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1.  INTRODUCTION

    It is widely agreed that, although daily and monthly financial asset returns are approximately

unpredictable, return volatility is highly predictable, a phenomenon with important implications for financial

economics and risk management (e.g., Bollerslev, Engle and Nelson 1994).  Of course, volatility is inherently

unobservable, and most of what we know about volatility has been learned either by fitting parametric

econometric models such as GARCH, by studying volatilities implied by options prices in conjunction with

specific option pricing models such as Black-Scholes, or by studying direct indicators of volatility such as

ex-post squared or absolute returns.  But all of those approaches, valuable as they are, have distinct

weaknesses.  For example, the existence of competing parametric volatility models with different properties

(e.g., GARCH versus stochastic volatility) suggests misspecification; after all, at most one of the models

could be correct, and surely, none is strictly correct.  Similarly, the well-known smiles and smirks in

volatilities implied by Black-Scholes prices for options written at different strikes provide evidence of

misspecification of the underlying model.  Finally, direct indicators, such as ex-post squared returns, are

contaminated by noise, and Andersen and Bollerslev (1998a) document that the variance of the noise is

typically very large relative to that  of the signal.

    In this paper we introduce a new and complementary volatility measure, termed realized volatility.  The

mechanics are simple – we compute daily realized volatility simply by summing intraday squared returns –

but the theory is deep:  by sampling intraday returns sufficiently frequently, the realized volatility can be

made arbitrarily close to the underlying integrated volatility,  the integral of instantaneous volatility over the

interval of interest, which is a natural volatility measure.  Hence for practical purposes we may treat

volatility as observed, which enables us to examine its properties directly, using much simpler techniques

than the complicated econometric models required when volatility is latent.

    Our analysis is in the spirit of, and extends, earlier contributions of French, Schwert and Stambaugh

(1987), Hsieh (1991), Schwert (1989, 1990) and, more recently, Taylor and Xu (1997).  We progress,
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however, in important directions.  First, we provide rigorous theoretical underpinnings for the volatility

measures for the general case of a special semimar tingale.   Second, our analysis is explicitly multivariate; we

develop and examine measures not only of return variance but also of covariance.  Finally, our empirical

work is based on a unique high-frequency dataset consisting of ten years of continuously-recorded 5-minute

returns on two major currencies.  The high-frequency returns allow us to examine daily volatilities, which

are of central concern in both academia and industry.  In particular,  the persistent volatility fluctuations of

interest in risk management, asset pricing,  portfolio allocation and forecasting are very much present at the

daily horizon.

    We proceed as follows.  In Section 2 we provide a formal and detailed justification for our realized

volatility and correlation measures as highly accurate estimates of the underlying quadratic var iation and

covariation, assuming only that returns evolve as special semimartingales.  Among other things, we relate

our realized volatilities and correlations to the conditional variances and correlations common in the

econometrics literature and to the notion of integrated variance common in the finance literature, and we

show that they remain valid in the presence of jumps.  Such background is needed for a serious

understanding of our volatility and correlation measures, and it is lacking in the earlier literature on which we

build.  In Section 3, we discuss the high-frequency Deutschemark - U.S. dollar (DM/$) and yen - U.S. dollar

(Yen/$) returns that provide the basis for our empirical analysis, and we also detail the construction of our

realized daily variances and covariances.  In Sections 4 and 5, we characterize the unconditional and

conditional distributions of the daily volatilities, respectively, including long-memory features.  In Section 6,

we explore issues related to temporal aggregation, with particular  focus on the scaling laws implied by long

memory, and we conclude in Section 7.

2.  VOLATILITY MEASUREMENT:  THEORY

In this section we develop the foundations of our volatility and covariance measures.  When markets are

open, trades may occur at any instant.  Therefore, returns as well as corresponding measures of volatility
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may, in principle, be obtained over arbitrarily short intervals.  We therefore model the underlying price

process in continuous time.  We first introduce the relevant concepts, after which we show how the volatility

measures may be approximated using high-frequency data, and we illustrate the concrete implications of our

concepts for standard Itô and mixed jump-diffusion processes.

2.1   Financial Returns as a Special Semimartingale

Arbitrage-free price processes of practical relevance for financial economics belong to the class of special

semimartigales.  They allow for a unique decomposition of returns into a local martingale and a predictable

finite variation process.  The former represents the “unpredictable” innovation, while the latter has a locally

deterministic drift that governs the instantaneous mean return, as discussed in Back (1991).

    Formally, for a positive integer T and t0[0,T], let ö t be the F-field reflecting the information at time t, so

that ö s f ö t for 0#s#t#T, and let P denote a probability measure on (S,P,ö), where S represents the

possible states of the world and ö  / öT is the set of events that are distinguishable at time T.  Also assume

that the information filtration (ö t )t0[0,T] satisfies the usual conditions of P-completeness and right continuity. 

The evolution of any arbitrage-free logarithmic price process, pk, and the associated continuously-

compounded return over [0,t] may then be represented as

pk(t) - pk(0)  =  Mk(t) + Ak(t) , (1)

where Mk(0) = Ak(0) = 0, Mk is a local mar tingale and Ak is a locally integrable and predictable process of

finite variation.  For full generality, we define pk to be inclusive of any cash receipts such as dividends and

coupons, but exclusive of required cash payouts associated with, for example, margin calls.

    The formulation (1) is very general and includes all specifications used in standard asset pricing theory.  It

includes, for example, Itô,  jump and mixed jump-diffusion processes,  and it does not require a Markov

assumption.  It  can also accommodate long memory, either in returns or in return volatility, so long as care is

taken to eliminate the possibility of arbitrage first noted by Meheswaran and Sims (1993), using, for

example, the methods of Rogers (1997) or Comte and Renault (1998).

Without loss of generality, each component in equation (1) may be assumed cadlag (right-continuous

with left limits).  The corresponding caglad (left-continuous with r ight limits) process is now pk-, defined as

pk-(t) / lims6t,s#t pk(s) for each t0[0,T], and the jumps are )pk / pk - pk-, or

)pk(t)  /  pk(t) - lims6t,s#t pk(s). (2)

By no arbitrage, the occurrence and size of jumps are unpredictable, so Mk conta ins the (compensated) jump

part of pk along with any infinite variation components,  while Ak has continuous paths.  We may further
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decompose Mk into a pair of local martingales, one with continuous and infinite variation paths, Mc, and

another of finite variation, )M, representing the compensated jump component so that Mk = Mk
c + )M. 

Equation (1) becomes

pk(t) - pk(0)  =  Mk
c(t) + )Mk(t) + Ak(t). (3)

Finally, we introduce some formal notation for the returns.  For concreteness, we normalize the unit interval

to be one trading day.  For m@T a positive integer, indicating the number of return observations obtained by

sampling prices m times per day, the return on asset k over [t-1/m , t] is

rk,(m)(t)   /    pk(t) - pk(t-1/m) ,   t = 1/m, 2/m, ... , T . (4)

Hence,  m>1 corresponds to high-frequency intraday returns,  while m<1 indicates interdaily returns.

2.2   Quadratic Variat ion and Covariation

Development of formal volatility measures requires a bit of notation.  For  any semimartingale X and

predictable integrand H, the stochastic integral  IH dX = {I0
t  H(s) dX(s)}t0[0,T] is well defined, and for two

semimartingales X and Y, the quadratic variation and covariation processes, [X,X] = ([X,X])t0[0,T]   and [X,Y]

= ([X,Y])t0[0,T], are given by

[X,X]  =  X2 - 2 I X- dX (5a)

[X,Y]  =  XY - I X- dY - I Y- dX, (5b)

where the notation X- means the process whose value at s is ; see Protter (1990, sections 2.4 -

2.6).   These processes are semimart ingales of finite variation on [0,T].  The following properties are

important for our interpretation of these quantities as volatility measures.  For an increasing sequence of

random par titions of [0,T], 0 = Jm,0 # Jm,1 # ..., so that supj$1(Jm,j+1 - Jm,j) 6 0 and supj$1 Jm,j 6 T for m 6 4

with probability one, we have for t v  J / min(t,J) and t 0 [0,T],

limm64 { X(0)Y(0) + Ej$1 [X(tvJm,j) - X(tvJm,j-1)] [Y(tvJm,j) - Y(tvJm,j-1)] }  6  [X,Y] t , (6)

where the convergence is uniform on [0,T] in probability.  In addition, we have that

[X,Y]0  =  X(0) Y(0) (7a)

)[X,Y]  =  )X )Y (7b)

[X,X] is an increasing process. (7c)

Finally, if X and Y are locally square integrable local martingales, the covariance of X and Y over [t-h,t] is
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given by the expected increment to the quadratic covariation,

Cov( X(t),Y(t)*ö t-h )  =  E([X,Y] t*ö t-h ) - [X,Y] t-h . (8)

2.3   Quadratic Variation as a Volatility Measure

Here we derive specific expressions for the quadratic variation and covariation of arbitrage-free asset prices,

and we discuss their use as volatility measures in light of the properties (6)-(8).  The additive decomposition

(3) and the fact that the predictable components satisfy [Ak,Aj] = [Ak,Mj] = 0, for all j and k, imply that

[pk,pj]t  =  [Mk,Mj]t  =  [Mk
c,M j

c]t  +  E0#s#t )Mk(s))Mj(s) . (9)

We convert this cumulative volatility measure into a corresponding time series of incremental contributions. 

Letting the integer h $ 1 denote the number of trading days over which the volatility measures are computed,

we define the time series of h-period quadratic variation and covariation, for t = h,2h, ... ,T, as

Qvark,h(t)  /  [pk,pk]t  -  [pk,pk]t-h (10a)

Qcovkj,h(t)  /  [pk,pj]t  -  [pk,pj]t-h . (10b)

Equation (9) implies that the quadrat ic variation and covariation for asset prices depend solely upon the

realization of the return innovations.  In particular, the conditional mean is of no import.  This renders these

quantities model-free:  regardless of the specific arbitrage-free price process, the quadratic variat ion and

covariation are obtained by cumulating the instantaneous squares and cross-products of returns, as indicated

by (6).  Moreover, the measures are well-defined even if the price paths conta in jumps, as implied by (7), and

the quadratic variation is increasing, as required of a cumulative volatility measure.

    Equation (8) implies that the h-period quadratic variation and covariation are intimately related to, but

distinct from, of the conditional return var iance and covariance.  Specifically,

Var( pk(t)*ö t-h )  =  E[Qvark,h(t)*ö t-h ] (11a)

Cov( pk(t),pj(t)*ö t-h )  =  E[Qcovkj,h(t)*ö t-h ]. (11b)

Hence, the conditional variance and covariance diverge from the quadratic variation and covariation,

respectively,  by a zero-mean error.  This is natural because the condit ional variance and covariance are ex

ante concepts, whereas the quadrat ic variation and covariation are ex post concepts.  One can think of the

quadratic variation and covariation as unbiased for the conditional variance and covariance, or conversely. 

Either way, the key insight is that, unlike the conditional variance and covariance, the quadrat ic variation and

covariation are in principle observable via high-frequency returns,  which facilitates the analysis and
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forecasting of volatility using standard statistical tools.   Shortly we will exploit this insight extensively.

2.4   Approximating the Quadratic Variat ion and Covariation

Equation (6) implies that we may approximate the quadratic variation and covariation directly from high-

frequency return data.  In practice, we fix an appropr iately high sampling frequency and cumulate the

relevant intraday return products over the horizon of interest.  Concretely, using the notation in equation (4)

for prices sampled m times per day, we define for t = h, 2h ... , T 

vark,h(t;m)  =  Ei=1,..,mh rk
2

,(m)(t-h+(i/m))       (12a)

covkj,h(t;m)  =  Ei=1,..,mh rk,(m)(t-h+(i/m)) rj ,(m)(t-h+(i/m)) . (12b)

We call the observed measures in (12) the time-t realized h-period volatility and covariance.  Note that  for

any fixed sampling frequency m, the realized volatility and covariance directly observable, in contrast  to their

underlying theoretical counterparts,  the quadratic variation and covariation processes.   For sufficiently large

m, however, the realized volatility and covariance provide arbitrarily good approximations to the quadratic

variation and covariation, because for all t = h, 2h, ..., T  we have

plimm64 vark,h(t;m)  =  Qvark,h(t) (13a)

plimm64 covkj,h(t;m)  =  Qcovkj,h(t) . (13b)

Note that the realized volatility measures vark,h(t;m) and covkj,h(t;m) converge as m64 to Qvark,h(t) and

Qcovkj,h(t), but generally not to the corresponding time t-h conditional return volatility or  covariance,

E[Qvark,h(t)*ö t-h ] and E[Qcovkj,h(t)*ö t-h ].  Standard volatility models focus on the latter, which require a

model for the return generating process.  Our realized volatility and covariance, in contrast, provide unbiased

estimators of the conditional variance and covariance, without taking a stand on any underlying model.

2.5   Integrated Volatility for Itô Processes

Much theoretical work assumes that logarithmic asset prices follow a univar iate diffusion.  Letting W be a

standard Wiener process, we write  dpk = :k dt + Fk dW, or more formally,

pk(t) - pk(t-1)  /  rk(t)  =  I t
t
-1 :k(s) ds  +  I t

t
-1 Fk(s) dW(s). (14)

For notational convenience, we suppress the subscript m or h when we consider variables measured over the

daily interval (h = 1).  For example, we have  rk(t) / rk,(1)(t)  and  Qcovkj,1(t) / Qcovkj(t).

    Our volatility measure is the associated quadratic variation process.  Standard calculat ions yield
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Qvark(t)  =  [pk,pk]t - [pk,pk]t-1  =  I t
t
-1 F

2(s) ds. (15)

The expression  I t
t
-1 F

2(s) ds  defines the so-called integrated volatility,  which is central to the option pricing

theory of Hull and White (1987) and further discussed in Andersen and Bollerslev (1998a) and Barndorff-

Nielsen and Shephard (1998).  They note that, under the pure diffusion assumption, rk(t) conditional on

Qvark(t) is normally distributed with variance I t
t
-1 F

2(s) ds.

    These results extend to the multivariate setting.  If W = ( W1, ... , Wd ) is a d-dimensional standard

Brownian motion and (ö t)t0[0,T] denotes its completed natural filtrat ion, then by martingale representation any

locally square integrable price process of the Itô form can be written as (Protter 1990, Theorem 4.42),

pk(t) - pk(0)  =  I0
t  :k(s) ds  +   Ei=

d
1 I0

t  Fk,i(s) dWi(s). (16)

This result is related to the fact that any continuous local martingale, H, can be represented as a  time change

of a Brownian motion, i.e., H(t) = B([H,H] t), a.s. , (Protter 1990, Theorem 2.41).  That flexibility allows this

particular specification to cover a large set of applications.  Specifically, we obtain

Qvark(t)  =  Ei=
d

1  I t
t
-1 Fk

2
,i(s) ds (17a)

Qcovkj(t)  =  Ei=
d

1  I t
t
-1 Fk,i(s) Fj,i(s) ds. (17b)

The Qvark(t) expression provides a natural multivariate concept of integrated volatility, and we may

correspondingly denote Qcovkj(t) the integrated covariance.  As a special case of this framework, one may

assign a few of the orthogonal Wiener components to be common factors and the remaining as pure

idiosyncratic error terms.  This produces a continuous-time analogue to the discrete-time factor volatility

models of Diebold and Nerlove (1989) and King, Sentana and Wadhwani (1994).

    Within this pure diffusion setting, one may obtain stronger results.  Foster and Nelson (1996) construct a

volatility filter based on a weighted average of past squared returns, which extracts the instantaneous

volatility perfectly in the continuous record limit.  There are two main differences between their approach

and ours.  From a theoretical perspective, their methods rely critically on the diffusion assumption and

extract instantaneous volatility, whereas ours are valid for the entire class of arbitrage-free models but

extract only cumulative volatility over  an interval.  Second, from an empirical perspective, various market

microstructure features limit the frequency at which returns can be productively sampled, which renders

infeasible a Foster-Nelson inspired strategy of extracting instantaneous volatility estimates for a large

number of time points within each trading day.  Consistent with this view, Foster and Nelson apply their

theoretical insights only to the study of volatility filters based on daily data.
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    The distribution of integrated volatility has also been studied by previous authors.  Notably, Gallant, Hsu

and Tauchen (1999) propose an intriguing reprojection method for direct estimation of the relevant

distribution given a specific parametric form for the underlying diffusion, while Chernov and Ghysels (2000)

apply similar techniques, exploiting options data as well.  Our high-frequency return methodology, in

contrast, is simpler and more generally applicable, requiring only the special semimartingale assumption.

2.6   Volatility Measures for Pure Jump and Mixed Jump-Diffusion Processes

Jump processes have par ticularly simple quadratic covariation measures.  The fundamental semimartingale

decomposition (1) reduces to a compensated jump component and a finite variation term,

pk(t)  =  pk(0)  +  Mk(t)  +  I0
t  :k(s) ds, (18)

where :k(t) denotes the instantaneous mean and the innovations in Mk(t) are pure jumps.  The specification

covers a variety of scenarios in which the jump process is generated by distinct components,

Mk(t)  =  Ei=
J

1 E0#s#t 6k,i(s) )Nk,i(s)  -  I0
t  :k(s) ds, (19)

where )Nk,i(t) is an indicator function for the occurrence of a jump in the ith component at time t, while the

(random) 6k,i(t) term determines the jump size.  From property (7)

Qcovkj(t)  =  Ei=
J

1 Et-1#s#t 6k(s) 6j(s) )Nk(s) )Nj(s). (20)

Andersen, Benzoni and Lund (2000), among others, argue the importance of including both time-varying

volatility and jumps when modeling speculative returns over short horizons, which can be accomplished by

combining Itô and jump processes into a general jump-diffusion

pk(t) - pk(0)  =  I0
t  :k(s) ds  +  I0

t  Fk(s) dW(s)  +  E0#s#t 6k(s) )Nk(s). (21)

The jump-diffusion allows for a predictable stochastic volatility process Fk(t) and a jump processes, 6k(t)

Nk(t) with a finite conditional mean.  The quadratic covariation follows directly from equations (9) and (10),

Qcovkj(t)  =  I t
t
-1 Fk(s) Fj(s) ds  +  Et-1#s#t 6k(s) 6j(s) )Nk(s) )Nj(s). (22)

It is straightforward to allow for a d-dimensional Brownian motion, resulting in modifications along the lines

of equations (13)-(15), and the formulation readily accommodates multiple jump components, as in (19)-

(20).

3.  VOLATILITY MEASUREMENT:  DATA

Our empirical analysis focuses on the bilateral DM/$ and Yen/$ spot exchange rates,  which are attractive
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candidates for examination as they represent the two main axes of the international financial system.  We

first discuss our choice of 5-minute returns to construct realized volatilities, and then explain how we handle

weekends and holidays.  Finally, we detail the actual construction of the volatility measures.

3.1   On the Use of 5-Minute Returns

In practice, the discreteness of actual securities prices can render continuous-time models poor

approximations at very high sampling frequencies.  Furthermore, tick-by-tick prices are generally only

available at unevenly-spaced time points, so the calculation of evenly-spaced high-frequency returns

necessarily relies on some form of interpolation among prices recorded around the endpoints of the given

sampling intervals.  It is well known that this non-synchronous trading or quotation effect may induce

negative autocorrelation in the interpolated return series.  Moreover, such market microstructure biases may

be exacerbated in the multivaria te context, if varying degrees of interpolation are employed in the calculation

of the different returns.

    Hence a tension arises in the calculation of realized volatility.  On the one hand, the theory of quadratic

variation of special semimartingales suggests the desirability of sampling at very high frequencies, striving to

match the ideal of continuously-observed frictionless prices.  On the other hand, the reality of market

microstructure suggests not sampling too frequently.  Hence a good choice of sampling frequency must

balance two competing factors; ultimately it is an empirical issue that hinges on market liquidity. 

Fortunately, the markets studied in this paper are among the most active and liquid in the world, permitting

high-frequency sampling without contamination by microstructure effects.  We use a sampling frequency of

288 times per day (m=288, or 5-minute returns), which is high enough such that  our daily realized

volatilities are largely free of measurement error (see the calculations in Andersen and Bollerslev, 1998a), yet

low enough such that microstructure biases are not a major concern.

3.2   Construction of 5-Minute DM/$ and Yen/$ Returns

The two raw 5-minute DM/$ and Yen/$ return series were obtained from Olsen and Associates.  The full

sample consists of 5-minute returns covering December 1, 1986, through November 30, 1996, or 3,653 days,

for a total of 3,653A288 = 1,052,064 high-frequency return observations.   As in Müller et al. (1990) and

Dacorogna, Müller, Nagler, Olsen and Pictet (1993), the construction of the returns utilizes the interbank FX

quotes that appeared on Reuters’ FXFX page during the sample period.  Each quote consists of a bid and an

ask price together with a “time stamp” to the nearest even second.  After filtering the data for outliers and

other anomalies,  the price at each 5-minute mark is obtained by linear ly interpolating from the average of the
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log bid and the log ask for the two closest ticks.  The continuously-compounded returns are then simply the

change in these 5-minute average log bid and ask prices.  Goodhart, Ito and Payne (1996) and Danielsson

and Payne (1999) find that the basic characteristics of 5-minute FX returns constructed from quotes closely

match those calculated from transactions prices, which are only available on a very limited basis.

    It is well known that the activity in the foreign exchange market slows decidedly over the weekend and

certain holiday periods; see, e.g., Andersen and Bollerslev (1998b) and Müller et al. (1990).  In order not to

confound the distributional characteristics of the various volatility measures by these largely deterministic

calendar effects, we explicitly excluded a number of days from the raw 5-minute return series.  Whenever we

did so, we always cut from 21:05 GMT the night before to 21:00 GMT that evening, to keep the daily

periodicity intact.  This definition of a “day” is motivated by the daily ebb and flow in the FX activity

patterns documented by Bollerslev and Domowitz (1993).  In addition to the thin trading period from Friday

21:05 GMT until Sunday 21:00 GMT, we removed several fixed holidays, including Christmas (December

24 - 26),  New Year’s (December 31 - January 2),  and July Fourth.  We also cut the moving holidays of

Good Friday, Easter Monday,  Memorial Day, July Fourth (when it falls officially on July 3), and Labor

Day, as well as Thanksgiving and the day after.  Although our cuts do not capture all the holiday market

slowdowns, they do succeed in eliminating the most important such daily calendar effects.

    Finally, we deleted some returns contaminated by brief lapses in the Reuters data feed.  This problem

manifests itself in long sequences of zero or constant 5-minute returns in places where the missing quotes

have been interpolated.  To remedy this, we simply removed the days containing the fifteen longest DM/$

zero runs, the fifteen longest DM/$ constant runs, the fifteen longest Yen/$ zero runs, and the fifteen longest

Yen/$ constant runs.  Because of the overlap among the four different sets of days defined by these criteria,

we actually removed only 51 days.  All in all, we were left with 2,449 complete days, or 2,449A288 =

705,312 5-minute return observations, for the construction of our daily realized volatilities and covariances.

3.3   Construction of DM/$ and Yen/$ Daily Realized Volatilities

We denote the time series of 5-minute DM/$ and Yen/$ returns by rD,(288)(t) and ry,(288)(t), respectively, where

t = 1/288, 2/288, ..., 2,449.  We then form the corresponding 5-minute squared return and cross-product

series (rD,(288)(t))
2, (ry,(288)(t))

2, and rD,(288)(t) A ry,(288)(t).   The statistical properties of the squared return series

closely resemble those found by Andersen and Bollerslev (1997a,b) with a much shorter one-year sample of

5-minute DM/$ returns.  Interestingly, the basic properties of the 5-minute cross-product series, r(D,(288)(t) A

ry,(288)(t) , are similar.  In particular, all three series are highly persistent and display strong intraday calendar

effects, the shape of which is driven by the opening and closing of the different financial markets around the
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globe dur ing the 24-hour trading cycle.

    Now, following (12), we construct the realized h-period variances and covariances by summing the

corresponding 5-minute observations across the h-day horizon.  For notational simplicity, we suppress the

dependence on the fixed sampling frequency (m = 288), and define vardt,h / varD,h(t;288), varyt,h /

vary,h(t;288), and covt,h / covDy,h(t;288).  Furthermore, for daily measures (h = 1), we suppress the subscript

h, and simply write vardt, varyt, and covt.  Concretely, we define for t =
 1, 2, ..., [T/h],

vardt,h  /  Ej=1,..,288Ah  ( rD,(288)(h A(t-1) + j/288) )2 (23a)

varyt,h / Ej=1,..,288Ah  ( ry,(288) (h A(t-1) + j/288) )2 (23b)

covt,h  /  Ej=1,..,288Ah   rD,(288)(h A(t-1) + j/288)   A ry,(288) (h A(t-1) + j/288). (23c)

In addition, we examine several alternative, but related, measures of realized volatility derived from those in

(23), including realized standard deviations, stddt,h / vardt,h
1/2 and stdyt,h / varyt,h

1/2, realized logarithmic

standard deviations, lstddt,h / ½Alog(vardt,h ) and lstdyt,h / ½Alog(varyt,h ), and realized correlations, corrt,h /

covt,h /(stddt,hAstdyt,h ).  In Sections 4 and 5 we characterize the unconditional and conditional distribution of

the daily realized volatility measures, while Section 6 details our analysis of the corresponding temporally

aggregated measures (h > 1).

4.  THE UNCONDITIONAL DISTRIBUTION OF DAILY REALIZED FX VOLATILITY

The unconditional distribution of volatility captures important aspects of the return process, with

implications for risk management, asset pricing, and portfolio allocation.  Here we provide a detailed

characterization.

4.1   Univariate Unconditional Distributions

The first two columns of the first panel of Table 1 provide a standard menu of moments (mean, variance,

skewness, and kurtosis) summarizing the unconditional distributions of the daily realized volatility series,

vardt and varyt , and the top panel of Figure 1 displays kernel density estimates of the unconditional

distributions.  It  is evident that the distributions are very similar and extremely right skewed.  Evidently,

although the realized daily volatilit ies are constructed by summing 288 squared 5-minute returns, the

pronounced heteroskedasticity in intraday returns renders the normal distribution a poor approximation.

    The standard deviation of returns is measured on the same scale as the returns, and thus provides a more

readily interpretable measure of volatility.  We present summary statistics and density estimates for the two

daily realized standard deviations, stddt and stdyt , in columns three and four of the first panel of Table 1 and

the second panel of Figure 1.  The mean daily realized standard deviation is about 68 basis points, and
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although the right skewness of the distributions has been reduced, the realized standard deviations clearly

remain non-normally distributed. 

    Interestingly, the distributions of the two daily realized logarithmic standard deviations, lstddt and lstdyt ,

in columns five and six of the first panel of Table 1 and in the third panel of Figure 1, appear symmetric,

with skewness coefficients near zero.  Moreover, normality is a much better approximation for these

measures than for the realized volatilities or standard deviations, as the kurtosis coefficients are near three. 

This accords with the findings for monthly volatility aggregates of daily equity index returns in French,

Schwert and Stambaugh (1987), as well as evidence from Clark (1973) and Taylor (1986).

    Finally, we characterize the distribution of the daily realized covariances and correlations, covt and corrt ,

in the last columns of the first panel of Table 1 and the bottom panel of Figure 1.  The basic characteristics

of the unconditional distribution of the daily realized covariance is  similar to that of the daily realized

volatilities -- it is  extremely right skewed and leptokurtic.  In contrast, the distribution of the realized

correlation is approximately normal.  The mean realized correlation is positive (0.43), as expected, because

both series respond to U.S.  macroeconomic fundamentals.  The standard deviation of the realized correlation

(0.17) indicates significant intertemporal variation in the correlation, which may be important for short-term

portfolio allocation and hedging decisions.

4.2   Multivaria te Unconditional Distributions

The univariate distr ibutions characterized above do not address relationships that may exist among the

different measures of variation and covariation.  Key issues relevant in financial economic applications

include, for example, whether and how lstddt, lstdyt and corrt move together.  Such questions are difficult to

answer  using conventional volatility models, but they are relatively easy to address using our realized

volatilities and correlations.

    The sample correlations in the first panel of Table 2, along with the lstddt-lstdyt scatterplot in the top

panel of Figure 2, clearly indicate a strong positive association between the two exchange rate volatilities. 

Thus, not only do the two exchange rates tend to move together, as indicated by the positive means for covt

and corrt , but so too do their volatilities.  This suggests factor structure, as in Diebold and Nerlove (1989)

and Bollerslev and Engle (1993).

    The correlations in the first panel of Table 2 and the corrt-lstddt and corrt-lstdyt scatterplots in the second

and third panels of Figure 2 also indicate positive association between correlation and volatility.  Whereas

some nonlinearity may be operative in the corrt-lstddt relationship, with a flattened response for both very

low and very high lstddt values, the corrt-lstdyt relationship appears approximately linear.  To quantify
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further this volatility effect in correlation, we show in the top panel of Figure 3 kernel density est imates of

corrt when both lstddt and lstdyt are less than -0.46 (their median value) and when both lstddt and lstdyt are

greater than -0.46.  Similarly, we show in the bottom panel of Figure 3 the estimated corrt densities

conditional on the more extreme volatility situation in which both lstddt and lstdyt are less than -0.87 (their

tenth percentile) and when both lstddt and lstdyt are greater than 0.00 (their ninetieth percentile).  It is clear

that the distribution of realized correlation shifts rightward when volatility increases.  A similar correlation

effect in volatility has been documented recently for international equity returns by Solnik, Boucrelle and Le

Fur (1996).  Of course, given that the high-frequency returns are positively correlated, some such effect is to

be expected, as argued by Ronn (1998), Boyer, Gibson and Loretan (1999), and Forbes and Rigobon (1999). 

However, the magnitude of the effect nonetheless appears noteworthy.

    To summarize, we have documented a substantial amount of variation in volatilities and correlation, as

well as important contemporaneous dependence measures.  We new turn to dynamics and dependence,

characterizing the conditional, as opposed to unconditional,  distribution of realized volat ility and correlation.

5.  THE CONDITIONAL DISTRIBUTION OF DAILY REALIZED FX VOLATILITY

The value of financial derivatives such as options is closely linked to the expected volatility of the underlying

asset over the time until expiration.  Improved volatility forecasts should therefore yield more accurate

derivative prices.  The conditional dependence in volatility forms the basis for such forecasts.  That

dependence is most easily identified in the daily realized correlations and logarithmic standard deviations,

which we have shown to be approximately uncondit ionally normally distributed.  In order to conserve space,

we focus our discussion on those three series.

    It is instructive first to consider the time series plots of the realized volatilities and correlations in Figure 4. 

The wide fluctuations and strong persistence evident in the lstddt and lstdyt series are,  of course,

manifestations of the well documented return volatility clustering.  It is therefore striking that the time series

plot for corrt shows equally pronounced persistence, with readily identifiable periods of high and low

correlation.

    The visual impression of strong persistence in the volatility measures is confirmed by the highly significant

Ljung-Box tests reported in the first panel of Table 3.  (The 0.001 crit ical value is 45.3.)  The correlograms

of lstddt , lstdyt and corrt in Figure 5 further  underscore the point.  The autocorrelations of the realized

logarithmic standard deviations begin around 0.6 and decay very slowly to about 0.1 at a displacement of

100 days.  Those of the realized correlations decay even more slowly, reaching just 0.31 at the 100-day

displacement.  Similar results based on long series of daily absolute or squared returns from other markets
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have previously been obtained by a number of authors, including Ding, Granger and Engle (1993).  The slow

decay in Figure 5 is particularly noteworthy, however, in that the two realized daily volatility series span

“only” ten years.

    The findings of slow autocorrelat ion decay may seem to indicate the presence of a unit root, as in the

integrated GARCH model of Engle and Bollerslev (1986).  However,  Dickey-Fuller tests with ten

augmentation lags soundly reject this hypothesis for all of the volatility series.  (The test  statistics range from

-9.26 to -5.59, and the 0.01 and 0.05 critical values are -2.86 and -3.43.)  Although unit roots may be

formally rejected, the very slow autocorrelat ion decay coupled with the negative signs and slow decay of the

estimated augmentation lag coefficients in the Dickey-Fuller regressions suggest that long-memory of a non

unit-root variety may be present.  Hence, we now turn to an investigation of fractional integration in the daily

realized volatilities.

    As noted by Granger and Joyeux (1980), the slow hyperbolic decay of the long-lag autocorrelations, or

equivalently the log-linear explosion of the low-frequency spectrum, are distinguishing features of a

covariance stationary fractionally integrated, or I(d), process with 0 < d <½.  The low-frequency spectral

behavior also forms the basis for the log-periodogram regression estimation procedure proposed by Geweke

and Porter-Hudak (1983) and refined by Robinson (1994, 1995),  Hurvich and Beltrao (1994) and Hurvich,

Deo and Brodsky (1998).  In particular, let I(Tj ) denote the sample periodogram at the jth Fourier frequency,

Tj = 2Bj/T, j = 1, 2, ..., [T/2].  The log-periodogram estimator of d is then based on the least squares

regression,

log[ I(Tj ) ]  =  $0  +  $1 A log(Tj )  +  uj , (24)

where j = 1, 2, ..., n, and .  The least squares estimator of $1, and hence , is asymptotically

normal and the corresponding standard error, BA(24An)-½, depends only on the number of periodogram

ordinates used.  While the earlier proofs for consistency and asymptotic normality of the log-periodogram

regression estimator rely on normality, Deo and Hurvich (1998) and Robinson and Henry (1999) show that

these properties extend to non-Gaussian, possibly heteroskedastic, time series as well.  Of course, the actual

value of the estimate of d depends upon the choice of n.  Although the formula for the theoretical standard

error suggests choosing a large n in order to obta in a small standard error, doing so produces bias in the

estimator, because the relationship underlying (24) in general holds only for frequencies close to zero. 

Following Taqqu and Teverovsky (1996), we therefore graphed and examined $d as a function of n, looking

for a flat region in which we are plagued neither by high variance (n too small) nor high bias (n too large). 

Our subsequent choice of n = [ T
4/5 ], or n = 514, is consistent with the optimal rate of O(T4/5) established by
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Hurvich, Deo and Brodsky (1998).

    The estimates of d are given in the first panel of Table 3.  The estimates are highly statistically significant

for all eight volatility series, and all are fairly close to the “typical value” of 0.4.  These estimates for d are

also in line with the estimates based on longer time series of daily absolute and squared returns from other

markets reported by Granger, Ding and Spear (1997), and the findings based on a much shorter one-year

sample of intraday DM/$ returns reported in Andersen and Bollerslev (1997b).  This suggests that the

continuous-time models used in much of theoretical finance, where volatility is assumed to follow an

Ornstein-Uhlenbeck (OU) type process, are misspecified.  Nonetheless, our results are constructive, in that

they also indicate that parsimonious long-memory models should be able to accommodate the long-lag

autoregressive effects.

    Having characterized the distributions of the daily realized volatilities and correlations, we now turn to

longer horizons.

6.  TEMPORAL AGGREGATION AND SCALING LAWS

The analysis in the preceding sections focused on the distributional properties of daily realized volatility

measures.  However, many practical financial problems invar iably involve longer horizons.  Here we

examine the distributional aspects of the corresponding multi-day realized var iances and correlations.  As

before, we begin with an analysis of unconditional distr ibutions,  followed by an analysis of dynamics and

dependence, including a detailed examination of long-memory as it relates to temporal aggregation.

6.1   Univariate and Multivaria te Unconditional Distributions

In the lower  panels of Table 1 we summarize the univariate unconditional distributions of realized volatilities

and correlations at weekly, bi-weekly, tri-weekly and monthly horizons (h = 5, 10, 15, and 20, respectively),

implying samples of length 489, 244, 163 and 122.  Consistent with the notion of efficient capital markets

and serially uncorrelated returns, the means of vardt,h , varyt,h , and covt,h grow at the rate h, while the mean of

the realized correlation, corrt,h , is largely invariant to the level of temporal aggregation.  In addit ion, the

growth of the variance of the realized variances and covariance adheres closely to h2d+1, where d denotes the

order of integration of the series,  a phenomenon we discuss at length subsequently.  We also note that, even

at the monthly level, the unconditional distributions of vardt,h , varyt,h , and covt,h remain leptokurtic and

highly right-skewed.  The basic characteristics of sttdt,h and stdyt,h are similar, with the means increasing at

the rate h1/2.  The unconditional variances of lstddt,h and lstdyt,h, however, decrease with h, but again at a rate

linked to the fractional integration parameter, as we document below.
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    Next, turning to the multivariate unconditional distr ibutions,  we display in the lower panels of Table 2 the

correlation matrices of all volatility measures for h = 5, 10, 15, and 20.  Although the correlation between the

different measures drops slightly under temporal aggregation, the positive association between the

volatilities,  so apparent at the one-day return horizon, is largely preserved under temporal aggregation.  For

instance, the correlation between lstddt,h and lstdyt,h ranges from a high of 0.604 at the daily horizon to a low

of 0.533 at the monthly horizon.  Meanwhile, the volatility effect in correlation is somewhat reduced by

temporal aggregation; the sample correlation between lstddt,1 and corrt,1 equals 0.389, whereas the one

between lstddt,20 and corrt,20 is 0.245.  Similar ly, the correlation between lstdyt,h and corrt,h drops from 0.294

for h = 1 to 0.115 for h = 20.  Thus, while the long-horizon correlations remain positively related to the level

of volatility, the lower values suggest that the benefits to international diversification may be the greatest

over longer investment horizons.

6.2   The Conditional Distribution:  Dynamic Dependence, Fractional Integration and Scaling

Andersen, Bollerslev and Lange (1999) show that,  given the estimates obtained at the daily level, the

integrated volatility should,  in theory, remain strongly serially correlated and highly predictable, even at the

monthly level.  The Ljung-Box statistics for the realized volatilities in the lower panels of Table 3 provide

strong empirical backing.  Even at the monthly level, or h = 20, with only 122 observations, all of the test

statistics are highly significant.  This contrasts with previous evidence that finds little evidence of volatility

clustering for monthly returns, such as Baillie and Bollerslev (1989) and Christoffersen and Diebold (2000). 

However, the methods and/or data used in the earlier studies may produce tests with low power.

    The estimates of d reported in Section 4 suggest that the realized daily volatilities are fract ionally

integrated.  The class of fractionally integrated models is self-similar, so that the degree of fractional

integration is invariant to the sampling frequency; see, e.g.,  Beran (1994).  This strong prediction is borne

out by the estimates for d for the different levels of temporal aggregation, reported in the lower panels of

Table 3.  All of the estimates are within two asymptotic standard errors of the average estimate of 0.391

obtained for the daily series, and all are highly statistically significantly different from both zero and unity.

    Another implication of self-similarity concerns the variance of partial sums.  In particular , let

[ xt ]h  /  Ej=1,..,h  xhA(t-1)+ j , (25)

denote the h-fold partial sum process for xt , where t =
 1, 2, ..., [T/h].  Then, as discussed by, Beran (1994)

and Diebold and Lindner (1996), among others, if xt is fractionally integrated, the par tial sums obey a scaling

law,
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Var( [ xt ]h )  =  cAh2d+1. (26)

    Of course, by definition [ vardt ]h / vardt,h and [ varyt ]h / varyt,h , so the variance of the realized

volatilities should grow at rate h2d+1.  This implication is remarkably consistent with the values for  the

unconditional sample (co)variances reported in Table 1 and a value of d around 0.35-0.40.  Similar scaling

laws for power transforms of absolute FX returns have been reported in a ser ies of papers initiated by Müller

et al. (1990).

    The striking accuracy of our scaling laws carries over to the partial sums of the alternative volatility

series.  The left panel of Figure 6 plots the logar ithm of the sample variances of the partial sums of the

realized logarithmic standard deviations versus the log of the aggregation level; i.e., log( Var([ lstddt]h )) and

log(Var([ lstdyt ]h )) against log(h) for h =
 1, 2, ..., 30.  The linear fits implied by (26) are validated.  Each of

the slopes are very close to the theoretical value of 2d+1 implied by the log-periodogram estimates for d,

further solidifying the notion of long-memory volatility dependence.  The estimated slopes in the top and

bottom panels are 1.780 and 1.728, respectively, corresponding to values of d of 0.390 and 0.364.

    Because a non-linear function of a sum is not the sum of the non-linear function,  it is not clear whether

lstddt,h and lstdyt,h will follow similar scaling laws.  The estimates of d reported in Table 3 suggest that they

should.  The corresponding plots for the logar ithm of the h-day logarithmic standard deviations

log(Var(lstddt,h)) and log(Var( lstdyt,h )) against log(h), for h =
 1, 2, ..., 30, in the right panel of Figure 6, lend

empirical support to this conjecture.  Interestingly, however, the lines are downward sloped.

    To understand why these slopes should be negative, assume that the returns are seria lly uncorrelated.  The

variance of the temporally aggregated return should then be proportional to the length of the return interval,

that is, E( vart,h ) = bAh, where vart,h refers to the temporally aggregated variance as defined above.  Also, by

the scaling law (26), Var( vart,h ) = cAh2d+1.  Furthermore, assume that the corresponding temporally

aggregated logarithmic standard deviations, lstdt,h / ½Alog( vart,h ), are normally distributed at all aggregation

horizons h with mean :h and variance Fh
2.  Of course, these assumptions accord closely with the actual

empirical distributions summarized in Table 1.  It then follows from the properties of the lognormal

distribution that

E( vart,h )  =  exp( 2:h + 2Fh
2

 )  =  bAh (27a)

Var( vart,h )  =  exp( 4 :h ) exp( 4 Fh
2

 ) [ exp( 4 Fh
2

 ) - 1 ]  =  c A h
2d+1, (27b)

and solving for the variance of the log standard deviation yields

Var( lstdt,h )  /  Fh
2  =  log( cAb

-2Ah2d-1  + 1 ). (28)
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With 2d-1 slightly negative, this explains why the sample variances of lstddt,h and lstdyt,h reported in Table 1

are decreasing with the level of temporal aggregation, h.  Furthermore, by a log-linear approximation,

log[ Var( lstdt,h ) ]  .  a  +  (2d-1) A log( h ), (29)

which explains the apparent scaling law behind the two plots in the right panel of Figure 6, and the negative

slopes of approximately 2d-1.  The slopes in the top and bottom panels are -0.222 and -0.270, respectively,

and the implied d values of 0.389 and 0.365 are almost identical to the values implied by the scaling law (26)

and the two left panels of Figure 6.

7.  SUMMARY AND CONCLUDING REMARKS

We first strengthened the theoretical basis for measuring and analyzing time series of realized volatilities

constructed from high-frequency intraday returns, and then we put the theory to work, examining a unique

data set consisting of ten years of 5-minute DM/$ and Yen/$ returns.  We find that  the distributions of

realized daily variances, standard deviations and covariances are skewed to the right and leptokurtic, but that

the distributions of logarithmic standard deviations and correlations are approximately Gaussian.  Volatility

movements, moreover, are highly correlated across the two exchange rates.  We also find that the correlation

between the exchange rates (as opposed to the correlation between their volatilities) increases with volatility. 

Finally, we confirm the wealth of existing evidence of strong volatility clustering effects in daily returns. 

However, in contrast to earlier work, which often indicates that volatility persistence decreases quickly with

the horizon, we find that even monthly realized volatilities remain highly persistent.   Nonetheless, realized

volatilities do not have unit roots; instead, they appear fractionally integrated and therefore very slowly

mean-reverting.  This finding is strengthened by our analysis of temporally aggregated volatility series,

whose properties adhere closely to the scaling laws implied by the structure of fractional integration.

    A key conceptual distinct ion between this paper and the earlier work on which we build -- Andersen and

Bollerslev (1998a) in particular -- is the recognition that realized volatility is usefully viewed as the object of

intrinsic interest, rather than simply a post-modeling device to be used for evaluating parametric conditional

variance models such as GARCH.  As such, it is of interest to examine and model realized volatility directly. 

This paper is a first step in that direction, providing a nonparametric characterization of both the

unconditional and conditional distr ibutions of bivariate realized exchange rate volatility.

    It will be of interest in future work to fit parametric models directly to realized volatility, and in turn to use

them for forecasting in specific financial contexts.  In particular, our findings suggest that a multivariate

linear Gaussian long-memory model is appropriate for daily realized logarithmic standard deviations and
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correlations.  Such a model could result in important improvements in the accuracy of volatility and

correlation forecasts and related value-at-risk type calculations.  This idea is pursued in Andersen,

Bollerslev, Diebold and Labys (2000).
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Table 1.  Statistics Summarizing Unconditional Distributions of Realized DM/$ and Yen/$ Volatilities

vardt,h varyt,h stddt,h stdyt,h lstddt,h lstdyt,h covt,h corrt,h

 Daily, h=1
Mean 0.529 0.538 0.679 0.684 -0.449 -0.443 0.243 0.435
Variance 0.234 0.272 0.067 0.070 0.120 0.123 0.073 0.028
Skewness 3.711 5.576 1.681 1.867 0.345 0.264 3.784 -0.203
Kurtosis 24.09 66.75 7.781 10.38 3.263 3.525 25.25 2.722

 Weekly, h=5
Mean 2.646 2.692 1.555 1.566 0.399 0.405 1.217 0.449
Variance 3.292 3.690 0.228 0.240 0.084 0.083 0.957 0.022
Skewness 2.628 2.769 1.252 1.410 0.215 0.382 2.284 -0.176
Kurtosis 14.20 14.71 5.696 6.110 3.226 3.290 10.02 2.464

 Bi-Weekly, h=10
Mean 5.297 5.386 2.216 2.233 0.759 0.767 2.437 0.453
Variance 10.44 11.74 0.389 0.403 0.072 0.070 2.939 0.019
Skewness 1.968 2.462 1.063 1.291 0.232 0.380 1.904 -0.147
Kurtosis 7.939 11.98 4.500 5.602 3.032 3.225 7.849 2.243

 Tri-Weekly, h=15
Mean 7.937 8.075 2.717 2.744 0.964 0.977 3.651 0.455
Variance 22.33 22.77 0.560 0.546 0.069 0.064 5.857 0.018
Skewness 2.046 2.043 1.033 1.177 0.208 0.400 1.633 -0.132
Kurtosis 9.408 8.322 4.621 4.756 2.999 3.123 6.139 2.247

 Monthly, h=20
Mean 10.59 10.77 3.151 3.179 1.116 1.127 4.874 0.458
Variance 34.09 36.00 0.671 0.671 0.062 0.059 8.975 0.017
Skewness 1.561 1.750 0.906 1.078 0.295 0.452 1.369 -0.196
Kurtosis 5.768 6.528 3.632 4.069 2.686 2.898 4.436 2.196



Table 2.  Correlation Matrices of Realized DM/$ and Yen/$ Volatilities 

varyt,h stddt,h stdyt,h lstddt,h lstdyt,h covt,h corrt,h

Daily, h=1
vardt 0.539 0.961 0.552 0.860 0.512 0.806 0.341
varyt 1.000 0.546 0.945 0.514 0.825 0.757 0.234

 stddt   - 1.000 0.592 0.965 0.578 0.793 0.383
 stdyt   -   - 1.000 0.589 0.959 0.760 0.281
 lstddt   -   -   - 1.000 0.604 0.720 0.389
 lstdyt   -   -   -   - 1.000 0.684 0.294
 covt   -   -   -   -   - 1.000 0.590

Weekly, h=5
vardt,h 0.494 0.975 0.507 0.907 0.495 0.787 0.311
varyt,h 1.000 0.519 0.975 0.514 0.908 0.761 0.197
stddt,h   - 1.000 0.545 0.977 0.545 0.789 0.334
stdyt,h

  -   - 1.000 0.555 0.977 0.757 0.220
lstddt,h

  -   -   - 1.000 0.571 0.748 0.336
lstdyt,h

  -   -   -   -  1.000 0.718 0.235
covt,h   -   -   -   -   - 1.000 0.617

Bi-weekly, h=10
vardt,h 0.500 0.983 0.503 0.931 0.490 0.776 0.274
varyt,h 1.000 0.516 0.980 0.514 0.923 0.772 0.170

 stddt,h   - 1.000 0.533 0.982 0.531 0.780 0.293
 stdyt,h   -   - 1.000 0.544 0.981 0.762 0.188
 lstddt,h    -   -   - 1.000 0.556 0.753 0.300

lstdyt,h      -   -   -   - 1.000 0.726 0.202
covt,h

  -   -   -   -   - 1.000 0.609

Tri-weekly, h=15
vardt,h 0.498 0.982 0.505 0.931 0.497 0.775 0.255
varyt,h

1.000 0.522 0.984 0.525 0.939 0.763 0.146
stddt,h

  - 1.000 0.538 0.983 0.539 0.787 0.277
stdyt,h

  -   - 1.000 0.551 0.984 0.756 0.155
lstddt,h

  -   -   - 1.000 0.564 0.765 0.285
lstdyt,h

  -   -   -   - 1.000 0.727 0.162
covt,h

  -   -   -   -   - 1.000 0.605

Monthly, h=20
vardt,h 0.479 0.988 0.484 0.952 0.479 0.764 0.227
varyt,h 1.000 0.501 0.988 0.509 0.953 0.747 0.109
stddt,h    - 1.000 0.512 0.988 0.511 0.775 0.241
stdyt,h    -   - 1.000 0.527 0.988 0.741 0.112
lstddt,h      -   -   - 1.000 0.533 0.763 0.245
lstdyt,h     -   -   -   - 1.000 0.719 0.115

 covt,h   -   -   -   -   - 1.000 0.596



Table 3.  Dynamic Dependence Measures for Realized DM/$ and Yen/$ Volatilities

vardt,h varyt,h stddt,h stdyt,h lstddt,h lstdyt,h covt,h corrt,h

Daily, h=1
LB 4539.3 3257.2 7213.7 5664.7 9220.7 6814.1 2855.2 12197

  0.356 0.339 0.381 0.428 0.420 0.455 0.334 0.413

Weekly, h=5
LB 592.7 493.9 786.2 609.6 930.0 636.3 426.1 2743.3

 0.457 0.429 0.446 0.473 0.485 0.496 0.368 0.519

Bi-weekly, h=10
LB 221.2 181.0 267.9 206.7 305.3 203.8 155.4 1155.6

 0.511 0.490 0.470 0.501 0.515 0.507 0.436 0.494

Tri-weekly, h=15
LB 100.7 108.0 122.6 117.3 138.3 112.5 101.6 647.0

 0.400 0.426 0.384 0.440 0.421 0.440 0.319 0.600

Monthly, h=20
LB 71.8 69.9 83.1 70.9 94.5 66.0 78.5 427.3

0.455 0.488 0.440 0.509 0.496 0.479 0.439 0.630



Figure 1.  Distributions of Daily Realized Exchange Rate Volatilities and Correlations



Figure 2.  Bivariate Scatterplots of Realized Volatilities and Correlations



Figure 3.  Distributions of Realized Correlat ions: Low Volatility vs. High Volatility Days



Figure 4.  Time Series of Daily Realized Volatilities and Correlation



Figure 5.  Sample Autocorrelations of Realized Volatilities and Correlation

Figure 6.  Scaling Laws Under Temporal Aggregation


