ is a bump function with ||χ||1 = 1, then, the local volatility

at scale a and time t can be defined as [12] σ2
a(t) ≡ a−3

∫

χ((b − t)/a)|Tψ(b, a)|
2db.

Actually, thanks to the time-scale properties of the wavelet decomposition [11], when

summing σ2
a(t) over time and scale, one recovers the total square derivative of f :

Σ =
∫ ∫

σ2
a(t)dtda =

∫

|df/dt|2dt.

In Fig. 1 are shown 3 time series for which we study the increment time correla-

tions. Fig. 1(a) represents the logarithm of the S&P500 index. The corresponding

“volatility walk”, va(t) =
∑t
i=0 ωa(i) is represented in Fig. 1(b). Fig. 1(c) is the same

as Fig. 1(b) but after having randomly shuffled the increments lnP (i+ 1) − lnP (i)

of the signal in Fig. 1(a). Fig. 1(b) clearly demonstrates the existence of impor-

tant long-range positive temporal correlations in the volatilities of S&P500 returns.

Moreover, the statistics of ωa(t) are found to be nearly gaussian. However, the

volatility walk for the “shuffled S&P500” looks very much like a Brownian motion

with uncorrelated increments. This observation is sufficient to discard any additive

(like TLF) model which intrinsically fails to account for the strong correlations ob-

served in ωa(t). The correlation function Cr
1(∆t) = r1(t)r1(t+ ∆t) − r1(t)

2
shown

in Fig. 1(a’), confirms the well-known fact that there are no correlations between

the returns (except at a very small time lag as illustrated in the inset). However,

the difference is striking in Fig. 1(b’) where the correlation function of the volatility

walk Cω
a (∆t) = ωa(t)ωa(t+ ∆t) − ωa(t)

2
remains as large as 5% up to time lags cor-

responding to about two months. In contrast, the correlation function associated to

the shuffled time series in Fig. 1(c’) is within the noise level.

From the modelling of fully developed turbulent flows and fragmentation pro-

cesses, random multiplicative cascade models are well known to generate long-range

correlations [13, 14, 15]. We now explore whether this concept could be useful for

understanding the observed long-range correlations of the volatility (and not of the

price increments, which makes turbulence and financial markets drastically different).
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To fix ideas, let us consider a specific realization of a process satisfying eq. (2). Con-

sider the largest time scale T of the problem. We then assume that the volatility at

time scale T influences the volatility of the two subperiods of length T
2

by random

factors equal respectively to W0 and W1. In turn, each volatility over T
2

influences the

two subperiods of length T
4

by random factors W00 and W10 for the first sub-period

and W01 and W11 for the second one. The cascade process is assumed to continue

along the time scales until the shortest tick time scale (see ref. [10] for rigourous

definitions and properties). The simplest assumption is that the factors W are i.i.d.

variables with log-normal distribution of mean −H ln 2 and variance λ2 ln 2. It is

then easy to show that the correlation function averaged over a period of length T ,

Cω
a (∆t) = T−1

∫ T
0

(

〈ωa(t)ωa(t+ ∆t)〉 − 〈ωa(t)〉
2
)

dt, can be written as

Cω
a (∆t) = λ2(1 − log2

∆t

T
− 2

∆t

T
) , (5)

for a ≤ ∆t ≤ T (〈.〉 means mathematical expectation). Here, our goal is to show

that the basic ingredients of this simple cascade model are sufficient to rationalize

most of the features observed on the volatility correlations at different scales (note

that one could improve this description by taking into account mutual influences of

volatilities at a given scale and the possible “inverse cascade” influence of fine scales

on larger ones). For λ2 ≃ 0.015 obtained independently from the fit of the pdf’s

[7], eq. (5) provides a very good fit of the data (Fig 1(b’)) for the slow decay of the

correlation function with only one adjustable parameter T ≃ 3 months. Let us note

that Cω
a (∆t) can be equally well fitted by a power law ∆t−α with α ≈ 0.2. In view of

the small value of α, this is undistinguishable from a logarithmic decay. Moreover,

eq. (5) predicts that the correlation function Cω
a (∆t) should not depend of the scale

a provided ∆t > a. In Fig. 2, Cω
a (∆t) are plotted versus ln(∆t) for various scales a

corresponding to 30, 120 and 480 min. As expected, all the data collapse on a single

curve which is nearly linear up to some integral time of the order of 3 months.

Let us point out that volatility at large time intervals that cascades to

smaller scales cannot do so instantaneously. From causality properties of fi-

nancial signals, the “infrared” towards “ultraviolet” cascade must manifest it-

self in a time asymmetry of the cross-correlation coefficients Cω
a1,a2(∆t) ≡

var(ωa1)
−1var(ωa2)

−1(ωa1(t)ωa2(t+ ∆t) − ωa1(t) ωa2(t)); in particular, one expects
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that Cω
a1,a2(∆t) > Cω

a1,a2(−∆t) if a1 > a2 and ∆t > 0. From the near-Gaussian prop-

erties of ωa(t), the mean mutual information of the variables ωa(t+∆t) and ωa+∆a(t)

reads :

Ia(∆t,∆a) = −0.5 log2

(

1 − (Cω
a,a+∆a(∆t))

2
)

. (6)

Since the process is causal, this quantity can be interpreted as the information con-

tained in ωa+∆a(t) that propagates to ωa(t + ∆t). In Fig. 3, we have computed

Ia(∆t,∆a) for the S&P500 index (top) and its randomly shuffled version (bottom).

One can see on the bottom picture that there is no well defined structure that emerges

from the noisy background. Except in a small domain at small scales around ∆t = 0,

the mutual information is in the noise level as expected for uncorrelated variables. In

contrast, two features are clearly visible on the top representation. First, the mutual

information at different scales is mostly important for equal times. This is not so

surprising since there are strong localized structures in the signal that are “coherent”

over a wide range of scales. The extraordinary new fact is the appearance of a non

symmetric propagation cone of information showing that the volatility a large scales

influences causally (in the future) the volatility at shorter scales. Although one can

also detect some information that propagates from past fine to future coarse scales,

it is clear that this phenomenon is weaker than past coarse/future fine flux (the fact

that the former one exists anyway suggests that a more realistic cascading process

should include the causal influence of short time scales on larger ones). Figure 3 is

thus a clear demonstration of the pertinence of the notion of a cascade in market

dynamics. Similar features have been found on Foreign Exchange rates.

There are several mechanisms that can be invoked to rationalize our observations,

such as the heterogeneity of traders and their different time horizon [16] leading to

an “information” cascade from large time scales to short time scales, the lag between

stock market fluctuations and long-run movements in dividends [17], the effect of the

regular release (monthly, quarterly) of major economic indicators which cascades to

fine time scale. Correlations of the volatility have been known for a while and have

been partially modelled by mixtures of distributions [18], ARCH/GARCH models [3]

and their extensions [4]. However, as pointed out in the introduction, because they

are constructed to fit the fluctuations at a given time interval, these models are not
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adapted to account for the above described multi-scale properties of financial time

series. We have performed the same correlation analysis for simulated GARCH(1,1)

processes and obtained structureless pictures similar to the one corresponding to the

shuffled S&P500 in Fig. 3(b). More recently, Muller et al. [16] have proposed the

HARCH model in which the variance at time t is a function of the realized variances

at different scales. By construction, this model captures the lagged correlation of the

volatility from the large to the small time scales. However, it does not contain the

notion of cascade and involves only a few time scales. Moreover, it suffers from the

same defficiencies as ARCH-type models concerning the difficulties to control and

interpret parameters at different scales.

Putting together the evidence provided by the logarithmic decay of the volatility

correlations and the volatility cascade from the infrared to the ultraviolet, we have

revisited the analogy with turbulence, albeit on the volatility and not on the price

variations. Another very promising prospect consists in building ARCH-type pro-

cesses on orthogonal wavelets basis. This work is in current progress. The present

understanding with such models will allow us to calculate improved risk prices such

as options, for instance using the functional formalism of ref. [19] well-adapted to

deal with pdf’s of the form (3).

Acknowledgments. We acknowledge useful discussions with E. Bacry and U.

Frisch.
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Figure Captions

Figure 1: (a) Time evolution of lnP (t), where P (t) is the S&P500 index, sampled

with a time resolution δt = 5 min in the period October 1991-February 1995. The

data have been preprocessed in order to remove “parasitic” daily oscillatory effects.

(b) The corresponding “volatility walk”, va(t) =
∑t
i=0 ωa(i), as computed with a

compactly supported spline wavelet[11] for a = 4 (≃ 20 min). (c) va(t) computed

after having randomly shuffled the increments of the signal in (a). (a’) The 5 min

return correlation function Cr
1(∆t) versus ∆t from 0 to 20 min. (b’) The correlation

function Cω
a (∆t) of the log-volatility of the S&P500 at scale a = 4 (≃ 20 min); the

solid line corresponds to a fit of the data using eq. (5) with λ2 = 0.015 and T ≃ 3

months. (c’) same as in (b’) but for the randomly shuffled S&P500 signal. In (a’-c’)

the dashed lines delimit the 95% confidence interval.

Figure 2: The correlation function Cω
a (∆t) of the log-volatility of the S&P500 index

is plotted versus ln ∆t for various scales a corresponding to 30 (◦), 120 (×) and 480

(△) minutes. All the data collapse on a same curve which is almost linear up to an

integral time scale T ≃ 3 months (lnT = 8.6). According to eq. (5), from the slope

of this straight line, one gets an estimate of the parameter λ2 ≃ 0.015.

Figure 3: The mutual information Ia(∆t,∆a) (eq. (6)) of the variables ωa(t + ∆t)

and ωa+∆a(t) is represented in the (∆t,∆a) half-plane (5 min units); the time lag ∆t

spans the interval [−2048, 2048] while the scale lag ∆a ranges from ∆a = 0 (top) to

1024 (bottom). The amplitude of Ia(∆t,∆a) is coded from black for zero values to

red for maximum positive values (“heat” code), independently at each scale lag ∆a.

(a) S&P500 index; (b) its randomly shuffled increment version. Note that, for middle

scale lag values, the maxima (red spots) of the mutual information in (a) are 2 order

of magnitude larger than the corresponding maxima in (b).
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