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high correlation between correlation and volatilities, pronounced and persistent dynamicsin volatilities and
correlations, evidence of long-memory dynamics involatilities and correlations, and remarkably precise
scaling laws under temporal aggregation.
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1. INTRODUCTION

It iswidely agreed that, although daily and monthly financial asset returns are approximately
unpredictable, return volatility is highly predictable a phenomenon with important implicatiors for financial
economics and risk management (e.g., Bollerdev, Engle and Nelson 1994). Of course, volatility isinherently
unobservable, and most of what we know about volatility has been learned either by fitting parametric
ecoromeric modds such as GARCH, by studying volatilities implied by gptions prices in conjunctionwith
spedficoption pricing modelssuch asBlack-Schdes, or by studying direct indicators of vdatility such as
ex-post squared or absolute returns. But all of those approaches, vauable as they are, have distinct
weaknesses. For example, the existence of competing parametric volatility model s with di fferent properties
(e.g., GARCH vesus stochastic vdatility) suggests misspecification; after all, at most one of the models
could becorrect, and surely, none is strictly correct. Similarly, the well-known smiles and smirksin
voldtilitiesimplied by Black-Scholes prices for opti ons written at different strikes provide evidence of
misspecification o theunderlying modd. Finally, direct indicators, such as ex-pod squared returns, are
contaminated by noise, and Andersen and Bollerslev (1998a) document that the variance of the noiseis
typicdly very large relative to that of the signal.

In this paper we introduce a new and complementary volatility measure, termed redlized volatility. The
mechanics are simple— we campute deily realized volatility simply by summingintraday sguared returns —
but the theory is deep: by samplingintraday returns sufficiently frequently, therealized volatility can be
made arbitrarily close to the underlying integrated volatility, the integral of instantaneous volatility over the
interval of interest, whichis a natural vdatility measure Hence for practical purposes we may treat
volatility as observed, which enables usto examineits properties directly, usng much smpler techniques
than the complicated economeric modds required when vdatility is latent.

Our analysisisin the spirit of, and extends, earlier contributions of French, Schwert and Stambaugh

(1987), Hsieh (1991), Schwert (1989, 1990) and, more recently, Taylor and Xu (1997). Weprogress,



howeve, in important drections. First, we provide rigorous theoretical underpinnings for the vdatility
measur es for the genera case of a special semimartingale. Second, our analysisis explicitly multivariate; we
devel g and examinemeasures not oy of return variance but also of covariance. Finally, our empirical
work is based on a unique high-frequency datase condsting of ten years of continuously-recarded 5-minute
returns on two mgjor currencies. The high-frequency returns all ow usto examine daily volatilities, which
are of central concern in both academia and industry. In particular, the persistent volatility fluctuations of
interest in risk management, asset pricing, portfolio allocation and for ecagting are very much present at the
daily haorizon.

We proceed asfollows. In Section 2 we provide aforma and detailed justification for our realized
volatility and correlation measures as highly accur ate estimat es of the underlying quadr atic variation and
covariation, assuming only that returns evolve as special samnimartingales. Among other things, we rdate
our realized volétilities and correlations to the conditional variances and correlations common in the
econometrics literature and to the notion of integrated variance common in the finance literature, and we
show that they ramain valid inthe presenceof jumps. Such background isneeded for a serious
understanding of our volatility and correlation measures, and it is lacking in the earlier literature on which we
build. In Section 3, wedisauss the high-frequency Deutschemark - U.S. dollar (DM/$) and yen - U.S. dollar
(Yen'$) returns that providethe basis for our empirical analysis, and we also detail the corstruction of our
realized daily variances and covariances. In Sections 4 and 5, we charact erize the unconditional and
conditional dstributions of thedaily volatilities, respectivdy, induding long-memory features. In Section 6,
we explore issues r elated to temporal aggregation, with particular focus on the scaling laws implied by long

memory, and we concludein Sedion 7.

2. VOLATILITY MEASUREMENT: THEORY

In this section wedevdop thefoundati ors of our volatility and covariancemeasures. When markets are

open, trades may ocaur at any instant. Therefare, returns as well as correspondng measuresof vdatility



may, in principle, be obtainad over arbitrarily short intervals. We therefore modd the underlying price
process in continuous time. Wefirst introducethe rd evant concepts, after which we show how thevolatility
measures may beapproximated using high-frequency data, andwe illustrate the concrete implications of our

concepts for standard It6 and mixed jump-diffusion processes.

2.1 Financial Returns as a Specia Semimartingale

Arbitragefreepriceprocesses o practical rdevancefor finandal economics bdong to the dass of special
semimartigales. They allow for a unique decomposition of returnsinto alocal martingale and a predictable
finite variation process. The former represents the “unpredictable’ innovation, while the latter has a locally
deterministic drift that governs theinstantaneous mean return, as discussed in Back (1991).

Formelly, for apositive integer 7 and #c/0, 7], let .7, be the o-field reflecting the information at timet, so
that .7, c .7, for O<s<t<T, and l& P denote a probability measure on (Q,P,.7), where Q represents the
possible states of theworld and .7 = .7, isthe set of eventsthat are distinguishable at time 7. Also assume
that the information filtration (7, ),.,, ,, Satisfies the usual conditions of P-conpleteness and right cortinuity.
The evolution of any arhbitrage freelogarithmic price pracess p,, and the associated continuously-

compounded return over /0,¢] may then berepresented as

Pu®) - pu(0) = My(t) + A1), D

whee M, (0) = 4,(0) = 0, M, isaloca martingale and 4, isalocaly integrable and predictable process of
finite variation. For full generdity, we define p, to be inclusive of any cash receipts such as dividends and
couponrs, but exclusive of required cash payauts associated with, far example margin calls.

The formulation (1) is va'y genga and includes all specifications used in standard asset pricing theory. It
includes, for example, 1td, jump and mixed jump-diffusion processes, and it does not require a Markov
assumption. It can also accommodate long memory, either in returns or in return volatility, so long as care is
taken to eliminate the possibility of arbitrage first noted by Meheswaran and Sims (1993), using, for
example, the methods of Rogers (1997) or Comte and Renault (1998).

Without loss of generality, each companent in equation (1) may be assumed cadlag (right-continuous
with left limits). T he corresponding caglad (left-continuous with right limits) processisnow p,, defined as

pe(t) = lim ., p(s) for each te[0,T], and thejumps are Ap, = p, - p,., O

Api(t) = pu(®) - lim, ., pi(s). 2

By no arbitrage, the occurrence and size of jumps are unpredictable, so M, contains the (compensated) jump

part of p, dong with any infinite variation components, while 4, has continuous paths. We may further
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decompose M, intoa pair of local martingal es, onewith continuous and infinite variation paths, A, and
ancther of finite variation, AM, representing the compensated junp component so thet M, = M; + AM.
Equation (1) becomes

Pu(®) - pi(0) = M) + AM (1) + A(1). (3

Finally, we introduce sameformal naationfor the reurns. Far concreteness, wenormalizetheunit interval
to beonetrading day. For m-T a positive integer, ind cating the number of return obsevations dotained by
sampling pricesm times per day, the redurn onasset k ove [t-1/m, t] is

Teft) = @) -pu(t-1/m), t=1/m,2/m, ..., T. 4

Hence, m>1 corresponds to high-frequency intraday returns, while m</ indicates intedaily reurns.

2.2 Quadratic Variation and Covariation

Development of formal volatility measures requires abit of notaion. For any semimartingde X and
predictable integrand H, the stochastic integral [HdX = {[, H(s) dX(s)},.;r; isWell defined, and for two
semimartingales X and Y, thequadratic variation and covariation processes, /X, X] = (/X X]) o) a0d [XY]
= ([X.Y]) 1oz @ given by

[XX] = X*-2[ X dX (5a)
[XY] = XY-[ X dY-[YdX, (5b)

where the notation X means the process whose value at sis limm,u X5 see Protter (1990, sections 2.4 -
2.6). These processes are sesmimartingales of finite variation on /0,7]. Thefollowing propeties are
important for our interpretation of these quantities as volatility measures. For an increasing sequence of
random partitionsof /0,7/, 0 =, < 1, < ..., sothatsup,.,(z, ., - 7,,) ~ O ad sup,., 7, ~ Tform - o

m,0 =

with probability one, we have for tAt = min(t,t) and ¢t € [0,T],

lim, .. {X(0)Y(0) + 5., [X(t\v,,) -X(t)\v,,; )] [Y(i)5,,) - Y(ihe,, )] |~ [X Y], (6)

where the convergence is uniform on /0, T/ in prdbability. In addtion, wehavethat

[XY], = X(0)Y(0) (72)
A[XY] = AXAY (7b)
[X.X] is an increasing process. (7¢)

Finally, if X and Y are locally square integrable local martingales, the covarianceof X and Y ove [#-h,t] is
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given by the expected increment to the quadratic covariation,

Cov(X(W).Y()|.7,,) = E([XY],|.7.)-[XY].,. (8)

2.3 Quadratic Variation as a Vol atility Measure

Here we deive specific expressions for the quadratic variation and covariation of arbitrage free assd prices,
and we discuss their use as volatility measuresin light of the properties (6)-(8). The additive decomposition
(3) and the fact that the predictable components satisfy /4,,4,/ = [A,M,] = 0, for al j and k, imply that

[kap;]t = [MchJt = [MaM]t + E()ssst AM/((S)AM(S) (9)

We convert this cumulative vdatility measureinto a corresponding time seriesof incramental contributions.
Lettingtheinteger 2 > 1 denote the number of trading days over which the volatility measures are computed,

we define the time series of h-period quadratic variation and covariation, for¢ = 4,2h, ... , T, as

Ovar,(t) = [PuPd, - [PeDd (10a)
Ocovyu(t) = [P, - (PP h- (10b)

Equation (9) implies that the quadratic variation and covariation for asset prices depend solely upon the
realization of the return innovations. In particular, the conditional mean is of no import. This renders these
quantities model-free: regardless of the specific ar bitrage-free price process, the quadratic variation and
covariati on are obtained by cumulating the instantaneous squares and cross-products of retur ns, as indicated
by (6). M oreover, the measures ar e well-defined even if the price paths contain jumps, asimplied by (7), and
the quadratic variation is increasing, asrequired of acumulative volatility measure.

Equation (8) implies that the 4-period quadratic variation and covariation are intimately related to, but

distinct from, of the conditional return variance and covariance. Specifically,
Var(p(0)|.7.,) = E[Qvar, ()7 .,] (118)

Cov(p().p()|.7 1) = E[Qcovi,()].7 4] (11b)

Hence, the conditional variance and covariance diverge from the quadratic variation and covariation,
respectively, by azero-mean error. Thisis natura because the conditiona variance and covariance are ex
ante concepts, whereas the quadratic variation and covariation are ex post concepts. One can think of the
quadratic variation and covariation as urbiased for the conditional variance and covariance, o corversely.
Either way, the key insight is that, unlike the conditional variance and covariance, the quadratic variation and

covaridtion arein principle observable via high-frequency returns, which facilitates the analysis and
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forecasting of volatility using standard statistical tools. Shortly we will exploit thisinsight extensively.

2.4 Approximating the Quadratic Variation and Covariation

Equation (6) implies that we may approximate the quadratic vari ation and covariation dir ectly from high-
frequency return data. In practice, we fix an appropriately high sampling frequency and cumulate the
relevant intraday return products over thehorizon of irterest. Corcretely, using the notation inequation (4)
for prices sampled m times per day, we definefor¢=hn,2h..., T

var,(tm) = B, . 1 mft-h+(i/m)) (129)
COij,h(t;m) = X rk,(m)(t_h +(i/m)) rj,(m)(t_h +(i/m)). (12b)

We call the observed measures in (12) the time-t realized h-period volatility and covariance. Note that for
any fixed sampling frequency m, the realized volatility and covariance directly observable, in contrast to their
underlying theoretical counterparts, the quadratic vari ation and covariation processes. For sufficiently large
m, however, the realized volatility and covariance provide arbitrarily good approximations to the quadratic

variation and covariation, because for all ¢t = &, 2h, ..., T we have
plim,, .. var, ,(t:m) = Qvar, (1) (13a)
plim,, .. cov,,,(t;m) = Qcov,;,(1) . (13b)

Note thet the realized volatility messures var, ,(t;m) and cov,, ,(t;m) convege as m-« to Qvar, ,(t) and
QOcovy; (1), but generally not to the corresponding time ¢-4 conditi onal return volatility or covariance,
E[Qvar, ()| 7,,] and E[Qcov,, ,(t)|.7 ., ]. Standard volatility models focus on the latter, which require a
modd for the return generating process. Our redized volatility and covari ance, in contrast, provide unbiased

estimators of the conditional variance and covariance, without taking a stand on any underlying model.

25 Integrated Volatility for 1t6 Processes

Much theoretical work assumes that logarithmic asset prices follow a univariate diffusion. Letting 7 bea

gtandard Wiener process, wewrite dp, =, dt + o, dW, or more formally,

PV -p(t-1) = () = [, w(s)ds + [i, 0,(s) dW(s). (14)
For notational convenience we suppress the subscript m or 2 when we consider variables measured over the
daily interval (h=1). For example, we have r,(t) = r, , (1) and Qcov,; ,(t) = Ocov(t).

Our volatility measure is the associated quadratic variation process. Standard calculations yield



Ovary(t) = [pupd, - [Pl = 10 07(s) ds. (15)

The expression [!,0°(s) ds defines the so-called integrated volatility, which is centra to the option pricing
theory of Hull and White (1987) and further dscussed in Andersen and Bollerdev (1998a) and Barndorff-
Nidsenand Shephard (1998). They nate that, under the purediffusion assunption, ,(z) conditional on
Qvar,(t) isnormadly distributed with variance [, o°(s) ds.

These results extend to the multivariate setting. If W= (W, ..., W,) is ad-dimensional standard
Brownian motion and (7)., r; denotes its completed natural filtration, then by martingale representation any

locally sguare integrable price process of the 1td form can be written as (Protter 1990, Theorem 4.42),

Pt -p0) = Jim(s)ds + T2, [§op(s) dWi(s). (16)
This result is related to the fact that any continuous local martingale, H, can be represented as a time change
of aBrownian notion, i.e, H(t) = B(/H,H] ), as., (Protter 1990, Theorem 2.41). That flexibility alowsthis
particular specification to cover alarge set of applications. Specifically, we obtain

QOvar(t) = T, [i, 0i.(s)ds (17a)

Ocovy(t) = B2, [, 0,:(5)0;,(s) ds. (17b)

The Qvar,(t) expression provides a natural multivariate concept of integrated volatility, and we may

corr espondi ngly denote QOcov, (1) theintegrated covariance. As a special case d this framewvork, onemay
assign a few of theorthoganal Wierer compaonents to be conmon factors and the ramaining as pure
idiosyncratic error tems. This produces a continuous-time arnal ogueto thediscrete-time factor vdatility
modds of Diebdd and Nerlove (1989) and King, Sentana and Wadhwani (1994).

Within this purediffusion setting, one may obtain stronger results. Foster and Ndson (1996) canstruct a
volatility filter based on a weighted average of past squared returns, which extracts the instantaneous
volatility perfectly inthe continuous record limit. There are two main differences between their approach
and ours. From atheoretical perspective, their methods rely critically on the diffusion assumption and
extract instantaneous vol atility, whereas ours are valid for the entire class of arbitrage-free models but
extract only cumulati ve volatility over aninterval. Second, from an empirica perspective, vari ous market
microdructure features limit thefrequency at which returnscan be productivdy sasmpled, whichrenders
infeasible a Foster-Nelson inspired strategy of extracting instantaneous volatility estimates for a large
number of time points within each trading day. Consistent with this view, Foster and Nelson apply their
thearetical insights only tothestudy of volatility filters based ondaily data.



The distribution o integrated vdatility has also been studied by previous authors. Notably, Gallant, Hsu
and Tauchen (1999) propose an intriguing r eprojection method for direct estimation of the relevant
distribution givena spedfic parametric fam far theundelying dffuson, while Chernov and Ghysds (2000)
apply similar techniques, exploiting options data as well. Our high-frequency return methodology, in

contrast, is simpler and more generally applicable, requiring only the specia semimartingale assumption.

2.6 Volatility Measuresfor Pure Jump and Mixed Jump-Diffus on Processes

Jump processes have particularly simple quadratic covariation measures. The fundamental semimartingale

decomposition (1) reduces to acompensated jump component and afinite variation term,

p® = p0) + M) + [ w(s) ds, (18)

wheep,(2) denotes the instantaneous mean and the innovationsin M,(z) are pure jumps. The specification

coveasavariety of scenarics in which thejump process is generated by distinct compaonents,

Myt) = X7, B %i(S) AN(S) =[5 pi(s) ds, (19
where AN, ,(z) isan indicator function for the occurrence of ajump in the ith component at time ¢, while the
(random) x, ,(2) term determines the jump size. From property (7)

Qcov(t) = 272, k() K(s) AN,(s) AN(s). (20)

Andersen, Benzoni and Lund (2000), among others, argue the importance of including both time-varying
volatility and jumps when nodeling specul ativereturns over short horizons, which can be acoomplished by

combining Itd and jump processes into a general jump-diffusion

@) -pi0) = [imls)ds + [[ou(s) dW(s) + Iy, k() AN(s). (21)

The junp-diffusion allows for a pred ctable stachastic vdatility processo,(z) and ajunp processes, «,(2)

N, (t) with afinite conditional mean. The quadratic covariation follows directly from equations (9) and (10),

Qcovkj(t) = [l 0i(s) Oj(S) ds + Z,,....%(s) Kj(s) AN,(s) AN/(S)- (22)

It is graightforward to dlow for a d-dimensona Brownian motion, resulting in modifi cations along the lines
of equations (13)-(15), and the famulation readily accommodates multiple jurmp comporents, asin (19)-
(20).

3. VOLATILITY MEASUREMENT: DATA

Our empirica analysis focuses on the bilateral DM/$ and Y en/$ spot exchange rates, which are attractive

-8-



candidates far examination as they represent the two main axes of the international financial system. We
first discuss our choice of 5-minute returns to constr uct realized volatilities, and then explain how wehandle

weekends and hdidays. Finally, we deail theactual construction of the vdatility measures.

3.1 Onthe Use of 5-Minute Returns

In practice, the discreteness of actua securities prices can render continuous-time models poor
approximations at very high sampling frequencies. Furthermore, tick-by-tick prices are generaly only
available at unevenly-spaced time points, so the calculation of evenly-spaced high-frequency returns
necessarily relies on some form of interpolation among prices recor ded around the endpoints of the given
sampling intervals. It iswell known that this non-synchronous trading or quotation effect may induce
neggtiveautocarelation in theinterpolated reurn saies. Moreover, such market microgructure biases may
be exacerbated in the multivariate context, if varying degrees of inter polation are employed in the calculation
of thedifferent returns.

Hence atension arises in the calculation of realized volatility. On the one hand, the theory of quadratic
variation of special semimartingal es suggests thedesirability of sampling at very high frequendes, strivingto
match theideal of continuously-observed frictionless prices. On the other hand, the reality of market
microstr uctur e suggests not sampling too frequently. Hence a good choice of sampling frequency must
balance two compeing factars; ultimatdy it is anempirical issue that hingeson market liquidity.
Fortunately, the markets studied in this paper are among the most active and liquid in the world, per mitting
high-frequency sampling without contamination by microstructure effects. We use a sampling frequency of
288 times per day (m=288, or 5-minute returns), which i s high enough such that our daily realized
volatilities are largely free of measurement error (see the caculati onsin Andersen and Bollerslev, 1998a), yet

low enough such that microstructur e biases are not amgjor concern.

3.2 Construction of 5-Minute DM /$ and Y en/$ Returns

The two raw 5-minute DM/$ and Y en/$ return series were obtained from Olsen and Associates. T he full
sampleconsists o 5-mirute returns covering Decembe 1, 1986, through Novermber 30, 1996, or 3,653 days,
for atotal of 3,653-288 = 1,052,064 high-frequency return observations. Asin Miiller et al. (1990) and
Dacoragna, Miler, Nagler, Olsen and Pictet (1993), the construction o thereturns utilizes theintebank FX
guotes that appeared on Reuter's' FXFX page duringthe sample peiod. Each quote consids of abid and an
ask price together with a*“ time stamp” to the nearest even second. After filtering the data for outliers and

other anomdiies, the price at each 5-minute mark is obtained by linear ly interpolating from the average of the
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log bid and the log ask for the two closest ticks. The continuously-compounded returns ar e then smply the
change in these 5-minute aver age log bid and ask prices. Goodhart, |to and Payne (1996) and Danielsson
and Payne (1999) find that the basic char acteristics of 5-minute FX returns constructed from quotes closdly
match those calaulated from transactions prices, which areonly availableon avey limited basis.

It iswell known that the activity in the foreign exchange market dows decidedly over the weekend and
certainholiday peiods; see, e.g., Andesen and Bollerslev (1998b) and Mlle et al. (1990). Inorde not to
confound the distributional char acteristics of the various volatility measures by these largely deterministic
caendar effects, we explicitly excluded a number of days from the raw 5-minute return series. Whenever we
did so, we aways cut from21:05GMT the night before to 21:00 GMT that evening, to keep the daily
periadicity intact. This defiritionof a“day’ is motivated by the daily éob and flow in the FX activity
patterns doaumented by Bdleslev and Domowitz (1993). I1n addition tothethintrading period from Friday
21:05GMT until Sunday 21:00GMT, we removed several fixed holidays, including Christmas (December
24 - 26), New Year's (December 31 - January 2), and July Fourth. We also cut the moving holidays of
Good Friday, Easter Monday, Memoria Day, July Fourth (when it falls officidly on July 3), and Labor
Day, aswell as T hanksgiving and the day after. Although our cutsdo not capture all the holi day mar ket
slowdowns, they dosucceed in diminating the most important such daily calendar effects.

Finally, we deleted some returns contaminated by brief lapsesin the Reuters datafeed. This problem
manifestsitsaf in long sequences of zero or constant 5-minute returnsin places where the missing quotes
havebeen interpolated. Toremedy this, wesimply ranoved the days containing thefifteen longest DM/$
zero runs, the fifteen longest DM/$ constant rurs, the fifteenlongest Y e/$ zero runs, and thefifteen longest
Yen'$ corstant rurs. Because of the overlap among the four different sets of days defined by these criteria,
we actually removed only 51 days. All in al, we were |dt with 2,449 complete days, or 2,449-288 =

705,312 5-mirute return doservations, for the construction of our daily realized volatilities and covariances.

3.3 Congtruction of DM/$ and Yer/$ Daily Realized Volatilities

We denote the time series of 5-minute DM /$ and Yen/$ returns by 7, ,,/(t) and 7, ,4,/(1), respedively, where
t=1/288, 2/288, ..., 2,449. We then form thecorresponding 5-minute squared return and cross-product
SErEs (¥p, s (1)s (1) 255/(1), A 1y, () - 1, 105(1). The stétistical properties of the squared return series
closdly resemble those found by Andersen and Bollerdev (1997a,b) with a much shorter one-year sample of
5-minute DM/$ returns. Interestingy, the basic propetiesof the 5-minute crass-product series, 7, (2) -
7, 0s5(), are similar. In particular, al three series are highly pesistent anddisplay strongintraday calendar
effects, the shape of which is driven by the opening and closing of the different financial markets around the
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globe during the 24-hour trading cycle.

Now, following (12), we construct the realized h-period variances and covariances by summing the
corresponding 5-minute observations acr oss the h-day horizon. For notational simplicity, we suppressthe
dependence on the fixed sampling frequency (m = 288), and define vard,, = var,, ,(t,288), vary,, =
var,,(t;288), and cov,, = cov,, ,(t,288). Furthermare, for daily measures (7 = 1), we suppress the subscript

h, and Smply write vard,, vary,, and cov,. Corcretely, weddfinefat=1,2,..., [T/h],

vardt,h = Ej:1,...288-h (VD,(Z&‘;)(h (t-1) + j/288) )2 (236[)
vary,, = E/:L..,zmh (ry,(288) (h-(t-1) + j/288) )2 (23b)
cov,, = Ej=l,..,28<\’-h "D,(zsw(h “(t-1) + j/288) 1288 (h-(t-1) + j/288). (23c)

In addition, we examine several aternative, but related, measures of realized volatility derived from those in
(23), including realized standard deviatiors, stdd,, = vard,,"” and stdy,, = vary,,"”, redlized logarithmic
standard deviations, Istdd,, = %>-log(vard,,) and Istdy,, = %:-log(vary, ), and realized carrelations, corr,, =
cov,,/(stdd, ,stdy,,). In Sections4 and 5 we characterize the unconditi onal and conditional distribution of
the daily redlized volatility measures, while Section 6 details our analysis of the corresponding temporally
aggregated measures (2 > 1).

4. THE UNCONDITIONAL DISTRIBUTION OF DAILY REALIZED FX VOLATILITY

The uncondtioral distribution of volatility captures inportant aspects of the return process, with
implications for risk management, asset pricing, and portfolio allocation. Here we provide adetailed

characterization.

4.1 Univariate Unconditional Distributions

The firg two columns of the firgt pandl of Table 1 provide a standard menu of moments (mean, vari ance,
skewness, and kurtosis) summarizing the uncondtional distributions of the daily realized vdatility series,
vard, and vary,, and the top panel o Figure 1 dsplays kernel dersity estimates of the unconditional
distributions. It is evident that the distributions are very similar and extremely right skewed. Evidently,
athough the redlized daily voldtilities are constructed by summing 288 squared 5-minute returns, the
pronounced heteroskedadticity in intraday returns renders the normal distribution a poor approximation.

Thestandard deviation o returns is measured onthe samescale as thereturns, and thus provides a nore
readily interpr etable measure of volatility. We present summary statistics and density estimates for the two
daily realized standard deviatiors, stdd, and stdy, , in columns three and four of the first panel of T able 1 and
the second panel of Figure 1. T he mean daily realized standard deviation is about 68 basis points, and
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although the right skewness of the distributions has been reduced, the redlized standard deviations clearly
remain non-normally distributed.

Interestingly, thedistributions of thetwo daily realized logarithmic standard deviations, istdd, and Istdy,
in columns five and six of thefirst panel of Table 1 and in the third panel o Figure 1, appear symmetric,
with skewness coefficients near zero. Moreover, normality is a much bette approximation for these
measures than for therealized volatilitiesor standard deviationrs, as thekurtosis coefficients arenear three
This accords with the findings f or monthly volatility aggregates of daily equity index returnsin French,
Schwert and Stambaugh (1987), as well as evidencefrom Clark (1973) and Taylor (1986).

Finally, we characterize the distribution of the daily realized covariances ard carrelations, cov, and corr,
in the last columns o the first panel of Table 1 and the bottom pand of Figure 1. The basic characteristics
of the unconditiona distribution of the daily redized covarianceis similar to that of the daily realized
volatilities -- it is extremdly right skewed and leptokurtic. In contrast, the digtribution of the redlized
correlation is approximetely normal. Themeanrealized correlation is positive (0.43), as expected, because
both series respond to U.S. macroeconomic fundamentals. The standard deviation of the redlized correlation
(0.17) indicates significart intertenpaoral variation in the carrelation, which may beimportart for short-teem
portfolio allocation and hedgng decisians.

4.2 Multivariate Unconditional Distributions

The univariate distributions charact erized above do not addr ess relationships that may exist among the
different measur es of variation and covariation. Key issuesrelevant in financial economic applications
include, for example, whether and how Istdd,, Istdy, and corr, move together. Such questions are dffiault to
answer usng conventiona volatility models, but they are relatively easy to address using our realized
volatilities and correlations.

The sample correlations in the first pand of T able 2, dong with the Istdd -Istdy, scatterplot in the top
pand of Figure2, clearly indicate a grong positive association between the two exchangerate vol atilities.
Thus, not only do thetwo exchange rates tend to movetogether, asind cated by the positive means for cov,
and corr,, but so too do their volatilities. This suggests factor structure, as in Diebdd and Nerlove (1989)
and Bollegdev and Engle (1993).

The corrdations in the first pane of Table 2 and the corr-Istdd, and corr -Istdy, scatterplots in the second
and third parelsof Figure2 alsoind cate positive association between corrdation and volatility. Whereas
some nonlinearity may be operative in the corr,-Istdd, relationship, with a flattened response far bothvery

low and very high Istdd, vaues, the corr-Istdy, relationship appears approximately lirear. To quantify
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further thisvolatility effect in correlation, we show in the top pand of Figure 3 kernel density estimates of
corr, when both Istdd, and Istdy, are less than -0.46 (their median vaue) and when both Istdd, and Istdy, are
greater than -0.46. Similarly, we show in the bottom panel of Figure 3 the estimated corr, dendties
conditional on the more extreme voldtility situation in which both iszdd, and Istdy, are less than -0.87 (their
tenth percentile) and when both Istdd, and Istdy, are greater than 0.00 (their ninetieh percertile. It isclear
that the distribution of realized correlation shifts rightward when volatility increasses. A similar correlation
effed in vdatility has been documented recently for international equity returns by Solrik, Bouaelleand Le
Fur (1996). Of course given that the high-frequency returns are pasitively correlated, same auch efectisto
be expected, as argued by Ronn (1998), Boyer, Gibson and Loretan (1999), and Farbes and Rigobon (1999).
However, the magnitude of the effect nonethel ess appears notewort hy.

To summarize, we have documented a substartial amount of variation involatilitiesand correlation, as
wdll as important contempor aneous dependence measures. We new turn to dynamics and dependence,

characterizing the conditional, as opposed to unconditional, distribution of realized volatility and correlation.

5. THE CONDITIONAL DISTRIBUTION OF DAILY REALIZED FX VOLATILITY

The value of financial derivatives such as options is closely linked to the expected volatility of the underlying
asset over thetimeuntil expiration. Improved vdatility forecasts shauld therefare yield moreaccurate
derivative prices. The conditional dependencein volatility forms thebasis for suchforecasts. That
dependence is most easily identified in the daily realized carrelations and logarithmic standard deviatiors,
which we have shown to be gpproximately unconditionally normally distributed. In order to conserve space,
we facus our discussion on thosethree saies.

It isinstructive first to consider the timeseries plots of therealized volatilitiesand correlations in Fgure4.
Thewide fluctuations and strong persistence evident in the Istdd, and Istdy, series are, of cour se,
manifestations of the well documented return volatility c ustering. It istherefor e griking that the time series
plat for corr, shows equally pronounced persistence, with readily identifiable periods of high and low
correlation.

The visual impression of strong persistence in the volatility measuresis confirmed by the highly significant
Ljung- Box testsreported in thefirst panel of Table 3. (The 0.001 criticd vaueis45.3.) The corrograms
of Istdd,, Istdy, and corr, in Figure 5 further underscore the point. The autocorrdati ons of the red ized
logarithmic standard deviations begin around 0.6 and decay very sowly to about 0.1 at a displacement of
100 days. Tho< of therealized corrdations decay evenmoreslowy, reaching just 0.31 at the 100-day

displacement. Similar results based on long series of daily absoluteor squared returns from othe markes
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have previoudy been obtained by a number of authors, including Ding, Granger and Engle (1993). The dow
decay inFigure5 is particularly noteworthy, however, in thet thetwo realized daily vdatility series span
“only” ten years.

The findings of dow autocorrelation decay may seem to indicate the presence of a unit root, asin the
integrated GARCH mode of Engle and Boll erdev (1986). However, Dickey-Full er testswith ten
augmentati on lags soundly reject this hypothesis for dl of the volatility series. (Thetest satistics range from
-9.26 to -5.59, and the 0.01 and 0.05 critical values are -2.86 ard -3.43.) Although unit roats may be
formally rejected, the very dow autocorrelation decay coupled with the negative signs and dow decay of the
estimated augmentation lag coefficients in the Dickey-Fuller regressions suggest that long-memory of anon
unit-root variety may be present. Hence, we now turn to an investigation of fractional integration in the daily
realized volatilities.

As noted by Granger and Joyeux (1980), the dow hyperbolic decay of the long-lag autocor relations, or
equivalently thelog-linear explosion of thelow-frequency spectrum, are distinguishing features of a
covariance stationary fractionally integrated, or 1(d), process with 0 <d <%. The low-frequency spectral
behavior a so forms the basis for the log-periodogram regression estimation procedure proposed by Geweke
and Porter-Hudak (1983) and refined by Robinson (1994, 1995), Hurvich and Beltrao (1994) and Hurvich,
Deo and Brodsky (1998). Inparticular, let /(w;) denote the sample periodogram a the jth Fourier frequency,
w, =2nj/T, j=1,2,..., [T/2]. Thelog-peiodogram estimator of d is then based on the |least squares

regression,

log[I(w;)] = B, + B, log(w;) + u, (24)

wherej=1,2,...,n,and d = - B /2. Theleast squares estimetor of f,, and hence d, is asymptotically
normal and the corresponding standard eror, n-(24-n)”, depends only onthe number of periodogram
ordinates used While the earlie proofs for consistency and asynptotic normality of thelog-periodogram
regression edimator rdy on normality, Deo and Hurvich (1998) and Rohinson and Herry (1999) show that
these properties extend to non-Gaussian, possibly heteroskedastic, time seriesas wdl. Of course, the actual
value of the estimate of d depends upon thechoiceof n. Although theformula for the theoretical 2andard
error suggests choosing alarge » in order to obtain a small standard error, doing so produces biasin the
estimatar, because the rd ationship underlying (24) in general holds only for frequencies clase to zero.
Following Tagqu and Teverovsky (1996), we therefore graphed and examined & as a function of », looking
for a flat region in which we ar e plagued neither by high variance (» too small) nor high bias (z too large).

Our subsequent chace of n = [ T*° ], or n = 514, is consistert with theoptimal rate of O(7*”) established by
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Hurvich, Deo and Brodsky (1998).

The estimates of d are given in thefirst panel of Table 3. The estimates are highly statistically significant
for all e@ght vaatility series, ard all are fairly close tothe“typical valug' of 0.4. Theseestimates ford are
aso inlinewith the estimates based on longer time series of daily absolute and squared returns from other
markes reparted by Granger, Ding and Spear (1997), and thefindings based ona much sharter one-year
sample of intraday DM /$ returns reported in Andersen and Bollerdev (1997b). This suggests that the
continuous-timemodel susedin much o theoretical finance, wherevolatility isassumed to fdlow an
Ornstan-Uhlenbeck (OU) type pracess are misspecified. Noneheless, our results are constructive, inthat
they also indicate that parsimonious!ong-memory modds should be able to acconmodate the long-ag
autoregressive efects.

Having characteized the dstributions of thedaily realized volatilities and carrel ations, wenow turn to

longer horizons.

6. TEMPORAL AGGREGATION AND SCALING LAWS

The analysis in the precading sections facused on the distributional properties of daily realized vdatility
measures. However, many practical financia problemsinvariably invol ve longer horizons. Here we
examine the distributional aspects of the corresponding multi-day redized variances and correlations. As
before, we begin with an analysis of unconditional distributions, followed by an analysis of dynamics and

dependence, including a detailed examination of long-memory asiit relates to tempor al aggregation.

6.1 Univariate and Multivariate Unconditional Distributions

In the lower panels of Table 1 we summarize the univariate unconditiona digtributions of redized volatilities
and corrdations at weekly, bi-weekly, tri-weekly and manthly horizons (2 =35, 10, 15, and 20, respectively),
implying samples of length 489, 244, 163 and 122. Consistent with thenotion of efficient capital markets
and serially uncorrelated returns, themeans of vard, ,,, vary,, , and cov,, grow at the rate i, while the mean of
therealized corrdation, corr, ,, islargely invariant to the level of temporal aggregation. In addition, the
growth of the variance of the redlized variances and covariance adheres closdly to #°**/, where d denotes the
order of integration of the series, a phenomenon we discuss at length subsequently. We also note that, even
at the morthly level, theunconditional distributions of vard, ,, vary, ,, and cov,, remain leptokurtic and
highly right-skewed. The basic characteristics of s#td,, and stdy,, are similar, withthe means ircreasing at
therate #"°. The uncondtional variances of Istdd,, and Istdy,,, howeve, decrease with i, but againat arate

linked to the fractiona integration parameter, as we document below.
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Next, turning to the multivariate unconditiona distributions, we display in the lower panels of Table 2 the
corrdation metrices of all volatility measures for =15, 10, 15, and 20. Although the corr elation between the
different measur es drops dightly under temporal aggregation, the positive association between the
volatilities, so apparent at the one-day return horizon, is largely preserved under temporal aggregation. For
instance, the correlation between Istdd,, and Istdy, , ranges from a high of 0.604 at the daily horizon to alow
of 0.533 at themonthly horizon. Meanwhile, the volatility efect in correlation is somewhat reduced by
tempora aggregation; the sample correlation between Istdd, , and corr,, equals 0.389, wher eas the one
between Istdd, ,, and corr, ,, 15 0.245. Similarly, the correlation between Istdy,, and corr,, drops from0.294
for h=1100.115 fa 42 =20. Thus, while the long-horizon corr eati ons remain positively related to the level
of volatility, the lower values suggest that the benefitsto international dversification may bethe greatest

over longe investment horizons.

6.2 The Conditional Distribution: Dynamic Dependence, Fractional Integration and Scaling

Andersen, Bollerdev and Lange (1999) show that, given the estimates obtained at the daily level, the
integrated volatility should, in theory, remain strongly serially corrdlated and highly predictable, even at the
monthly level. The Ljung-Box statistics for the redized volatilities in the lower panels of Table 3 provide
strong empirical backing Even at the monthly levd, or 2 =20, with only 122 doservations, al of the test
statistics are highly significant. This contrasts with previous evidencethat finds little evidence of vdatility
clustering for morthly returns, such as Baillieand Bollerslevs (1989) and Christoffersen and Diebdd (2000).
However, the methodsand/or data used intheearlier studies may producetests with low powe.

The estimates of d reported in Section 4 suggest that the realized daily volatilities are fractionally
integrated. Theclass o fractionally integrated modelsis sdf-similar, so that the degree of fradiorel
integration is invariant to the sampling frequency; see, eg., Beran (1994). This strong prediction is borne
out by the estimatesfor d for the different levels of tempora aggregation, reported in the lower panels of
Table 3. All of theestimates are within two asymptaic standard arors of the average estimate of 0.391
obtained for the daily series, and al are highly statistically significantly different from both zero and unity.

Another i mplication of self-d milarity concernsthe variance of partial sums. In particular, let

[x], = Esz,..,h Xn-(-1)+j 1 (25)

dencte the 4-fold partial sum process for x,, wheret=1, 2, ..., [T/h]. Then, as discussed by, Beran (1994)
and Diebold and Lindner (1996), among others, if x, is fractiondly integrated, the partia sums obey a scaling

law,
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Var([x,],) = ch’*. (26)

Of course, by definition /vard, ], = vard,, and [vary, ], = vary,,, 0 the variance of the realized
volatilities should grow at rate #2°/*’. Thisimplication is remarkably consistent with the values for the
unconditional sample(co)variances reported in Table 1 and a value of d around 0.35-0.40. Similar scaling
laws for power transforms of absolute FX returns have been reported in a series of papersinitiated by Muller
et a. (1990).

The strikingaccuracy o our scaling laws carries ove to thepartial surrs of the alternativevolatility
series. Theleft panel of Figure 6 plots the logarithm of the sample variances of the partia sums of the
realized logarithmic standard deviations versus thelog of the aggregationlevel;i.e., log( Var([ Istdd,],)) and
log(Var([ Istdy,],)) againstlog(h) for h=1, 2, ..., 30. Thelinear fitsimplied by (26) are validated. Each of
the slopes are very close to thetheoretical value of 2d+1 implied by the log-periodagram estimates for d,
further solidifying the notion of long-memory volatility dependence. T he estimated sopesin the top and
bottom pands are 1.780 and 1.728, respectively, corresponding to values of d of 0.390 and 0.364.

Because anon-linear function of a sum is not the sum of the non-linear function, it is not clear whether
Istdd,, and Istdy,, will fdlow similar scaling laws. Theestimates of d reported in Table 3 suggest that they
should. The corresponding plots for the logarithm of the h-day logarithmic standard deviations
log(Var(lstdd,,)) and log(Var(Istdy,,)) against log(h), forh=1, 2, ..., 30, in theright panel of Figure 6, lend
empirical support to this conjecture. Interestingly, however, the lines are downward doped.

To understand why these dopes should be negative, assume that the returns are serially uncorrelated. The
variance of the temporally aggregated return should then be proportional to the length of the return interval,
that is, E(var,,) = b-h, wherevar,, refers tothe temporally aggregated variance as defined above. Also, by
thescaling law (26), Var(var,,) = c¢:h***'. Furthermore, assume that the corr esponding temporally
aggregated |ogarithmic standard deviations, istd,, = /-log(var,,), are normally distributed at all aggregation
horizons / with mean p, and variance o;. Of caurse, these assumptions acoord dosdy with the actual
empirical distributions summarized in Tablel. It then follows from the propertiesof the lagnarmal
distribution that

E(var,,) = exp(2u,+ 20;) = bh (27a)
Var(var,,) = exp(4w,) exp(40;) [exp(40;)-1] = ¢ K", (27b)
and solving for the variance of the log standard deviation yields

Var(lstd,,) = o} = log(c-b™h* +1). (28)
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With 24-1 slightly negative this explains why the sanyple variances o Istdd,, and Istdy,, reported in Table 1
are decreasing with the leve of temporal aggregation, 4. Furthermore, by a log-linear approximation,

log[Var(lstd,,)] = a + (2d-1)- log(h), (29)

which explains the apparent scaling law behind the two plotsin the right pand of Figure 6, and the negative
dopes of gpproximately 24-1. The dopesin the top and bottom panels are -0.222 and -0.270, respectively,
and the implied d values of 0.389 and 0.365 are almost identical to thevalues implied by thescaling law (26)
and thetwo €t panelsof Figure®.

7. SUMMARY AND CONCLUDING REMARKS

Wefirgt strengthened the theoretical basis for measuring and anayzi ng time series of redlized volatilities
constructed from high-frequency intraday returns, and then we put thetheory to work, examining a unique
data set consisting of ten years of 5-minute DM/$ and Y en/$ returns. We find that the distributions of
realized daily variances, standard deviations and covariances areskewedto the right and leptokurtic, but that
the dstributions of logarithmic standard deviations and correlations are approximately Gaussian Volatility
movements, moreover, are highly correlated across the two exchange rates. We also find that the corr elation
between the exchangerates (as oppaosed to the carrelation beween their volatilities increases with vdatility.
Finaly, we confirmthewealth of existing evidence o strong vdatility dustering effectsin daily returrs.
However, in cortrast to earlier work, which dftenindicates that volatility persistence decreases quickly with
the horizon, we find that even monthly redlized volatilities remain highly persistent. Nonetheless, redlized
volatilities do not have unit roots; instead, they appear fractionally integrated and therefore very dowly
mean-reverting. This finding is strengthened by our analysis of tenporally aggregated volatility saies,
whose properties adhere closdly to the scaling laws implied by the structure of fractiona integration.

A key conceptual distinction between this paper and the earlier work on which we build -- Andersen and
Bollerdev (1998ag) in particular -- is the recognition that realized volatility is usefully viewed as the object of
intrinsicinterest, rather than simply a post-modding deviceto beused for evaluating parametric condtional
variance modds such as GARCH. Assuch, it isof interest to examine and madel realized volatility directly.
This paper isafirst step in that direction, providing a nonparametric char acterization of both the
unconditional and conditional distributions of bivariate realized exchange rate volatility.

It will be of interest in futurework tofit parametric models directly torealized volatility, andin turn touse
themfor forecasting in specific financial cortexts. Inparticular, our findngssuggest that a multivariate

linear Gaussian long-memory model is appropriate for daily realized logarithmic standard deviations and
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correlations. Such amodel could result in important improvements in the accur acy of volatility and
correlation forecasts and related vaue-at-risk type calculations. Thisideais pursued in Andersen,
Bollerdev, Dieboldand Labys (2000).
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Table 1. Statistics Summarizing Unconditional Distributions of Realized DM/$ and Yen/$ Volatilities

vard,, vary,, stdd,, stdy,, Istdd,, Istdy,, cov,, corr,

Daily, h=1
Mean 0.529 0.538 0.679 0.684 -0.449 -0.443 0.243 0.435
Variance 0.234 0.272 0.067 0.070 0.120 0.123 0.073 0.028
Skewness 3711 5576 1681 1.867 0.345 0.264 3.784 -0.203
Kurtosis 24.09 66.75 7.781 10.38 3.263 3525 2525 2.722
Weekly, h=>5
Mean 2646 2.692 1555 1566 0.399 0.405 1.217 0.449
Variance 3.292 3.690 0.228 0.240 0.084 0.083 0.957 0.022
Skewness 2628 2.769 1252 1410 0.215 0.382 2.284 -0.176
Kurtosis 14.20 1471 5.696 6.110 3.226 3.290 10.02 2.464

Bi-Weekly, h=10

Mean 5297 5386 2216 2233 0.759 0.767 2437 0.453
Variance 1044 11.74 0.389 0.403 0.072 0.070 2.939 0.019
Skewness 1968 2462 1.063 1291 0.232 0.380 1.904 -0.147
Kurtosis 7.939 1198 4500 5602 3.032 3225 7.849 2.243
Tri-Weekly, h=15
Mean 7.937 8075 2717 2744 0.964 0977 3.651 0.455
Variance 2233 2277 0560 0546 0.069 0.064 5.857 0.018
Skewness 2046 2.043 1033 1177 0.208 0.400 1633 -0.132
Kurtosis 9408 8322 4.621 4756 2999 3.123 6.139 2.247

Monthly, h=20
Mean 10.59 10.77 3.151 3179 1.116 1.127 4.874 0.458
Variance 34.09 36.00 0.671 0.671 0.062 0.059 8975 0.017
Skewness 1561 1.750 0.906 1.078 0.295 0.452 1.369 -0.196
Kurtosis 5768 6.528 3.632 4.069 2.686 2.898 4.436 2.196




Table 2. Correlation Matrices of Realized DM/$ and Yen/$ Volatilities

vary,, Sstdd,, stdy,, Istdd,, Istdy,, cov,, corr,,

Daily, h=1
vard, 0.539 0.961 0.552 0.860 0.512 0.806 0.341
vary, 1.000 0546 0945 0514 0825 0.757 0.234
stdd, - 1.000 0592 0965 0578 0.793 0.383
stdy, - - 1.000 0589 0959 0.760 0.281
Istdd, - - - 1.000 0.604 0.720 0.389
Istdy, - - - - 1.000 0.684 0.294
cov, - - - - - 1.000 0.590
Weekly, h=5
vard,, 0.494 0.975 0.507 0.907 0.495 0.787 0.311
vary,, 1.000 0519 0975 0514 0908 0.761 0.197
stdd,, - 1.000 0545 0977 0545 0.789 0.334
stdy,, - - 1.000 0555 0977 0.757 0.220
Istdd, , - - - 1.000 0571 0.748 0.336
Istdy,, - - - - 1.000 0.718 0.235
cov,, - - - - - 1.000 0.617
Bi-weekly, h=10
vard,, 0.500 0.983 0.503 0.931 0.490 0.776 0.274
vary,, 1.000 0516 0980 0.514 0.923 0.772 0.170
stdd, , - 1.000 0533 0982 0531 0.780 0.293
stdy,, - - 1.000 0544 0981 0.762 0.188
Istdd, , - - - 1.000 0556 0.753 0.300
Istdy,, - - - - 1.000 0.726 0.202
cov,, - - - - - 1.000 0.609
Tri-weekly, h=15
vard,, 0.498 0.982 0.505 0.931 0.497 0.775 0.255
vary,, 1000 0522 0984 0525 0.939 0.763 0.146
stdd,, - 1.000 0538 0983 0539 0.787 0.277
stdy,, - - 1.000 0551 0.984 0.756 0.155
Istdd, , - - - 1.000 0.564 0.765 0.285
Istdy,, - - - - 1.000 0.727 0.162
cov,, - - - - - 1.000 0.605
Monthly, h=20
vard,, 0.479 0.988 0.484 0.952 0.479 0.764 0.227
vary,, 1.000 0501 0.988 0.509 0.953 0.747 0.109
stdd,, - 1.000 0512 0988 0511 0.775 0.241
stdy,, - - 1.000 0527 0988 0.741 0.112
Istdd, , - - - 1.000 0.533 0.763 0.245
Istdy,, - - - - 1.000 0.719 0.115

cov,, - - - - - 1.000 0.596




Table 3. Dynamic Dependence Measures for Realized DM/$ and Yen/$ Volatilities

vard,, vary,, stdd,, stdy,, Istdd,, Istdy,, cov,, corr,,

Daily, h=1
LB 4539.3 3257.2 7213.7 5664.7 9220.7 6814.1 2855.2 12197
d 0.356 0.339 0.381 0.428 0.420 0.455 0.334 0.413

Weekly, h=5
LB 592.7 4939 786.2 609.6 930.0 636.3 426.1 2743.3
d 0.457 0.429 0.446 0.473 0.485 0.496 0.368 0.519

Bi-weekly, h=10
LB 221.2 181.0 267.9 206.7 3053 203.8 1554 1155.6
d 0.511 0.490 0.470 0501 0.515 0.507 0.436 0.494

Tri-weekly, h=15
LB 100.7 108.0 122.6 117.3 138.3 1125 101.6 647.0
d 0.400 0.426 0.384 0.440 0421 0.440 0.319 0.600

Monthly, h=20
LB 718 699 831 709 945 66.0 785 4273
d 0.455 0.488 0.440 0.509 0.496 0.479 0.439 0.630




Figure 1. Digtributions of Daily Redlized Exchange Rate Volatilities and Correlations
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Figure 2. Bivariate Scatterplots of Realized Volatilities and Correlations
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Figure 3. Digributionsof Realized Corrdations: Low Volatility vs High V dlatility Days
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Figure 4. Time Series of Daily Realized V olatilities and Corrdation
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Sample Autocorrelations

Figure 5. Sample Autocorrelations of Realized Volatilities and Corrdation
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Figure 6. Scaling Laws Under Temporal Aggregation
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