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I. Introduction

Recently algorithms have been proposed (e.g.,
Grassberger and Procaccia 1983a; Takens 1983a,
1983b) to try to distinguish between data gener-
ated by a deterministic system and data gen-
erated by a ‘‘random’ system. These were
motivated by the realization that certain deter-
ministic systems have solutions that ‘‘look like’’
they are generated from a random system. A sim-
ple example can be exhibited by considering the
function f: [0,1] — [0,1] such that f(x) = 2xif 0 <
x=<12,and f(x) = 2(1 — x)if 1/2 < x =< 1 (this is
usually referred to as a ‘‘tent’’ map). For a given
xo € [0,1], let x, = f(x,_y); ¢t = 1,2, .... This

* We thank Buz Brock, Ivar Ekeland, Lars Hansen, John
Bechhoefer, Mogen Jensen, Narayana Kocherlakota, Jean
Michel Lasryl, Albert Libchaber, Albert Madansky, Merton
Miller, Jacob Palis, David Ruelle, Don Saari, and Florins
Takens for conversations on the subject. David Hsieh pro-
vided us with the program that estimates the ARCH model
and gave generously of his time to guide us through it. This
article contains the results of Scheinkman (1985), which was
prepared for the Conference on Nonlinear Dynamics in Paris,
1985. Much of Scheinkman’s research was done while he was
visiting the CEREMADE at the University of Paris IX and
the Instituto de Matemética Pura e Aplicada (IMPA, Rio de
Janeiro), which gave generous access to their computer facili-
ties. The National Science Foundation provided support
through grants SES-8420930 and INT-841-3966.

(Journal of Business, 1989, vol. 62, no. 3)
© 1989 by The University of Chicago. All rights reserved.
0021-9398/89/6203-0001$01.50

311

Simple deterministic
systems are capable of
generating chaotic out-
put that ‘‘mimics’’ the
output of stochastic
systems. For this rea-
son, algorithms have
been developed to dis-
tinguish between these
two alternatives. These
algorithms and related
statistical tests are also
useful in detecting the
presence of nonlinear
dependence in time
series. In this article
we apply these proce-
dures to stock returns
and find evidence that
indicates the presence
of nonlinear depen-
dence on weekly re-
turns from the Center
for Research in Secu-
rity Prices (CRSP)
value-weighted index.
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gives us a ‘‘time series’’ {x,};~, that depends on x,. Let

1 m — k| 1 m
e = ”1115100 m ; XeXe+ k| — (E ;xt>2,
the autocovariance at lag k. It can be shown that, for almost all k, €
[0,1] (i.e., if we consider in [0,1] the uniform density, for all x, except
for a subset of [0,1] with probability zero), r, = 0 if k # 0.!

These same algorithms have been successfully used to distinguish
between random systems and deterministic systems coupled with
““small’” amounts of noise (e.g., Atten and Caputo 1985). In particular
they are potentially useful to detect the presence of nonlinearities.
Here we will examine U.S. stock returns data (in fact a comprehensive
index) using these techniques. For completeness, in Section II we
describe the test as well as make precise the term ‘‘deterministic.”’
Though the treatment if self contained, readers are strongly advised to
consult Brock (1986) or the extensive survey of Eckman and Ruelle
(1985). In Section III we explain the data and procedure. Section IV
presents some numerical results on the application of these algorithms
to several stock return series. We also present the results of the tests
developed by Brock, Dechert, and Scheinkman (1986) (henceforth
BDS) that produced a distribution theory for statistics based on
the Grassberger-Procaccia-Takens measure of correlation dimension.
Since the BDS results are asymptotic, we examined the finite sample
distribution of these statistics with a method inspired by bootstrapping.
Finally, we examine whether the results could be explained by a partic-
ular nonlinear alternative—the ARCH models (see Engle 1982).

The results presented here are of a clearly preliminary nature and
some of the difficulties are discussed in Section V. Nonetheless it
seems that the algorithms are able to distinguish between the real data
and those generated by the linear stochastic difference equations that
have been used to explain asset returns. In particular they show the
inadequacy of the ‘‘random-walk’’ theory (e.g., Granger and Morgen-
stern 1963; Fama 1970) that states that returns are independently and
identically distributed over time. The results suggest that nonlinearities
may play an important role in explaining asset returns. In Section V we
also present some conclusions and suggestions for further work and
speculate on the meaning of the results to complete markets rational-
expectations asset-pricing theories.

It is important to underscore that our primary concern in this article
is to use new tests to detect nonlinear departures from random-walk
behavior in stock returns. There are, of course, many possible alterna-

1. See Sakai and Tokumaru (1980) where this and other examples are given.
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tives to the random-walk model, and we merely select and analyze one
alternative hypothesis, the ARCH model, for comparison purposes
only. Further, in considering departures from alternatives to the ran-
dom-walk model, the distribution of the test statistics needs to be
ascertained for each particular alternative, and that we have not done.?

It is also important to point out that the tests discussed here give no
guidance as to the approximate form of nonlinearity that may be pres-
ent in the data. There are, of course, a large number of stochastic,
nonlinear models that have been studied in the statistics literature be-
sides the ARCH model discussed above. Examples include the bilinear
models (Granger and Anderson 1978, Subba Rao and Gabr 1980) and
the threshold autoregressive models (Tong and Lim 1980). Further,
one should also include changes in the variance that are not captured
by ARCH. For an example of how to deal with this last point in the
context of a different data set, see Scheinkman and LeBaron (1988).

Though the tests developed here can, in principle, be generalized to
deal with the estimated residuals from any of these models, we have
not done so. We do think this is a necessary next step, but the aim of
this article is merely to suggest the application of these new techniques
to financial data.

II. Description of the Test

We start by making more precise the notion of a ‘‘deterministic expla-
nation.’’ The state of the economy is assumed to be a vector x € R" for
some n. This state changes over time according to a ‘“‘law”’ f: R*— R",
thatis, x, . | = f(x,). The function fis often assumed to be continuously
differentiable or at least Lipschitz. We assume that the “‘orbit’’ {x,}7-¢
is bounded and that enough time has elapsed so that xo may be taken as
(almost) belonging to the ()-set generated by x,, that is,
xo = lim x,,
k—>00

for some subsequence t, — . Unfortunately, we have no clue as to
what the relevant components of x or its dimension are. In fact, at this
point we only use a single real number y, = h(x,) (the observable),
where 4 is continuously differentiable.

Clearly for some functions % (e.g., the constant function) not much
can be learned about the evolution of x, by examining the y;s. A
theorem due to Takens (1983a) can be used to show that the situation is
much better for ‘‘most’’ h’s. For each fixed N, consider

dnx) = {h(x), RLfW), - . ., AT,

2. But see LeBaron (1988).
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which maps R” into RV. If xo = x, then dpp(x) = (Yo, Y1, - - . , Yn—1), that
is, the history of the observable for the first N periods. Takens (19834q)
proves that, if N = 2n + 1, then, ‘‘generically,”’ ¢, is one-to-one, and,
further, Ddp(x) is one-to-one at each x. In other words, 2n + 1 long
histories of the y’s are observationally equivalent to the x’s. For our
purposes this will suffice, though the fact that we do not know how
large n is will complicate matters. The following definition is due to
Grassberger and Procaccia (1983a) and Takens (19835).
DEeFiniTION 1. The correlation dimension of a set

{xdi=o

is lim, _,o[InC(y)/In v], if this limit exists, where C(y) = limps_.. Car(y),

- 2 — lx — xi
Culy) = MM = 1) lsiZj:SM 0y — |x; — x),

and

0@ =0 ifa<o,
6@ =1 ifa=0.

REMARK 1. C(y) measures the fraction of the total number of pairs
(x;,x;) such that the distance between x; and x; is no more than .
Intuition about how the correlation dimension is a measure of ‘‘dimen-
sion’’ can be obtained by considering two examples. In the first one
(fig. 1), points of the set {x,};_, are uniformly distributed on a line
segment in R2. In the second one (fig. 2), points are uniformly distrib-
uted on a ‘‘square’’ in R2. It is clear that in the first case for v small, if
we double vy, ‘““most’’ points (i.e., all but the ones close enough to the
boundary) gain twice as many neighbors. While in the second one,
““most’’ gain four times as many neighbors.

RemArk 2. Grassberber and Procaccia (1983b) discuss properties of
this measure and its relationship with more usual measures of dimen-
sion such as the Hausdorff dimension, and so on. They also present
some estimates of the dimension of computer-generated solutions to
the Henon map, Mackey-Glass equation, and others.

Further, since ¢ is an embedding for N = 2n + 1, the correlation
dimension of the orbit z, = ¢x(x,) is the same as that of x,, provided N
is large. Thus, in principle, one can do without measurements of the un-
observable x, by utilizing, in its place, vectors z; = (yy, . . . , Vien—1)
of long enough histories (i.e., N = 2n + 1) of the observable. The
length N of the vector z, is called the embedding dimension. For each
N, we let

N-1

o = ——2s > [T 100~ bk — 3

(m - 1) I1=i<j=m k=0

where m is chosen such that m <M — N + 1.
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If {u,};_¢ is the outcome of a sequence of random experiments that
are independently and identically distributed (henceforth i.i.d.) and
have a nondegenerate density, and if w® = (u,, . . . , u;+n—_1), then the
correlation dimension of w? is N. The reader can easily convince
himself of this fact by considering the case where each experiment is
uniformly distributed on [0,1]. Then wY is uniformly distributed on
[0,11%, and, as in remark 1 above, the dimension of w¥ is readily seen to
be N. The proof goes through for the case of an ergodic Markov pro-
cess with a nondegenerate stationary density. Brock (1986) establishes
an analogous result for other measures of dimension. Thus, the finding
of a correlation dimension that does not grow with N is indicative of
the existence of a deterministic explanation, although one cannot rule
out all random phenomena.

In reality, however, the presence of a finite data set presents serious
limitations. In estimating the correlation dimension from the data, one
plots log[Cys(y)] against log(y), where M is the cardinality of the data
set. Clearly this cannot work for vy too small with a finite.data set, and
thus one must be content to find a linear segment ‘‘close to’’ zero.
Takens (1984) proposes a different method of estimating, which when
tried yielded similar results. Takens’s estimates consist of first assum-
ing that the distance between z,s are independent and distributed as
v~ ¢, and then estimating d by maximum likelihood. There are some
problems with this estimate. First, once the embedding dimension ex-
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ceeds 1, the z,s are not independent even if the original data is i.i.d.
Second, the Takens estimator is an unbiased estimator of 1/d, and
therefore it is an upward biased estimator of d. Nonetheless, this esti-
mate works rather well on numerical examples, and we present it here.

Much work has also been done in the study of deterministic systems
“‘contaminated’’ by random noise. By looking at deterministic systems
where noise distributed uniformly (—a,a) is added to a system of
known dimension, many researchers (e.g., Zardecki 1982; Ben-
Mizrachi, Grassberger, and Procaccia 1984; and Atten and Caputo
1985) have found that the graph of log[C%,(y)] against log(y) has the
slope of the embedding dimension for y < a and the slope of the
dimension of the deterministic system above that level. Thus, at a
certain scale, one observes behavior as in a random system, while at a
larger one, one sees the deterministic motion. Since our data set is
much smaller than the ones studied in these references, we performed
similar experiments with the number of points equal to the cardinality
of our data set and obtained very clearly the same type of results.
Takens (1984) also discusses the effects on his measure in the presence
of noise. He concludes that it also raises the estimate of the dimension.

Let us write CN(y) for the quantity defined in definition 1 above when
the embedding dimension is N. The quantities S™¥*(y) = CV*(y)/
C™(y) have an interesting interpretation when the supremum norm (sup
norm) is used. They give you an estimate of the conditional probability
that

su = | =
OSiSpN Iytl“ ytzﬂl vY>
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given that

sup I}’tH,. - J’t“,.l =¥v.
O=i<N-—-1
This is just the conditional probability that two points are close given
that their past N histories are close. For fixed v, SV should be indepen-
dent of N if the y,s are independent (note that this does not assume the
existence of a density). On the other hand, if past y,s help predict future
ones, SV will tend to increase with N (this of course depends on the
system not expanding ‘‘too much’’). Thus the behavior of SV, as N
varies, gives us a measure of departures from independence.

Until recently there was no distribution theory for these types of
statistics. This gap has been filled by Brock, Dechert, and Scheinkman
(1986) (BDS), who introduced asymptotic distribution theory for some
of these types of statistics. We will present two of these statistics for
the weekly stock returns data that are closely related to CN(y) and
SN(y).

Let x, be a series of length M, and choose an m such that m = M —
N + 1. This m is used to shorten the original series so that the embed-
ded series is well defined. Under the assumption that x, is independent,
identically distributed, BDS prove for any N > 1, y > 0, as m — o,

VmiChiy) — [CLIM 2 N, Vo),
Vs — L1 S N, V).

Then they develop consistent estimators for V¢ and V. Formulas for
these estimators are in the Appendix.

III. Description of Data and Procedure

The initial data set consisted of 5,200 + daily returns (including divi-
dends) on the value-weighted portfolio of the Center for Research in
Security Prices at the University of Chicago (CRSP). From this initial
data set we constructed a weekly returns series. The latter is, in princi-
ple, less “‘noisy’’ since the daily returns are sensitive to weekend ef-
fects. Most of our results concern the weekly data but we also looked
at other series constructed from the original data set.

We decided to compare the correlation dimension, the measure SV ,
and the Takens estimate for the data with the ones from computer-
generated solutions to possible alternative models. Comparison data
sets were created in the following manner: first, returns were regressed
on past returns. Then we sampled (with replacement) from the resid-
uals and rebuilt our data set using the estimated linear system and the
same initial values as in the real data (from now on we refer to such
data as ‘‘scrambled data’’). Several possible dimensions for this linear
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model were tried. Note that these ‘‘random’ data were in fact determin-
istic since they were generated by computer. However, random number
generators mimic randomness well, and in our case the resulting
‘“data’’ seemed much more random than the initial ones.>

For the BDS statistics, we compare statistics measured on residuals
of linear models fit to the original series with residuals of linear models
fit to the above-mentioned scrambled data. (This process is closely
related to Efron [1982, ch. 5].) This careful procedure is followed for
two reasons. First, the BDS statistics are sensitive to any deviation
from i.i.d., linear or nonlinear, and we want to make sure that linear
effects have been removed. Second, fitting a linear model to a time
series induces some dependence in the residuals. By comparing our
actual data with residuals of fitted models, we can determine if this
dependence is affecting our results.*

There are, of course, no a priori estimates for the dimension of the
state vector. This leads to difficulties in selecting the embedding di-
mension (i.e., the length of the vector of histories we will want to
consider). This situation is made worse by the presence of noise of
unknown amplitude. For a given small vy, as the embedding dimension
is increased the fraction of pairs within +y falls for two reasons. First, it
is harder, in the presence of noise, for two long histories to be within vy
of each other. Second, even if noise were absent, with finite data an
increase in the embedding dimension by itself lowers the fraction of
points within y. Thus while for infinite data an increase in the embed-
ding dimension after a certain N would not affect the estimates, it
certainly does have an effect with the number of points at our disposal.
Hence we cannot let the data tell us about the level of noise by choos-
ing larger embedding dimensions.

An approach to this problem was a result of our belief that in reality
the relevant state vector x; is of very large (essentially infinite) dimen-
sion. By choosing an ‘‘arbitrary’’ noise amplitude y we are saying that
the movements on the data below that scale are ‘‘random,’’ and we are

3. Simple congruential random number generators are formed as follows:
z+1 = (az, + c)mod 1,

for some a, c. Thinking of the random number generator as a mapping on the unit square,
it is clear how it ‘‘looks’’ random. The graph of the random number generator would be
formed by parallel stripes covering the square. If the fineness of these stripes were small
relative to the sizes of v used, the random number generator would appear to fill the
entire space. When v is small relative to the distance between the stripes, the system will
show up as a deterministic system, which it is. With a long enough series, and small
enough vy, any random number generator will be detected using these tests, but for the
small samples used here the random number generator appears random to these tests.

4. The weekly returns data show only a weak correlation (.09) at lag 3. The numerical
results were the same whether we used the filtered or the unfiltered data. The daily index
shows a stronger correlation (.23) at lag 1, and this affected the BDS statistics. It did not,
however, affect the dimension estimate. For results on BDS statistics on fitted residuals
see Brock, Dechert, Scheinkman, and LeBaron (1988).
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trying to see whether movements above that scale could be explained
by a small number of factors. In practice, this consists of choosing -y
and embedding dimension N such that for y € |y, y + €] for some € > 0,
log CN(y) = dlog(y) + k (i.e., a line segment of slope d) and that for
embedding dimensions N + i, 1 <i =<, againlog CN(y) = dlog(y) + k,
for y € [y, ¥ + €], that is, increasing the length of past histories (the
embedding dimension) would not change the correlation dimension of
the data at scale y. We also checked whether Takens’s estimates of d '
stayed constant across dimensions and across y’s close to y.

While we were able to do this for our weekly data (and less success-
fully for the daily data), we show that for the scrambled data the
estimated d kept increasing with N even after we conceded a large role
to noise.

IV. Numerical Results

A. Results on Weekly Returns

Figure 3 presents the estimates S™(y) of the conditional probabilities
for different values of y corresponding to multiples of the original
standard deviation of the data. The value of S™(y) goes up with N for
each + until CN(y) gets too small. In figure 4, the estimates S™(y) for a
“‘typical’’ scrambled returns series is presented. Note in figure 4 S™(y)
is essentially constant until N gets large and the number of points
counted gets small, making the S™(y) ratio unstable. Figure 5 shows the
ratios S™(y)/S'(y) (where y = one-half the standard deviation of the
weekly returns) for the weekly returns, and the highest, lowest, and
median values of this ratio from a sample of 156 scrambled returns.> As
expected, the scrambled returns exhibit a ratio clustered around one.
However, the data set has the ratio outside the range of the
‘‘scrambled’’ ones. The exact same picture appears for different values
of vy. These results indicate that patterns of past returns help predict
future ones, though, of course, they do not necessarily establish that
one can use past returns to improve the prediction of future mean
returns.

In figure 6, plots of log C™(y) against log(y) for embedding dimen-
sions 1, 2, 12, and 13 are shown. In this figure, as in all of this type, a
plot for a higher dimension lies below one of a lower dimension (this is
a result of using the sup norm). Notice that the change is much higher
when one goes from dimension 1 to dimension 2 than when we go from
12 to 13. This becomes even clearer when we look at the diagram for vy
=y = .50 (o will refer to the sample standard deviation of each series).
The estimated slopes are in table 1.

5. In computing the statistics on SV*!( )/SM( ), a given scrambled return was
dropped from the sample once the number of pairs within vy dropped below 50.
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As mentioned in Section I, if a system is subject to noise distributed
uniformly on [ —a,a], then the dimension of the system should be the
estimated slope at 2a. Hence a choice of a y implies the admission of a
noise term with a standard deviation that equals

(V3/6)y.

In this case, our choice of v is such that the standard deviation of the
required noise is less than 15% of the original standard deviation of the
series. For this vy the estimated slope (5.7) is unchanged for embedding
dimensions 12, 13, and 14. It is interesting to note that if, in fact, the
state variable x, were to converge to a set of (fractal) dimension 5.7, we
may need to take an embedding dimension of 13 to obtain the correct
estimate of d. It is useful to compare these results with the one on
figure 7 where the same embedding dimensions are studied for a *‘typi-
cal’’ scrambled data set. Notice that in such embedding dimensions the
scrambled data shows no pairs which are at least as close as vy. This is
to be expected due to the ‘‘randomness’’ of the data. Notice that as
predicted the estimated slope of the scrambled weekly returns grows
with the embedding dimension (see table 1). A search through several
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TABLE 1 Dimension Estimates for Weelily Returns
Embedding Estimated Takens
Dimension Slope Estimate

Weekly returns
series (-y = .50):

9 1.0

2 1.7 1.9

12 5.7 6.3

13 5.7 6.3

14 5.7 6.3

Scrambled weekly

returns (y = .80):

1 B .6 9

2 1.2 1.7

12 9.5 10.1

13 10.6 11.2

dimensions and several possible y’s showed similar patterns for the
scrambled data.

Although the stable dimension estimates for the unscrambled data
are very interesting, we cannot be confident with the estimation of
these numbers until their properties are better understood.® What is
interesting here is the strong difference between the unscrambled and
scrambled series, indicating nonlinear dependence in the data.

It is not our purpose to investigate thoroughly the behavior of indi-
vidual stock returns. However, we did take a random sample of the
stocks on the CRSP data base and applied our procedure to their re-
turns. Of these, those of Abbott Laboratories stock were the ones that
looked most “‘random.”’ Figure 8 presents the estimates of S™(y) for
different values of y corresponding to multiples of the original standard
deviation of the data. Figure 9 presents the same estimate for a ‘‘typi-
cal’’ scrambled data set. Notice that they hardly differ, indicating the
failure of past patterns of returns in predicting future ones. Figure 10
presents the plot of log[C™(y)] against log(y) for embedding dimensions
1, 2, 12, 13. Figure 11 presents the same plots for a ‘‘typical”
scrambled data set. Table 2 under Abbott Laboratories and scrambled
Abbott Laboratories contains the dimension estimates for the series
and its scrambled counterpart. Here we fail to distinguish between
scrambled returns and the original data. It is natural to expect that
single stock returns would be subject to idiosyncratic noise that would
disappear in a comprehensive index like the one we use. In such a case
one would expect that individual stock returns would look much more
“‘random,’’ as is the case of this example.

6. See Ramsey and Yuan (1987) for some simulations of these types of estimators.
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Fic. 8.—Abbott Labs conditionals: y = .5, 1, 1.5 std. (higher curves corre-
spond to higher ¥’s).
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curves correspond to higher «y’s).
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Fi6. 11.—Scrambled Abbott Labs weekly returns: N = 1, 2, 12, 13 (higher

curves correspond to

lower N’s).
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TABLE 2 Dimension Estimates for Abbott
Laboratories Stock
Embedding Estimated Takens
Dimension Slope Estimate
Abbott Laboratories
series (y = o):
1 - .6 9
2 1.3 1.7
12 8.0 8.5
13 8.7 9.2
Scrambled Abbott
Laboratories series
(y = o)
1 .6 9
2 1.3 1.3
12 8.1 8.6
13 8.8 9.3
TABLE 3 BDS Statistics for Weekly Returns
N () Q)
2 8.2(0) 8.2(0)
3 10.7(0) 10.0(0)
4 15.2(0) 14.3(0)
5 21.2(0) 16.7(0)

Note.—Values in parentheses are explained in text.

B. BDS Statistics

Table 3 presents results for the statistics
Vm{Ch(y) — [Ch)I™

N —
c(v) Ve

and

Vm[SH(y) — CL()]
V'V '

Under the assumption of independent, identically distributed returns,
these statistics are asymptotically distributed N(0,1).

They are estimated on residuals of the weekly returns series with m
= 1,109, y = .5¢. The numbers in parentheses represent the number of
scrambled comparison runs (out of 100 runs) giving a statistic at least
as large in absolute value. Each scrambled comparison run rebuilds the
initial estimated linear model and then fits a linear model to this series,

Ny =
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estimating the BSD statistics on the residuals of this model. Table 3
clearly shows that the tests are rejecting the hypothesis that the data
are i.i.d.

C. Results on Daily Returns

The daily returns series shows strong correlation between consecutive
days. Since it is our objective to display the role of nonlinearities, we
looked at both the original daily returns and the residuals obtained after
a linear regression of returns on past returns. Figure 12 represents the
plots of log[C™(vy)] against log y for embedding dimensions 1, 2, 19, 20,
for the original series, and figure 13 shows the plots for the residual.

Table 4 presents the slope estimates for y = .90 on the residual
series. Such a y implies a readout error of 26% of the standard error of
the residual data set. Notice that this is larger than in the case of the
weekly data, but this is to be expected. Further, the estimated slope
was still somewhat sensitive to the embedding dimension, contrary to
what was achieved in the use of weekly returns.

log2CN(7)

+ 4+ +F

- ++++++++++ +
++++++
+

sttt

-3.0 et

-8.0 3

-13.0 4 } } + } + } }
5.6 6.6

log2(y)

Fi6. 12.—Daily value-weighted returns: N = 1, 2, 19, 20 (higher curves
correspond to lower N’s).
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Fi6. 13.—Daily value-weighted returns residuals: N = 1, 2, 19, 20 (higher
curves correspond to lower N’s).

TABLE 4 Dimension Estimates for Daily Returns
(Residual Series)
Embedding Estimated Takens
Dimension Slope Estimate
1 .6 9
2 1.1 1.6
19 5.7 6.4
20 5.9 6.6

Not1e.—y = 0.9c for all dimensions.

REMARK (from Brock 1986). If a system is deterministic and if €, are
residuals generated by a regression of the type

1
Yr = Z Y- + €,
i=1
then the correlation dimension of ¢, is the same as the one generated by
y,. This follows from the fact that, if y, = k(x,) and x, = f(x,_,), thene,
= g(x,_;) for an appropriate g. Based on this observation, Brock pro-



Nonlinear Dynamics 329
N
S (p
1.00 =
0.75 4+

0.50

0.25 4+

0.00 t t ! + } t } } t |
0 10 20

Fi6. 14.—Daily residual conditionals: y = .5 std.

posed a test for determinism that consisted of regressing the data on
past values and looking at the residuals. The estimated dimension
should then be the same.” Our data pass Brock’s test without any
difficulty.

Figure 14 plots S™(y) for the residuals of a regression of returns on
past returns with y = .50. Again S™(y) goes up, indicating that patterns
of past residuals help predict future ones.

D. Comparison with ARCH Models

The ARCH models (see Engle 1982) are a nonlinear stochastic alterna-
tive that has been fit to economic time series. A version of such models
is given by the following points: (1) The distribution of y, conditional on
past y,s is normal with mean ¥, and variance v,; 2) 5, = y + ay,_; + B
Ve Q) Y, =V + 3 8(yi—i — ¥,—.)> We estimated (by maximum
likelihood) a model following points 1, 2, and 3 on our weekly data set.

7. It should be noted that Brock’s test covers the purely deterministic case. If one
allows noise to enter as iny, = h(x,) + w,, and x, = f(x,_,), where p, is independent over
time and w, is uniformly distributed in [—a,d], then ¢, = y, — ay,_, will satisfy €, =
g(x;—1) + m — ap,—y, and thus €, will be subject to a ‘‘larger’’ error.
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Using the Akaike information criteria, we selected an optimal I = 11.
We then looked at the residuals

€= — 7:)/\/‘_’_ts

which according to the model should be distributed as N(0,1). We also
looked at ‘‘scrambled’’ residuals and to data generated by using the
ARCH model with the estimated coefficients.

ReMarks. Following Brock’s remark discussed above we can see
that, if y, = h(x,) where x,, ; = f(x,), thene, = g(z,) where z, = F(z,_).
It suffices to choose z, = (x,_r, ¥.—1, . . . , ¥.—p. But, when I is large (as it
is in the best fit), the increase on the estimated dimension will be quite
large, and with the number of data points we are dealing with it will be
hard to distinguish them from random residuals. Further, even if we
look at the residuals of an ARCH regression with a low I (say I = 1), if
errors are present (i.e., y, = h[x,] + w,), the error of the residuals will
be changed and, in particular, will no longer be i.i.d.

Figure 15 gives the estimates of the conditional probability of a typi-

N
S iy

1.00 —

0.50 ¢+

0.25 4+

0.00 +—+—t+—+—+—"F—+—+——F+——"+—+—+—+—+—+—}++—+—+—1+

Fic. 15.—Generated ARCH (11) conditionals: vy = .5, .8, .9, 1, 1.1, 1.2, 1.5
std. (higher curves correspond to higher ’s).
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cal generated ARCH run with our maximum-likelihood estimates at the
optimal I (I = 11). Notice that the curve for y = .5¢ shows that the
ARCH-generated data exhibits the ‘‘dependence’’ one expects. A com-
parison with figure 2, however, shows that the original data set exhibits
a much stronger dependence than the generated ARCH data.

Figure 16 exhibits the plots of log C(y) against log(y) for dimensions
N = 1,2, 12, and 13. As s expected from ‘‘random’’ series, one cannot
estimate the dimension at -y as low as the y used for the weekly data.
Under the entry Simulated ARCH, table 5 presents the slope estimates
for y = .80. Contrary to what happens with the weekly data, the
estimates are also quite sensitive to your choice of y. Thus the gener-
ated ARCH models look much more random.

The ARCH residuals taken from I = 11 lead to high estimated di-
mension, but this is to be expected since, in principle, one could be
adding 11 dimensions to the original dimension of the weekly data set.
To show that this resulted from the transformation of the data, we
reestimated the model for I = 1. Our slope estimates for this series at Y
= .60, and the scrambled version of this series at y = .8, are in table

N
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Fi16. 16.—Generated ARCH (11): N = 1, 2, 12, 13 (higher curves correspond
to lower N’s).




332 Journal of Business

TABLE § Dimension Estimates for ARCH Simulation
and Residuals
Embedding Estimated Takens
Dimension Slope Estimate
Simulated ARCH
(y = .8o):
12 8.3 9.3
13 8.4 9.7
14 7.6 10.0
ARCH residuals
('y = .80):
1 7
2 1.5
12 5.8
13 6.0
Scrambled ARCH
residuals
('! = .80):
1 i
2 1.3
12 8.6
13 9.1

5 under ARCH residuals. Notice that the scrambled residuals look
much more random than the original residuals.

V. Conclusion

In the early 1970s the geometric random walk commanded great re-
spect as a description of asset pricing.® Now it has been brought into
question by several different studies. Calendar anomalies have been
found at several frequencies, indicating larger expected returns during
certain periods.® LeBaron (1988) has tested some of these possibilities
and found that they are not the cause of the results seen here. The
behavior of the statistics S™(y) seems to leave no doubt that past
weekly returns help predict future ones even though they are uncor-
related. Further, it seems that a substantial part of the variation on
weekly returns is coming from nonlinearities as opposed to ran-
domness. Or, more moderately, the data are not incompatible with a
theory where some of the variation would come from nonlinearities as
opposed to randomness and are not compatible with a theory that pre-
dicts that the returns are generated by i.i.d. random variables.

8. In his well-known 1970 paper, Eugene Fama states that, ‘‘indeed, at least for price
changes or returns covering a day or longer, there isn’t much evidence against the ‘fair
game’ model’s more ambitious offspring, the random walk.’

9. Anomalies have been detected at annual (Rozeff and Kinney 1976), monthly (Ariel
1987), and weekly (French 1980) frequencies.
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The equilibrium asset-pricing theories that followed the work of
Lucas (1978) assert that asset prices p, satisfy

pe = h(x), (CH))

and

X = fX—1, po). 5.2)

Here x, is a vector of ‘‘state variables’’ (typically capital stocks), and p,
a vector of random variables. If model (5.1)/(5.2) were true and 4 and f
nonlinear, part of the movements on p, would be caused by the non-
linearities. Though special cases of these asset-pricing theories gener-
ate linear (or log-linear) equations, nonlinearities appear in general,
and they become even more important once one abandons the com-
plete market framework as in Scheinkman and Weiss (1986). It should
be emphasized that most of the mathematics discussed above does not
exactly apply to (5.1) and (5.2) but to

Pr = h(x) + W, (5.3)
and

xe = flx—1). (5.4

Here ., is an additive measurement error on the price series rather than
a shock to the ‘‘state variable.”” Hence the task of showing that the
data is compatible with (5.1) to (5.2) (in a nonlinear version) is not
complete.'®

More important, we hope to have convinced the reader that the
techniques used here can be useful in testing the ‘‘whiteness’’ of obser-
vations and of residuals of proposed models. We presented two tests.
The first involves estimates of the conditional probabilities that two
N-length “‘histories’” of the variable y, are close to each other given
that the first N—1 elements of the ‘‘histories’’ are close enough. The
second compares the behavior of the plots of log CN(y) versus log vy
for the proposed series versus the ‘‘scrambled’ series. This last one
can be done in two different ways when testing a model: we can either
look at the scrambled residuals, or we can look at generated data
obtained from the model and the scrambled residuals.

Using these tests, we examined a series of weekly returns, one of
daily returns and a proposed ARCH model. We also compared, as
suggested by Brock, the behavior of log C™(y) versus log(y) for the

10. We did perform numerical experiments. We let f(x,0) = 2x of 0 =< x < !, and
f(x,0) =201 — 0)if a<x=1,and f(x,1) = (I/N) xif 0 = x = \, and f(x,1) = [1/(1 — M)
— x)if A <x =1, where A € (0,1). We studied the output of x,_; = f(x,,1,), where p, €
{0, 1} and p, was i.i.d. with prob{w, = 1} = %. For X close to Y4, the output looked for our

test as if it was the outcome of x,, ; = f(x,,0) + v,, provided we chose a low embedding
dimension.
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original data set and the residuals of the proposed models. The results
point towards the presence of nonlinearities.

If one adopts a strictly ‘‘rational expectations’ view, that is, that
agents know the price-formation mechanism, even though economists
do not, the nonlinearities may well be the result of a ‘‘law’’ as in (5.1)
and (5.2). In this case, actual randomness of the returns on the CRSP
portfolios studied here is much smaller than what it seems from a linear
point of view. As several researchers (see Mehra and Prescott 1985)
have pointed out, the risk premia on securities seem to be too large
relative to the variability of their returns, unless one assumes absurdly
high risk aversion on the part of agents or abandons the hypothesis of
complete markets (Scheinkman and Weiss 1986). If, in fact, most vari-
ability is ‘‘predictable,’’ then even larger risk aversion is required in a
complete-markets framework. One should note, however, that the
same ‘‘sensitive dependence to initial conditions’’ that makes the tra-
jectory of some deterministic nonlinear systems appear random—and
presumably increases the apparent volatility of some nonlinear sys-
tems subject to random shocks—also makes the tasks of forecasting
future values and of understanding the law of motion of the system
extremely difficult. Hence it seems unlikely that even the most rational
agents in such a case could come close to understanding the law of
motion. A less strict view of rationality may admit that agents are
constantly ‘‘learning’’ about the true law. As agents learn more charac-
teristics of the returns process, arbitrage will change the law itself. This
of course means that, unless one can model ‘‘knowledge’’ with a low
dimensional state variable, the description in (5.1) and (5.2) is incor-
rect, and it is unlikely that the data are generated by any fixed law
(subject perhaps to small noise). In this case it would be hard to inter-
pret the results presented here.

Appendix

This appendix presents the formulas for the estimators of the asymptotic vari-
ance of the BDS statistics used in this article. Brock, Dechert, and Scheinkman
(1986) present more general formulas for a wide range of these types of statis-
tics.

Given that x, is independent and identically distributed, BDS prove for any
N>1,y>0,asm— x,

d
Vm{Ch(y) — [CLYI} = NO,Ve),

and

d
Vm[Sh(y) = Cr(y)] = N(O,Vy).
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Now we need consistent estimators for V¢ and V. Let
C(y) = E6(y — |x; — x]l,
K(y) = E[0(y — |x: — x) 6y — |x; — xi)],

n—1
Wm) = K" — @n - C™ + 2 ) K"ICY),

Jj=1
and
cev(ng,ny) = K™ + K™ + 2K"C™™™ — (1 + 2n))C*™ — (1 + 2n)(C*™

ny

+ 2CcMtm) 4 2(2 Km—j(CZj + an—n1+2i) 4+ Kmin(a,n2—j)

=1
n—1
X Cm+n2—2 min(ny,n2—j) + K CZ]) +2 Z K"2—J CZI'
j=nm+1,
+ [Kmin(m,nz—j)][cn|+nz—2 min(m,m—j)]}.
Let
2(1:1 = V(l),
2(2:2 = V(N),
and
3% =25 = %lev(1,N) — wW(1) — v(N)];
then

V. = (-NCN~1, DTSE(-NCN 1, 1).
Further, let

35 = w(),
35 =vN - 1),
2§3 = V(N)9

3% = 35 = Ylev,N — 1) — v(1) — w(N — 1)],
3% = 2§ = %lev(l,N) — w(1) — v(N)],
and
35 = 3% = YleviN — LN) — w(N — 1) — w(N)];
then
Vs = (=1, =C*N, C'"MT35(~1, -C*7N, C'™M).

In computing V¢ and Vg, any consistent estimator for C(y) and K(y) may be
used. We choose to use the U-statistic estimators for each. For C(y) this is just



336 Journal of Business

Cl(y) already introduced. For K(y), we use

— 6 . .
Km('y) - n(n — 1)(n — 2) 15,-<j2<k5m hy(xnxjnxk)a
where
hy(x,y,2) = W0y — |x — yDO(y — |x — zDb(y — |z — ¥D].
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