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Nonlinear Predictability of Stock Returns Using
Financial and Economic Variables

Min QI
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Inspired by the linear predictability and nonlinearity found in the finance literature, this article
examines the nonlinear predictability of the excess returns. The relationship between the excess
returns and the predicting variables is recursively modeled by a neural-network model, which is
capable of performing flexible nonlinear functional approximation. The nonlinear neural-network
model is found to have better in-sample fit and out-of-sample forecasts compared to its linear
counterpart. Moreover, the switching portfolio based on the recursive neural-network forecasts
generates higher profits with lower risks than both the buy-and-hold market portfolio and the
switching portfolio based on linear recursive forecasts.

KEY WORDS: Ex ante forecasting; Neural networks; Recursive modeling; Stock-market predic-
tion; Switching portfolio; Trading profits.

Many recent studies find that stock returns can be
predicted—for example, the articles by Campbell (1987),
French, Schwert, and Stambaugh (1987), Fama and
French (1989), Balvers, Cosimano, and McDonald (1990),
Breen, Glosten, and Jagannathan (1990), Cochrane (1991),
Ferson and Harvey (1993), Glosten, Jagannathan, and
Runkle (1993), and Pesaran and Timmermann (1995). Pub-
licly available information, such as financial time series data
and macroeconomic variables, can predict a significant por-
tion of stock returns. Despite the difficulty in economic in-
terpretation, the conclusion holds across international stock
markets as well as over different time horizons.

Using a recursive linear regression modeling approach,
Pesaran and Timmermann (1995) examined the robustness
of the evidence on predictability of U.S. stock returns by
simulating the decision process of an open-minded investor
who, at each point in time, uses only historically available
information and a predefined model-selection criterion to
select a set of economic factors. The chosen set of vari-
ables is then used to make one-period-ahead prediction of
excess returns, and the resulting recursive forecasts are em-
ployed to make investment decisions. They find that the
predictive power of various economic factors over stock re-
turns changes over time and tends to vary with the market
volatility.

This research extends that of Pesaran and Timmerman by
changing the investor’s choice set. Instead of being open-
minded in selecting economic factors, the investor is liberal
in selecting the functional form through which the chosen
economic factors predict stock-market returns. The investor
is not confined to linear models; he or she is free to choose
from a set of linear and nonlinear models.

Neural networks (NN’s) are an ideal choice for flexible
nonlinear modeling and are gaining attention in the area of
stock-return prediction. As will be reviewed in Section 1,
the existing literature focuses primarily on prediction us-
ing past returns or technical indicators that are generated
from past returns, no fundamentals, or macroeconomic vari-
ables. Given the numerous empirical findings that stock re-
turns are linearly predictable using some financial and eco-

nomic variables, the current research is intended to gauge
the usefulness of nonlinear models in stock-return predic-
tion using these financial and economic variables. Many
financial series have recently been found essentially nonlin-
ear in nature. [See Abhyankar, Copeland, and Wong (1997)
for a'summary of published nonlinearity test results.] These
findings provide strong motivation for assessing the pre-
dictability of stock returns using nonlinear models. The re-
sults of this study should shed some light on whether the
well-documented nonlinearity could have been used to pro-
vide accurate forecasts of the stock-market returns.

The objectives are (a) to compare the goodness of fit of
the linear regression (LR) and nonlinear NN models, (b) to
compare the predictive performance of various forecasts,
and (c) to test the profitability of the switching portfolios
based on alternative forecasts.

1. METHODOLOGY

In this research, the investor is assumed to believe that
stock returns can be predicted by means of a set of finan-
cial and macroeconomic indicators but does not know the
“true” underlying specification, let alone the “true” param-
eter values. In this case, the best the investor can do is to
search for a suitable model specification among the set of
models that are believed a priori to be capable of predicting
stock returns. As time goes on and the historical observa-
tions available to the investor increase, the investor updates
the forecasting model.

Pesaran and Timmermann (1995) simulated the investor’s
search for a linear forecasting model by applying standard
statistical and financial model-selection criteria to the set
of 2* different linear regression models spanned by all pos-
sible permutations of the k factors {z1,z3,...,zx} using
only information that is publicly available at a particular
point in time. The best model is then chosen to make a
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one-period-ahead forecast. For their set of nine regressors,
this means comparing 2° = 512 models at each point in time
and over the period 1959(12) to 1992(11). This gives a to-
tal of 202,752 regressions to be computed. Despite all these
computations, the model with all nine regressors is viable
among the various models based on various selection cri-
teria in terms of market timing and economic significance.
This article proposes a change in the dimension of the in-
vestor’s search—from among combinations of regressors to
alternative functional forms. Instead of being confined to a
linear model and only allowed to search for the best subset
of regressors at each point in time, the investor is free to
choose whatever functional form best describes the under-
lying relationship between the excess returns and the nine
financial and economic variables. A similar search proce-
dure as given by Pesaran and Timmermann (1995) was con-
ducted for the NN model at each particular point in time.
The selected NN model almost always contains all nine fi-
nancial and economic variables, and the results are robust
no matter which model-selection criterion—such as R?, ad-
justed R2, direction accuracy, mean absolute percentage er-
ror, Akaike information criterion, and Bayesian information
criterion—is used. Therefore, in this article I only focus on
the search of the functional form rather than the choice of
the subset of the nine financial and economic variables.

This is accomplished by artificial NN modeling. The ben-
efit of an NN model is that it is a universal approximator,
which can approximate any functional form arbitrarily well.
An NN allows the investor to recursively approximate the
best model specification and use it to make a recursive fore-
cast, without having to know the “true” underlying specifi-
cation and the “true” parameter values.

The recursive modeling approach is used to update the
information set once the new data become available. The
estimation and prediction were carried out in an ex ante
(or real time) fashion so that data available at time ¢ do
not contain information that could have “leaked” in from
future time periods. Let X;_; be a vector of financial and
economic variables available at time ¢ — 1 that are used to
explain p;, the excess return on the S&P 500 index at time
t; a general model of excess returns can be written as

Pt = f(Xt—Ivot) + €t, (1)

where f represents the functional relationship between
X;_1 and py, 6; is a vector of parameters, and e; is an er-
ror term. f can be a linear function, or a set of linear and
nonlinear functions, such as a three-layer feedforward NN.
Let 6; be the estimated values of the parameter set 6, based
on sample information; then the conditional forecast for the
excess return in time ¢ + 1 based on X; is

pr1 = f( Xz, ). )

The estimation and prediction are carried out recursively
once new information becomes available. This recursive
procedure allows the investor to adapt to the changing fi-
nancial and economic conditions.

The present research is intended to gauge the usefulness
of alternative linear and nonlinear models in stock-return
prediction using financial and economic variables, with par-
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ticular attention to nonlinear NN’s forecast in light of the
profuse evidence of financial nonlinearity. The linear and
NN models are specified in greater detail as follows.

1.1 The Linear Regression Model

Linear regression is by far the most popular model in
studies of stock-return prediction using financial and eco-
nomic variables. It is easy to estimate and interpret, and the
statistical properties of its estimators are readily available
for statistical inference and hypothesis testing. With rela-
tively low computational cost, it produces reasonably good
forecasts across a diverse set of series. Therefore, the LR
model is included in the investor’s choice set here. The LR
model can be written as

pt = ﬂéXt—l + e (3)

Let 3; be the vectors of regression coefficients estimated
from the information available at time ¢; then the condi-
tional forecasts for period ¢ + 1 will be

per1 = Bi Xs. 4)
1.2 Neural Networks

NN’s are a class of generalized nonlinear nonparametric
models inspired by studies of the brain and nerve system.
The comparative advantage of NN’s over more conventional
econometric models is that they can approximate any non-
linear (or linear) function to an arbitrary degree of accuracy
with a suitable number of hidden units through the compo-
sition of a network of relatively simple functions (Hornik,
Stinchcombe, and White 1989, 1990; White 1990; White,
Gallant, Hornik, Stinchcombe, and Wooldridge 1992). The
recent development in NN theory even allows the construc-
tion of asymptotically valid prediction intervals (Hwang and
Ding 1997). The interested reader is directed to Kuan and
White (1994) for a detailed discussion of artificial NN’s and
their application in economics. NN’s are appealing in finan-
cial applications in which there exists clear nonlinearity in
financial variables yet very few testable models are able
to account for the nonlinearity. Some representative stud-
ies are those of White (1988), Hutchinson, Lo, and Poggio
(1994), Swanson and White (1995, 1997), Gencay (1998,
1999), and Qi and Maddala (1999). Although applications
in option pricing and bankruptcy prediction have benefited
from NN’s, limited success has been achieved for stock-
return prediction (Qi 1996).

For IBM daily stock returns, White (1988) found that
the NN models wildly overfit in sample, with no ability to
forecast out of sample. For monthly New York Stock Ex-
change stock-index returns, Chuah (1993) found no market
timing ability, and the forecast errors of the NN are not
significantly different from those of the benchmark linear
model. Nevertheless, the network forecasts are able to gen-
erate a much larger profit than its linear counterpart and a
buy-and-hold strategy. Gencay (1998) and Gencay and Sten-
gos (1998) found strong evidence of predictability of daily
Dow Jones Industrial Average Index returns using NN’s
with the past buy and sell signals of the moving average
trading rules.
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All of these applications of NN’s use only delayed stock
returns or technical indicators that are generated from past
returns, no fundamentals, or macroeconomic indicators.
Given the numerous empirical findings that stock returns
are linearly predictable using some financial and economic
variables, an NN with these input variables is an ideal
choice for investors.

Despite the many desirable features of NN’s, construct-
ing a good network for a particular application is not a
trivial task. Just like any other nonparametric model, it is
subject to underfitting and overfitting. In addition, due to
the relatively large number of parameters and the nonlin-
earity inherent in these specifications, the objective function
is unlikely to be globally convex and can have many local
minima. Constructing and estimating an NN model often in-
volve the choices of an appropriate architecture (the number
of layers, the number of units in each layer, and the connec-
tions among units), the selection of transfer functions of the
middle and output units, the training algorithm, and the ini-
tial weights, and so forth. It has been widely accepted that
a three-layer feedforward network with an identity trans-
fer function in the output unit and logistic functions in the
middle-layer units can approximate any continuous func-
tion arbitrarily well given sufficiently many middle-layer
units. Thus, the network used in this research is a three-
layer feedforward one. The inputs X (similar to regressors
in a linear regression model) are connected to the output p
(similar to the regressand) via a middle layer. The network
model can be written as

pr = f(Xi—1,04,0:) +es

I

n k
ags + Z ajilogsig (Z BijtTit—1 + ﬂOjt) +et, (5)

j=1 i=1

where n is the number of units in the middle layer, & is
the number of inputs, logsig is a logistic transfer function
logsig(a) = 1/(1 + exp(—a)), o represents a vector of the
coefficients (weights) from the middle to output layer units,
and g3, represents a matrix of the coefficients from the input
to middle-layer units at time ¢.

The initial values of o; and (3; are generated with the
Nguyen—Widrow method, which chooses initial values so
that the active regions of the layer’s units will be distributed
roughly evenly over the range of input space. As a result,
fewer units are wasted and training works faster compared
to purely random initial values. Technique details are given
in Appendix A.

The NN is trained by Levenberg-Marquardt algorithm,
the fastest method for training moderate-sized feedforward
NN’s (up to several hundredweights). To prevent overfit-
ting, Bayesian regularization (MacKay 1992) has been im-
plemented in the training algorithm that provides a measure
of how many network parameters are being effectively used
by the network no matter how large the total number of pa-
rameters in the network becomes. This procedure prevents
overfitting and produces networks that generalize well and
thus eliminates the guesswork required in determining the
optimum network size. See Appendix B for more infor-
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mation on Bayesian regularization. Based on both rule of
thumb and experimentation, the number of middle units is.
set to be 8. The network is recursively estimated in the
same fashion as the linear regression. The corresponding
one-step-ahead conditional forecasts are

pro1 = f(Xy, G4, B)

n k
= do¢ + ) djelogsig (Z Bijexie + BOjt) ()

Jj=1 =1
2. DATA

Xi-1={DY:_1,EP;_1,11;_1,11; 5,112, 1,112, o, m¢_o,
AIP;_5, AM,;_,} are the nine financial and economic vari-
ables that are used to explain p;, the excess returns on the
S&P 500 index at time ¢. DY is the dividend yield, EP is
the earnings-price ratio, I1 is the one-month Treasury-bill
rate, 112 is the 12-month Treasury-bond rate, r is the year-
on-year rate of inflation, AIP is the year-on-year rate of
change in industrial output, and AM is the year-on-year
growth rate of narrow money stock. The macroeconomic
indicators such as AIP and AM are computed using 12-
month averages to reduce the impact of historical data re-
vision on results. As noted by an anonymous referee and
by Swanson and White (1997), the historically revised data
may contain useful information that investors do not have
available at the time but that has been allowed to “leak” in
from future time periods. It is difficult to weigh the impact
of the data-revision problem and the effectiveness of the
moving average correction procedure used in the present
study. Because our focus is to show that nonlinear models
can improve forecast accuracy over its linear counterpart,
however, the comparison between the two models should
not be largely affected because the same data are used in
these two models. Both models are subject to the same bias
(if there is any). Because the dividend and earning yields are
based on 12-month moving averages, only a one-period lag
of these variables was included in the base set. The delay in
the publication of macroeconomic indicators means that the
most recently available values must be included in the base
set with a two-month time lag. To allow for the possibil-
ity that changes in interest rates rather than their absolute
levels affect stock returns, a two-month, as well as a one-
month, lagged value of the interest variables is included.
Finally, following the standard practice in the stock-return
literature, excess return (p;) is calculated by capital gain
plus dividend yield minus the one-month Treasury-bill rate.
pt = [(P¢ —Ps_1+Dy)/Py_1] —I1;_1, where P; is the stock
price, D; is dividends, and I1;_; is the return from hold-
ing a one-month Treasury bill from the end of month ¢ — 1
to the end of month ¢. The share repurchases and takeover
distributions considered in the broad definition of dividends
(Ackert and Smith 1993) are captured by the capital-gain
portion of the stock returns; thus, the broadly defined div-
idends they suggested are irrelevant in the present study.
The dataset has the same definition and sources as those
used by Pesaran and Timmermann (1995). Some summary
statistics and results of nonlinearity tests are presented in
Table 1.
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Table 1. Summary Statistics and Nonlinearity Tests of the Data.
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BDS BDS
Min. RESET  RESET (m= 2 (m=2,
Mean Std. Max. Skewness  Kurtosis  JB test LB(5) Tsay (k=2 (k = 3) e=o0) e =0/2)
o .0059 .0424 —.2206 —.2895 4.9578 81.28 6.9593 1.7455 9.7644 5.1451 .0910 447
.1628 (.00) (.22) (.19) (.00) (.01) (.93) (.65)
DY .0032 .0007 .0022 .8813 2.8480 61.04 2037.14 .7533 7.9311 7.7711 —-3.6018 —2.089
.0053 (.00) (.00) (.39) (.01) (.00) (.00) (.04)
™ .0356 .0369 —.0161 1.2372 3.8084 132.14  2265.65 1.9237 8.5871 11.6272 19.351 —8.253
1439 (.00) (.00) (.12) (.00) (.00) (.00) (.00)
AlP .0325 .0491 —.1011 —.4418 2.6360 17.81 1847.79  3.1875 19.942 13.2802 —2.8235 —4.083
1276 (.00) (.00) (.01) (.00) (.00) (.00) (.00)
I 5.314 2919 .3550 .9419 4.0327 90.00 1996.10 6.1399 13.268 11.0284  —3.4637 .938
. 16.146 (.00) (.00) (.01) (.00) (.00) (.00) (.35)
2 6.159 3.030 .6330 .6984 3.3417 40.32 212420 6.0071 13.084 12.7673 —.1430 4177
15.812 (.00) (.00) (.01) (.00) (.00) (.87) (.00)
EP .0064 .0021 .0032 9157 2.9422 65.47 215424  1.7938 3.9586 8.1465 —8.9579 —5.046
.0125 (.00) (.00) (.18) (.05) (.00) (.00) (.00)
AM .0555 .0267 .0040 —.5597 2.0251 4297 229272 5.3379 17.270 12.4799 10.213 —3.799
.0958 (.00) (.00) (.00) (.00) (.00) (.00) (.00)

NOTE: Numbers in parentheses are p values. JB test is the Jarque-Bera (1987) test for normality; LB(5) test is the Ljung-Box (1978) test for autocorrelation up to the order of 5; Tsay is Tsay’s
(1986) test for nonlinearity; RESET is Ramsey’s (1969) regression specification error test for nonlinearity; BDS is the test of Brock, Dechert, Scheinkman, and Lebaron (1996). All tests for nonlinearity

are performed on the residuals of a prewhitening autoregressive model (order chosen by AIC or BIC).

It is evident from Table 1 that all variables are asym-
metrically distributed: Excess return (p), change in indus-
trial production (AIP), and change in narrow money stock
(AM) are right skewed, and the rest of the variables are
left skewed. Although excess return, inflation rate (), one-
month Treasury-bill rate (I1), and twelve-month Treasury-
bond rate (I112) are leptokurtic or slim-tailed, dividend yield
(DY), growth rate of industrial production (AIP), earnings-
price ratio (EP), and money growth rate (AM) are platykur-
tic or fat-tailed. The normality of all variables is strongly
rejected by the Jarque-Bera test. Except for the excess re-
turns, all variables exhibit strong autocorrelation according
to the Ljung—Box test of order up to 5. As is well known,
the significance of the Ljung—-Box test could also be due to
the autoregressive conditional heteroscedasticity (ARCH)
effects, in which case the series are nonlinear in variance.
According to Tsay’s test for nonlinearity, half of the eight
variables show strong evidence of nonlinearity. Ramsey’s
regression specification error tests (orders 2 and 3) show
strong evidence of nonlinearity for all variables. All vari-
ables except p and 112 show significant nonlinearity by the
BDS test with embedding dimension m = 2 and the neigh-
borhood parameter ¢ = 0. With € = ¢/2 and m = 2, the
BDS test statistics are highly significant for all variables
except p and I1. The results confirm the evidence of non-
linearity in returns on the S&P 500 index of different hori-
zons found by other studies summarized by Abhyankar et
al. (1997).

3. RESULTS OF RECURSIVE IN-
SAMPLE ESTIMATION

The sample period goes from January 1954 to December
1992 and contains a total of 468 observations. The recursive
forecast starts in January 1960 and ends in December 1992;
therefore, a total of 396 recursive estimation and one-step-
ahead forecasts have been made by both the linear and the
NN models.

The recursive model estimation and forecasting proceeds
as follows: The linear and NN models are estimated with
observations over the 1954(1) to 1959(12) period, and the
parameter values are used to forecast excess returns for
1960(1). To forecast excess returns for 1960(2), the proce-
dure is repeated for both models using monthly data over
the period 1954(1) to 1960(1), and so on. The recursive pro-
cedure simulates the search process that the investor could
have accomplished in real time to account for the possible
structural change.

Five traditional measures are used to compare the fit and
the forecasting accuracy of alternative models:

I RMSE = /1/T X7, (i — i)™

The root mean squared error between the actual and the
fitted (in-sample) or predicted (out-of-sample) returns.

2. MAE = 1/T S |pi — pil:

The mean absolute error between the actual and the fitted
or predicted returns.

T
3. MAPE = 1/T Y |(pi — p:)/pil :

=1
The mean absolute percentage error between the actual and

fitted or predicted returns.
4.

S (pi — P)(p— p) :
V2 (pi — P2V X (pi — p)?
The Pearson correlation coefficient between the actual and

the fitted or predicted returns.
5. Sign = 1/T 3" z;, where

,_{ L if pit1 - piv1 >0,
2 =

CORR =

0 otherwise.

The proportion of times the sign of excess returns is cor-
rectly forecasted.
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Table 2. Average In-Sample Model Fit Measures
Across 396 Recursive Estimations

Model RMSE MAE MAPE CORR Sign
NN .0344 .0274 1.8242 .4555 .6763
LR .0360 .0284 1.8622 .3915 .6545

Because a total of 396 recursive estimations and one-
period-ahead forecasts have been carried out, it is impossi-
ble to report all the details of the results. Table 2 reports
the average of each of the five measures across all the re-
cursive estimations by both the LR and NN models. By all
measures, the NN model provides better fit to the data than
the LR. The RMSE’s, MAE’s, and MAPE’s are obviously
smaller and the Pearson correlation coefficient and the per-
centage of correct signs are larger for the NN than for the
LR model.

Some graphic displays of the main results are provided
to see how the fit of these two models changes over time.
Figure 1 shows the RMSE of different models. The RMSE
of the NN model (in solid line) is much more volatile than
that of the LR model (in dotted line), especially after the
middle 1970s. One interesting observation is that, prior to
the middle 1970s, the RMSE of the linear model is actually
slightly better than the NN. The superior RMSE of the non-
linear NN model primarily occurs after the middle 1970s.
Substantial increases in RMSE appear in 1962, 1974, and
after the October 1987 crash. The time plot of the percent-
age of correct signs has a similar pattern (Fig. 2).

The better fit of the nonlinear NN model indicates that
the NN model is able to capture substantial nonlinearity
that cannot be fully captured by linear models. The NN in-
sample explanatory power almost certainly must be better
than that of the LR model, however, because there are many
more free parameters in an NN model. The better fit of a
neural net may therefore be due to overfit, in which case
a model may have superior in-sample fit but mediocre -out-
of-sample performance.

4. RESULTS OF RECURSIVE
OUT-OF-SAMPLE FORECASTS

Figure 3 shows the time plots of the actual excess returns,
and the recursively predicted excess returns based on the

0.038

0036

0.034

0.032

0.03

0028

0.0286

0.024 - L N " " N " " " N " N " L
60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92

Figure 1. RMSE of the In-Sample Fitted Excess Returns from the
Recursive Linear Regression (LR) and Neural Network (NN) Models,
1960(1) to 1992(12): , NN; , LR.

-0.15

-0.25 —

423

Percentage of correct signs

80 82 84 LY ] LY 70 72 T4 76 78 80 82 84 88 L] 90 82

0.5 . U

Figure 2. In-Sample Percentage of Correct Signs of the Alternative
Recursive Models, 1960(1) to 1992(12): , NN; ———, LR.

NN and the linear regression models. The top panel of the
figure shows the actual excess returns (in dotted line) and
the recursive NN forecasts (solid line). The bottom panel
shows the actual excess returns (dotted line) and the recur-
sive linear predictions (solid line). Though both the recur-
sive linear and nonlinear forecasts appear to be less volatile
compared to the actual excess returns, they do capture some
general patterns of the actual excess returns. All forecasts
show relatively high volatility during the early 1980s. This
may reflect the changes in the Federal Reserve’s operating
procedure between 1979 and 1982 that resulted in highly
volatile nominal interest rates.

The predictive performance of the NN and the LR mod-
els in the whole forecast period and the three subperiods
are summarized in Table 3. Panel A reports the overall
performance measures in the whole forecast period from
1960(1) to 1992(12). Compared to the linear forecasts, the
nonlinear NN forecasts have smaller RMSE, MAE, MAPE,

Out-of-sample forecast

-0.2

80 8.2 6.4 e'e 6.8 7b 7.2 7‘4 7‘6 7.8 48L0 Tz 84 E‘e 8.8 9.0 9.2
Figure 3. Actual and Alternative Out-of-Sample Recursive Excess
Return Forecasts, 1960(1) to 1992(12): ———, Actual; , NN.
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Table 3. Out-of-Sample Forecast Performance of Alternative
Models, 1960(1) to 1992(12), and the Three Subperiods

Journal of Business & Economic Statistics, October 1999

Table 4. Diebold and Mariano (DM) Test of the Null of No Difference
Between the Squared Forecast Errors LR and NN Forecasts

Model RMSE MAE MAPE CORR Sign Models DM statistics p value
Panel A: 1960—1992 Panel A: 1960 to 1992
NN 0429 .0328 1.8289 2292 6237 LR vs. NN .0945 4623
LR 0430 0329 2.1095 2081 5960 Panel B 1960 1o 1969
Panel B: 1960—1969 LR vs. NN 7975 2126
NN 0352 0274 1.1150 0661 6083 )
LR 0361 0283 1.3726 .0656 5667 Panel C: 1970 to 1979
Panel C: 19701979 LR vs. NN 5350 2963
NN 0444 0345 2.5604 3067 6750 Panel D: 1980 to 1989
LR .0451 0349 3.5491 2458 6250 LR vs. NN —.9990 8411
Panel D: 1980—1989
NN 0487 0368 1.7134 2070 5750 According to Leitch and Tanner (1991), traditional mea-
LR 0476 .0359 1.3894 2287 5750

and higher Pearson correlation coefficient and percentage
of correct signs, though for both models the values of all
out-of-sample performance measures are poorer than those
in-sample. Panels B, C, and D of Table 3 report the fore-
cast performance measures for the three subperiods—1960—
1969, 1970-1979, and 1980-1989—respectively. As can be
seen, in the first two subperiods, the NN forecasts outper-
form the linear forecasts by all five performance measures.
In stark contrast, they underperform the linear forecasts in
period 1980-1989 by four out of five measures. Neverthe-
less, both models generate the same percentage of correct
signs in the last subperiod.

Table 3 also shows that, based on RMSE, MAE, and
MAPE, both the linear and the nonlinear forecasts are more
accurate in the 1960s than in the other two subperiods and
the whole period of 1960-1992. Based on the Pearson cor-
relation and the percentage of correct signs, however, both
forecasts are more accurate in the 1970s than in the rest of
the subperiods. Two conclusions thus can be drawn from the
results. First, the predictive accuracy of all models changes
over time. Second, the predictive accuracy varies with the
performance measures. A model may perform better during
certain periods and by certain measures but worse at other
times or by other measures. The relative performance based
on RMSE, MAE, and MAPE does not always agree with
that based on CORR and Sign.

To assess the statistical significance of the difference be-
tween the LR and the nonlinear NN forecasts, the Diebold
and Mariano (1995) test is used to test the null hypothe-
sis that the two forecasts have the same expected squared
errors. (I thank the associate editor and an anonymous ref-
eree for suggesting this test to me.) A consistent estimate
of the spectral density at frequency O is obtained using the
method of Newey and West (1987) with the truncation lag
set by Andrews’s (1991) AR(1) approximating rule. The re-
sults are given in Table 4. Though the NN model provides
smaller squared forecast errors than linear regression dur-
ing the 1960s, 1970s, and throughout the whole forecasting
period, the Diebold and Mariano test shows that the im-
provement is not statistically significant.

sures of forecasting performance based on point forecast
errors, such as RMSE, MAE, and MAPE, are not strongly
correlated with the profits that may be generated from the
forecast using certain trading strategies. In this research,
the percentage of correct signs is used to measure the mar-
ket timing ability of each forecast model. From Table 3, the
percentage of correct signs of both the NN and the LR fore-
casts are all well above 50%, which indicates some market
timing ability of both models.

The significance of the market timing ability is tested
using the Pesaran and Timmermann (PT) test. The PT test
is a nonparametric test that was generalized by Pesaran
and Timmerman (1992, 1994) from the Henriksson-Merton
(Henriksson and Merton 1981) test for independence be-
tween forecast and actual values. The PT test statistics and
their p values are reported in Table 5. Panel A shows that,
over the whole out-of-sample forecast period of 1960(1) to
1992(12), both the NN and linear models have significant
market timing ability, and the p values are .0000 and .0003,
respectively. Panels B, C, and D show the PT test results in
the 1960s, 1970s, and 1980s. As can be seen, the NN model
shows statistically significant market timing ability in both
the 1960s and 1970s. The market timing ability of the NN
model is less significant (p value = .1597) only during the
1980s. In contrast, the linear forecast model shows signif-
icant market timing ability only during the 1970s. Though

Table 5. PT Test of Out-of-Sample Market Timing Ability of Alternative
Forecasts, 1960(1) to 1992(12) and the Three Subperiods

Model Sign(%) PT p value
Panel A: 1960 to 1992
NN 62.37 4.5476 .0000
LR 59.60 3.4097 .0003
Panel B: 1960 to 1969
NN 60.83 1.8463 .0324
LR 56.67 1.1351 1282
Panel C: 1970 to 1979
NN 67.50 3.8350 .0001
LR 62.50 2.8136 .0024
Panel D: 1980 to 1989
NN 57.50 .9956 .1597
LR 57.50 1.1144 .1326
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the degree to which stock returns are linearly predictable
seems quite low during the relatively calm markets in the
1960s (Pesaran and Timmermann 1995), the nonlinear NN
still shows significant market timing ability during that pe-
riod.

Finally, the relative predictive power of the LR and non-
linear NN forecasts is evaluated by a simple encompassing
test [Fair and Shiller (1990), I thank an anonymous referee
for suggesting this to me]. The actual realized value of ex-
cess returns (p) is regressed on a constant, and the nonlinear
NN forecasts (pNN) and the LR forecasts (5*%). If the mod-
els all contain independent information that has power in
predicting excess returns, then the coefficients on both jNN
and p"® should be significantly different from 0. If, how-
ever, the information contained in one forecast is simply a
subset of that contained in the other, then the coefficient
on the former should be insignificant. The results from the
encompassing test are

p=.0017 + .3947 p"N 4+ 2113 pLR
(.7933)  (2.2389) (1.0837)
[.4281] [.0257) [.2792]

F = 11.5160(p value = .0000),

in which the numbers in parentheses are t ratios and the
numbers in brackets are p values. Although the intercept
and the coefficient on the LR forecasts are not significantly
different from 0, the coefficient on the nonlinear NN fore-
casts are significant at 5% significance level. The results
from the encompassing test show that the nonlinear NN
model has significant explanatory power and the informa-
tion contained in the LR forecasts is simply a subset of that
contained in the flexible nonlinear NN forecasts.

5. PROFITABILITY

As is well known, predictability does not necessarily im-
ply profitability. Whether the investor can make profit, how
much profit the investor can make, and how much risk the
investor has to bear to make so much profit depend also on
what trading strategy one uses and the magnitude of trans-
action costs. Especially when the positions are evaluated
monthly based on monthly recursive forecasts, the profits
may be eroded by transaction costs. As such, an investment
strategy that is based on recursive forecasts is likely to in-
cur higher transaction costs and may not be as profitable
as the buy-and-hold strategy. To determine whether the re-
cursive predictions could have been used to make a higher
profit than that from following a buy-and-hold strategy in
the market portfolio, a switching strategy that has been ex-
tensively employed in the finance literature is adopted. The
investor should hold equity in periods when the economic
factors suggest that equity returns are going to outperform
returns from bonds and otherwise hold bonds. The perfor-
mance measures, such as mean return, standard deviation,
Sharpe ratio, and final wealth of various switching port-
folios relative to the market portfolio and Treasury bills are
used to reveal the economic significance of alternative fore-
casting models. Assume no short selling or leverage during
trading, and transaction costs are proportional to the value
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of the trade. Transaction costs are also assumed to be con-
stant through time and symmetric with respect to whether
the investor is buying or selling assets.

Table 6 reports the trading results, including the mean re-
turn, standard deviation, Sharpe ratio, and the final wealth,
of the preceding switching strategy based on the forecasts
of alternative models. The final wealth is calculated based
on the assumption that the investor begins with $100 at
the end of 1959(12). In the case of the market and bond
portfolios, only the dividends or interests are reinvested on
monthly bases, and in the case of the switching portfolio,
funds may be reallocated between bonds and shares, de-
pending on whether a change in the sign of the excess re-
turn is predicted. The results of 0, low, and high transaction
costs are reported.

Consider first the results based on zero transaction costs.
The mean annual return on the market index over the pe-
riod 1960(1) to 1992(12) is 11.15%. The switching port-
folios based on the recursive linear and NN forecasts out-
perform the market portfolio by 2.51% and 4.44%, respec-
tively. These differences in mean returns are reflected in
the end-of-period wealth accrued to the investment strate-
gies based on reinvesting the funds in either bonds or stocks
at the end of each month. Although the final wealth of the
switching portfolio based on the linear forecasts ($7,458)
is approximately three times as large as that of the market-
index portfolio ($2,503), the final wealth generated from the
switching portfolio based on the NN forecasts ($13,820) is
more than five times that of the market portfolio. The stan-
dard deviation of the returns on the switching portfolios
based on linear and NN forecasts are 10.08% and 10.61%
(annual), respectively, which are substantially lower than
that of the market portfolio (14.90%). Combining the mean
return and standard deviation, the Sharpe ratio measures the
excess return of a portfolio taking into consideration the
risk of the portfolio. The switching portfolio based on the

Table 6. Risks and Profits of Market, Bond, and Switching Portfolios
Based on the Out-of-Sample Forecasts of Alternative Models,
1960(1) to 1992(12)

Transaction Mean Std. of Sharpe Final

costs return (%) return ratio wealth ($)
Panel A: Market portfolio

Zero 11.15 14.90 .35 2,503

Low 11.18 14.90 .43 2,463

High 11.11 14.89 429 2,424
Panel B: Bond portfolio

Zero 5.93 2.74 — 700

Low 4.72 2.74 — 471

High 4.72 2.74 — 471

Panel C: Switching portfolio based on linear forecast

Zero 13.66 10.08 77 7,458

Low 12.21 10.18 74 4,631

High 11.23 10.34 .63 3,346

Panel D: Switching portfolio based on NN forecast

Zero 15.59 10.49 .92 13,820

Low 14.08 10.52 .89 8,420

High 13.03 10.61 .78 5,963
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Figure 4. State of the Switching Portfolio: 1960(1) to 1992(12).

NN forecasts has the highest Sharpe ratio, .92. The Sharpe
ratio of the switching portfolio based on the linear forecasts
is .77, which is still higher than that of the market index
buy-and-hold portfolio (.35).

With low transaction costs of .5% on trading in stocks
and .1% in bonds, the mean returns on the switching port-
folios based on the linear and NN forecasts decline by
1.45% and 1.51% per annum. In contrast, the transaction
costs hardly affect the mean return on the market portfo-
lio because it only involves dividend reinvestment. Yet, the
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mean returns, Sharpe ratio, and final wealth of the linear and
NN switching portfolios are still much higher than those of
the market portfolio, and the standard deviations are lower.
Moreover, the switching portfolio based on the NN fore-
casts outperforms the switching portfolio based on the LR
forecasts.

Now consider high transaction costs of 1% on shares and
.1% on bonds. Although the switching portfolio based on
the linear forecasts is marginally better than the market
portfolio by measures of mean return (11.23% vs. 11.11%)
and final wealth ($3,346 vs. $2,424), it has lower risk
(10.34% vs. 14.90%) and thus a higher Sharpe ratio (.63
vs. .43). By all measures, the switching portfolio based on
the NN forecasts still outperforms both the market portfolio
and the switching portfolio based on the linear forecasts.

For switching portfolios, how often the portfolio is in
bonds, and in particular when it is in bonds, provides addi-
tional information on the market timing ability of the fore-
casts that the switching decisions are based on (I thank an
anonymous referee for suggesting this to me). Figure 4 plots
over time the state of the portfolio; “1” indicates in stocks
and “0” indicates in bonds. Although 61.11% of the time
the portfolio is in stocks based on linear forecasts, it is in
stocks 61.36% of the time based on nonlinear NN forecasts.
Of particular interest, both portfolios based on the LR and
nonlinear NN forecasts switched to bonds right before the
market crash in October 1987, which further confirms the
significant market timing ability shown by the PT nonpara-
metric test results reported in Table 5.

The performance of various portfolios is also analyzed
over the subperiods of 1960s, 1970s, and 1980s, and the
results are reported in Table 7. Under the zero-transaction-
costs scenario, the mean return on the switching portfolio
based on the NN forecasts in all three subperiods and the

Table 7. Out-of-Sample Risk and Returns of Different Portfolios for Subperiods: 1960s, 1970s, and 1980s (Annual)

Zero transaction costs

Low transaction costs

High transaction costs

Portfolios 1960s 1970s 1980s 1960s 1970s 1980s 1960s 1970s 1980s
Panel A: Mean return
Market 8.99 7.68 17.04 8.97 7.66 17.02 8.96 7.64 17.00
Bond 3.71 6.02 8.23 2.51 4.81 7.02 2.51 4.81 7.02
LR 7.91 13.95 17.57 6.12 12.78 16.00 4.80 12.15 14.85
NN 9.55 16.47 19.83 8.45 14.47 18.18 7.73 13.12 16.92
Panel B: Standard deviation
Market 11.95 15.86 16.41 11.95 15.86 16.41 11.95 15.86 16.41
Bond 1.32 1.87 2.92 1.32 1.87 2.92 1.32 1.87 2.92
LR 7.50 9.93 11.99 7.62 9.77 12.30 7.86 9.65 12.65
NN 8.50 9.18 11.99 8.52 9.22 12.20 8.59 9.31 12.46
Panel C: Sharpe ratio
Market .44 .10 .54 .54 .18 .61 .54 .18 .61
Bond — — — — — — — — —
LR .56 .80 .78 47 .82 .73 .29 .76 .62
NN .69 .99 .97 .70 .93 91 .61 .81 .79
Panel D: Final wealth
Market 2,111 1,753 4,982 2,086 1,732 4,922 2,062 1,711 4,863
Bond 1,444 1,814 2,255 1,281 1,608 2,000 1,281 1,608 2,000
LR 2,132 3,800 5,593 1,783 3,390 4,756 1,563 3,189 4,210
NN 2,487 4,841 6,975 2,227 3,980 5,895 2,074 3,490 5,166
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switching portfolio based on the linear recursive forecasts in
the 1970s and 1980s outperform that of the market portfo-
lio in the corresponding period. With low transaction costs,
although the mean return on the switching portfolio based
on the recursive linear forecast is higher than that of the
market portfolio only during the 1970s, the mean return on
the NN switching portfolio is better than that of the mar-
ket portfolio during the 1970s and 1980s. When transaction
costs are high, however, the mean return on both the lin-
ear and NN forecasts are better than that of the market only
during the 1970s. Nevertheless, during the 1970s and 1980s,
even with transaction costs the switching portfolios based
on both the linear and NN forecasts have higher Sharpe ra-
tios than the market portfolio because they have lower stan-
dard deviations in all subperiods and under all transaction-
cost scenarios. The results confirm that “if ever there was
a possibility that investors could improve their market tim-
ing based on a simple forecasting procedure ... , this was
during the volatile periods in the 1970s where macroeco-
nomic risk and volatility in nominal magnitudes, such as
the rate of inflation and nominal interest rates, mattered the
most” (Pesaran and Timmermann 1995). This suggests that
an investor can use the nonlinearity captured by an NN to
improve the forecasting accuracy for a larger risk-adjusted
return.

6. SUMMARY AND DISCUSSION

In this research a recursive modeling approach has been
applied to examine the predictability of S&P 500 index re-
turns using the LR and nonlinear NN forecast models with
monthly observations on nine financial and economic vari-
ables. The nonlinear NN approach accounts for the model-
specification uncertainty in selecting appropriate functional
forms faced by virtually all investors who try to forecast
asset returns in real time. The recursive approach allows
various models to evolve over time to account for possible
structural changes in the underlying relationships.

The nonlinear NN model not only fits the data better
than the linear model in sample, it also provides fairly ac-
curate forecasts out of sample. The recursive NN model has
smaller RMSE, MAE, and MAPE and higher Pearson cor-
relation and percentage of correct signs than the LR model
in the whole out-of-sample forecast period and in two out
of three subperiods.

The profitability of the switching portfolios based on the
linear and nonlinear forecasts has also been examined. With
zero, low, and high transaction costs, the switching portfolio
based on the recursive nonlinear NN forecasts earns higher
risk-adjusted returns than the switching portfolio based on
the recursive linear forecasts. Both switching portfolios out-
perform the buy-and-hold market-index portfolio during the
whole forecast period from 1960 to 1992. When the three
subperiods are studied separately, it is found that the out-
performance occurred primarily during the volatile markets
of the 1970s and 1980s.

This research provides clear evidence of nonlinear pre-
dictability of U.S. stock-market returns using financial and
economic variables, in addition to the evidence of linear
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predictability documented in the existing literature. This
is not surprising given the numerous findings of nonlin-
earity in financial and economic variables. The additional
complexity of the NN model and the loss of interpretation
and statistical inference seem to be compensated with more
accurate forecasts and higher profitability. The nonlinear
pattern represented by the recursively estimated NN to ac-
count for possible structure change can be used by investors
to generate accurate forecast and higher risk-adjusted
return.

Our finding of nonlinear predictability of stock returns
using financial and economic variables in a nonparametric
NN framework not only has practical value but also has
theoretical importance. Even though at this stage it is still
not clear at each point in time what is the “true” underlying
model, the nonlinear predictability we found encourages an
extensive search among a vast number of parametric nonlin-
ear models. Future research can be carried out to compare
alternative parametric nonlinear models, such as ARCH-M,
multivariate polynomial, and piecewise linear, as well as
Markov-switching models, and so forth.
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APPENDIX A: NGUYEN-WIDROW
INITIALIZATION ALGORITHM

This section gives a brief introduction to the initializa-
tion algorithm suggested by Nguyen and Widrow (1990).
Without loss of generality, consider the NN model

I

f(X,a,8)+e

n k
> ajlogsig (Z Bijzi + ﬁo;‘) +e, (A1)
=1

i=1

Y

where y is the network’s output, X is the input vector, n is
the number of middle layer units, 8; = {3;;,i = 1,2,...,k}
is the weight vector of the jth unit of the middle layer,
Bo; is the bias weight of the jth middle layer unit, «; is
the weight of the output layer that connects the jth hidden
layer unit to the output, and logsig is a logistic function
logsig(z) = 1/(1 + exp(—=z)) that is approximately linear
with slope 1 for « between —1 and 1 but saturates to 0 or
1 as = becomes large in magnitude.
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Define y;(X) to be the jth term of the sum in Equation
(A1),

k
y;(X) = aylogsig <Z Bijxi + ,BOj) , (A.2)
=1

and let Y;(U) be the Fourier transform of y;(X). Because
Y;(U) is a line impulse going through the origin of the
transform space U and the orientation of the line impulse
is dependent on the direction of the vector 3;, Y; thus can be
interpreted as a part of an approximation of a slice through
the origin of the Fourier transform F(U) of f(z). The di-
rection of 3; determines the direction of the jth slice of
F(U), and the magnitude of §; determines the interval size
in making piecewise linear approximation to the inverse
transform of the jth slice of F(U). The value of §y; de-
termines the location of the interval. Finally, «; determines
the slope of the linear approximation.

Assume that choosing initial values in such a way that
the middle layer units are scattered in the input space can
substantially improve the learning speed, and that after data
normalization the input elements range from —1 to 1. The
Nguyen—Widrow method proceeds as follows. First, the ele-
ments of 3; are assigned values from a uniform random dis-
tribution between —1 and 1 so that its direction is random.
Next, the magnitude of the weight vectors j3; is adjusted so
that each middle layer unit is linear over only a small in-
terval. Then the n middle layer units will be used to form
S slices, and I intervals per slice; that is, n = S - I. The
network weights are set so that S = I*~1. Each element of
the input vector X ranges from —1 to 1, which means the
length of each interval is approximately 2/I. The magnitude
of j3; is then adjusted as

|8j] = I =nl/k. (A.3)

The magnitude of 3; is often set to .7n'/" to provide
some overlap between the intervals. Finally, the center of
the interval is located at a random location along the slice
by setting 3, to uniform random number between —|3;]
and |3;].

1/k

APPENDIX B: BAYESIAN REGULARIZATION

Overfitting often occurs during NN training. The error
on the training sample can be made very small, but the er-
ror is large when out-of-sample data are presented to the
network. One way to improve the out-of-sample fit is to use
a network that is just large enough to provide an adequate
fit. When the network is small enough, it will not overfit
the data. The problem is that it is difficult to know before-
hand how large a network should be for a specific applica-
tion. A recent development in the prevention of overfitting
is Bayesian regularization suggested by MacKay (1992).
This involves modifying the objective function by adding a
term that consists of the mean of the sum of squares of the
network coefficients. For the NN represented by Equation
(A.1), the objective function with Bayesian regularization,
MSEBR, becomes

MSEBR = YMSE + (1 — 7)MSW, (B.1)
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where MSE = 1/T 3"}, ¢?, the usual NN objective func-
tion, MSW = 1/(n(k+1))(X7_, 02 + 35 7, 62), the
mean of the sum of all the squared network coefficients,
and ~ is the performance ratio.

Using the performance function represented by (B.1) will
cause the network to have smaller coefficients, and this will
force the network response to be smoother and less likely
to overfit. The problem with such regularization is that it
is difficult to determine the optimum value for the perfor-
mance ratio parameter. If ~ is too large, the network may
still overfit. If it is too small, the network will not ade-
quately fit the training data.

One approach to determine the optimal regularization pa-
rameters ~y is the Bayesian framework of MacKay (1992).
In this framework the coefficients of the network are as-
sumed to be random variables with specified distributions.
The regularization parameters are related to the unknown
variances associated with these distributions and thus can
be estimated with statistical techniques. A detailed discus-
sion of Bayesian regularization is beyond the scope of this
article, Foresee and Hagan (1997) gave a detailed discus-
sion of the use of Bayesian regularization in combination
with the Levenberg—Marquardt training algorithm.

[Received January 1998. Revised November 1998.]

REFERENCES

Abhyankar, A., Copeland, L. S., and Wong, W. (1997), “Uncovering Non-
linear Structure in Real-Time Stock-Market Indexes: The S&P 500, the
DAX, the Nikkei 225, and the FTSE-100,” Journal of Business & Eco-
nomic Statistics, 15, 1-14.

Ackert, L. F, and Smith, B. F. (1993), “Stock Price Volatility, Ordinary
Dividends, and Other Cash Flows to Shareholders,” Journal of Finance,
48, 1147-1160.

Andrews, D. W. K. (1991), “Heteroskedasticity and Autocorrelation Con-
sistent Covariance Matrix Estimation,” Econometrics, 59, 817-858.

Balvers, R. J., Cosimano, T. F, and McDonald, B. (1990), “Predicting
Stock Returns in an Efficient Market,” Journal of Finance, 45, 1109-
1128.

Breen, W., Glosten, L. R., and Jagannathan, R. (1990), “Predictable Vari-
ations in Stock Index Returns,” Journal of Finance, 44, 1177-1189.
Brock, W. A., Dechert, W. D., Scheinkman, J. A., and Lebaron, B. (1996),
“A Test for Independence Based on the Correlation Dimension,” Econo-

metric Review, 15, 197-235.

Chuah, K. L. (1993), “A Nonlinear Approach to Return Predictability in the
Securities Markets Using Feedforward Neural Network,” unpublished
dissertation, Washington State University, Dept. of Economics.

Cochrane, J. H. (1991), “Production-Based Asset Pricing and the Link
Between Stock Return and Economic Fluctuations,” Journal of Finance,
46, 209-238.

Diebold, F. X., and Mariano, R. S. (1995), “Comparing Predictive Accu-
racy,” Journal of Business & Economic Statistics, 13, 253-263.

Fair, R. C., and Shiller, R. J. (1990), “Comparing Information in Forecasts
From Econometric Models,” American Economic Review, 80, 375-389.

Fama, E. F.,, and French, K. R. (1989), “Business Conditions and Expected
Returns on Stocks and Bonds,” Journal of Financial Economics, 25,
23-49.

Ferson, W. E., and Harvey, C. R. (1993), “The Risk and Predictability of
International Equity Returns,” Review of Financial Studies, 6, 527-566.

Foresee, F. D., and Hagan, M. T. (1997), “Gauss—Newton Approximation to
Bayesian Regularization,” in IEEE International Conference on Neural
Networks 1997 (Vol. 3), New York: IEEE, pp. 1930-1935.

French, K. R., Schwert, G. S., and Stambaugh, R. F. (1987), “Expected
Stock Returns and Volatility,” Journal of Financial Economics, 19, 3—
30.



Qi: Nonlinear Predictability of Stock Returns

Gencay, R. (1998), “The Predictability of Security Returns With Simple
Technical Trading Rules,” Journal of Empirical Finance, 5, 347-359.
(1999), “Linear, Nonlinear and Essential Foreign Exchange Rate
Prediction With Simple Technical Trading Rules,” Journal of Interna-

tional Economics, 47, 91-107.

Gencay, R., and Stengos, T. (1998), “Moving Average Rules, Volume and
the Predictability of Security Returns With Feedforward Networks,”
Journal of Forecasting, 17, 401-414.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993), “On the Relation
Between the Expected Value and the Volatility of the Nominal Excess
Returns on Stocks,” Journal of Finance, 48, 663—680.

Henriksson, R. D., and Merton, R. C. (1981), “On Market Timing and
Investment Performance: II. Statistical Procedures for Evaluating Fore-
casting Skills,” Journal of Business, 54, 513-533.

Hornik, K., Stinchcombe, M., and White, H. (1989), “Muitilayer Feed-
forward Networks Are Universal Approximators,” Neural Networks, 2,
359-366.

(1990), “Universal Approximation of an Unknown Mapping and Its
Derivatives Using Multilayer Feedforward Networks,” Neural Networks,
3, 551-560.

Hutchinson, J., Lo, A., and Poggio, T. (1994), “A Nonparametric Approach
to Pricing and Hedging Derivative Securities via Learning Networks,”
Journal of Finance, 49, 851-889.

Hwang, J. T. G, and Ding, A. A. (1997), “Prediction Intervals for Artificial
Neural Networks,” Journal of the American Statistical Association, 92,
748-757.

Jarque, C. M., and Bera, A. K. (1987), “A Test for Normality of Obser-
vations and Regression Residuals,” International Statistical Review, 55,
163-172.

Kuan, C., and White, H. (1994), “Artificial Neural Networks: An Econo-
metric Perspective,” Econometric Review, 13, 1-91.

Leitch, G., and Tanner, J. E. (1991), “Economic Forecast Evaluation: Profits
Versus the Conventional Error Measures,” American Economic Review,
81, 580-590.

Ljung, G. M., and Box, G. E. P. (1978), “On a Measure of Lack of Fit in
Time Series Models,” Biometrika, 65, 297-303.

MacKay, D. J. C. (1992), “Bayesian Interpolation,” Neural Computation,
4, 415-447.

Newey, W. K., and West, K. (1987), “A Simple, Positive Semi-Definite,

429

Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,”
Econometrica, 55, 703-708.

Nguyen, D., and Widrow, B. (1990), “Improving the Learning Speed of
2-Layer Neural Networks by Choosing Initial Values of the Adaptive
Weights,” Proceedings of the International Joint Conference of Neural
Networks, 3, 21-26.

Pesaran, M. H., and Timmermann, A. (1992), “A Simple Nonparamet-
ric Test of Predictive Performance,” Journal of Business & Economic
Statistics, 10, 461-465.

(1994), “A Generalization of the Nonparametric Henriksson—

Merton Test of Market Timing,” Economics Letters, 44, 1-7.

(1995), “Predictability of Stock Returns: Robustness and Economic
Significance,” Journal of Finance, 50, 1201-1228.

Qi, M. (1996), “Financial Applications of Artificial Neural Networks,” in
Handbook of Statistics, 14: Statistical Methods in Finance, eds. G. S.
Maddala and C. R. Rao, Amsterdam: North-Holland, pp. 529-552.

Qi, M., and Maddala, G. S. (1999), “Economic Factors and the Stock
Market: A New Perspective,” Journal of Forecasting, 18, 151-166.

Ramsey, J. B. (1969), “Tests for Specification Errors in Classical Linear
Least-Squares Regression Analysis,” Journal of the Royal Statistical So-
ciety, Ser. B, 31, 350-371.

Swanson, N. R., and White, H. (1995), “A Model Selection Approach to
Assessing the Information in the Term Structure Using Linear Mod-
els and Artificial Neural Networks,” Journal of Business & Economic
Statistics, 13, 265-275.

(1997), “A Model Selection Approach to Real-Time Macroeco-
nomic Forecasting Using Linear Models and Artificial Neural Net-
works,” The Review of Economics and Statistics, 719, 540-550.

Tsay, R. S. (1986), “Nonlinearity Tests for Time Series,” Biometrika, 73,
461-466.

White, H. (1988), “Economic Prediction Using Neural Networks: The Case
of IBM Daily Stock Returns,” Proceedings of the IEEE International
Conference on Neural Networks, 2, 451-458.

(1990), “Connectionist Nonparametric Regression: Multilayer
Feedforward Networks Can Learn Arbitrary Mappings,” Neural Net-
works, 3, 535-549.

White, H., Gallant, A. R., Hornik, K., Stinchcombe, M., and Wooldridge, J.
(1992), Artificial Neural Networks: Approximation and Learning Theory,
Cambridge, MA: Blackwell.




http://www.jstor.org

LINKED CITATIONS
-Pagelof5-

You have printed the following article:

Nonlinear Predictability of Stock Returns Using Financial and Economic Variables
Min Qi
Journal of Business & Economic Statistics, Vol. 17, No. 4. (Oct., 1999), pp. 419-429.

Stable URL:
http://links.jstor.org/si ci?sici=0735-0015%28199910%2917%3A 4%3C419%3ANPOSRU%3E2.0.CO%3B2-8

This article references the following linked citations:

References

Uncovering Nonlinear Structurein Real-Time Stock-Market Indexes: The S& amp;P 500, the
DAX, the Nikkei 225, and the FT SE-100

A. Abhyankar; L. S. Copeland; W. Wong

Journal of Business & Economic Statistics, Vol. 15, No. 1. (Jan., 1997), pp. 1-14.

Stable URL:

http:/links.jstor.org/sici 2si ¢i=0735-0015%28199701%2915%3A 1%3C1%3A UNSIRS%3E2.0.CO%3B2-Q

Stock Price Volatility, Ordinary Dividends, and Other Cash Flowsto Shareholders
Lucy F. Ackert; Brian F. Smith

The Journal of Finance, Vol. 48, No. 4. (Sep., 1993), pp. 1147-1160.
Stable URL:

http://links.jstor.org/si ci?si ci=0022-1082%628199309%2948%3A 4%3C1147%3A SPV ODA %3E2.0.CO%3B2-B

Predicting Stock Returnsin an Efficient Market
Ronald J. Balvers; Thomas F. Cosimano; Bill McDonald

The Journal of Finance, Vol. 45, No. 4. (Sep., 1990), pp. 1109-1128.
Stable URL:

http://links.jstor.org/si i ?sici=0022-1082%28199009%2945%3A 4%3C1109%3A PSRIAE%3E2.0.CO%3B2-3

Economic Significance of Predictable Variationsin Stock Index Returns
William Breen; Lawrence R. Glosten; Ravi Jagannathan

The Journal of Finance, Vol. 44, No. 5. (Dec., 1989), pp. 1177-1189.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28198912%2944%3A 5%3C1177%3A ESOPV1%3E2.0.CO%3B2-G


http://links.jstor.org/sici?sici=0735-0015%28199910%2917%3A4%3C419%3ANPOSRU%3E2.0.CO%3B2-8&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0735-0015%28199701%2915%3A1%3C1%3AUNSIRS%3E2.0.CO%3B2-Q&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28199309%2948%3A4%3C1147%3ASPVODA%3E2.0.CO%3B2-B&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28199009%2945%3A4%3C1109%3APSRIAE%3E2.0.CO%3B2-3&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28198912%2944%3A5%3C1177%3AESOPVI%3E2.0.CO%3B2-G&origin=JSTOR-pdf

http://www.jstor.org

LINKED CITATIONS
- Page2of 5 -

Production-Based Asset Pricing and the Link Between Stock Returnsand Economic
Fluctuations

John H. Cochrane

The Journal of Finance, Vol. 46, No. 1. (Mar., 1991), pp. 209-237.

Stable URL:

http:/links.jstor.org/sici 25 ci=0022-1082%28199103%2946%63A 1%63C209%3A PAPA TL %3E2.0.CO%3B2-7

Comparing Predictive Accuracy

Francis X. Diebold; Roberto S. Mariano

Journal of Business & Economic Statistics, Vol. 13, No. 3. (Jul., 1995), pp. 253-263.
Stable URL:

http:/links.jstor.org/sici 2si ¢i=0735-0015%28199507%2913%3A 3%3C253%3A CPA%3E2.0.CO%3B2-T

Comparing Information in Forecasts from Econometric M odels

Ray C. Fair; Robert J. Shiller

The American Economic Review, Vol. 80, No. 3. (Jun., 1990), pp. 375-389.

Stable URL:

http:/links.jstor.org/sici 2si ci=0002-8282%28199006%2980%63A 3%63C375%3A Cl I FFE%3E2.0.CO%3B2-7

The Risk and Predictability of I nternational Equity Returns
Wayne E. Ferson; Campbell R. Harvey
The Review of Financial Studies, Vol. 6, No. 3. (1993), pp. 527-566.

Stable URL:
http://links.jstor.org/si ci ?si ci=0893-9454%281993%296%3A 3%3C527%3ATRA POI %3E2.0.CO%3B2-K

On Market Timing and I nvestment Performance. 1. Statistical Proceduresfor Evaluating
Forecasting Skills

Roy D. Henriksson; Robert C. Merton

The Journal of Business, Vol. 54, No. 4. (Oct., 1981), pp. 513-533.

Stable URL:

http:/links.jstor.org/sici sici=0021-9398%28198110%2954%63A 4%3C513%3A OMTAI P%3E2.0.CO%3B2-D


http://links.jstor.org/sici?sici=0022-1082%28199103%2946%3A1%3C209%3APAPATL%3E2.0.CO%3B2-7&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0735-0015%28199507%2913%3A3%3C253%3ACPA%3E2.0.CO%3B2-T&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0002-8282%28199006%2980%3A3%3C375%3ACIIFFE%3E2.0.CO%3B2-7&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0893-9454%281993%296%3A3%3C527%3ATRAPOI%3E2.0.CO%3B2-K&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0021-9398%28198110%2954%3A4%3C513%3AOMTAIP%3E2.0.CO%3B2-D&origin=JSTOR-pdf

http://www.jstor.org

LINKED CITATIONS
-Page3of5-

A Nonparametric Approach to Pricing and Hedging Derivative Securities Via L earning
Networks

James M. Hutchinson; Andrew W. Lo; Tomaso Poggio

The Journal of Finance, Vol. 49, No. 3, Papers and Proceedings Fifty-Fourth Annual Meeting of the
American Finance Association, Boston, Massachusetts, January 3-5, 1994. (Jul., 1994), pp. 851-8809.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28199407%2949%3A 3%3C851%3AANATPA%3E2.0.CO%3B2-D

Prediction Intervalsfor Artificial Neural Networks
J. T. Gene Hwang; A. Adam Ding

Journal of the American Statistical Association, Vol. 92, No. 438. (Jun., 1997), pp. 748-757.
Stable URL:

http://links.jstor.org/si ci ?sici=0162-1459%28199706%2992%3A 438%3C748%3A PIFANN%3E2.0.CO%3B2-L

A Test for Normality of Observations and Regression Residuals
Carlos M. Jarque; Anil K. Bera

International Statistical Review &#47; Revue Internationale de Statistique, Vol. 55, No. 2. (Aug.,
1987), pp. 163-172.
Stable URL:

http://links.jstor.org/sici?sici=0306-7734%28198708%2955%3A 2%3C163%3AATENOO%3E2.0.CO%3B2-3

Economic Forecast Evaluation: Profits Versusthe Conventional Error Measures
Gordon Leitch; J. Ernest Tanner

The American Economic Review, Vol. 81, No. 3. (Jun., 1991), pp. 580-590.
Stable URL:

http://links.jstor.org/si ci ?sici=0002-8282%28199106%2981%3A 3%3C580%3A EFEPV T%3E2.0.CO%3B2-Y

On aMeasureof Lack of Fit in Time Series Models

G. M. Ljung; G. E. P. Box

Biometrika, Vol. 65, No. 2. (Aug., 1978), pp. 297-303.

Stable URL:

http://linksjstor.org/sici ?sici=0006-3444%28197808%2965%3A 2%63C297%3A OAM OL O%3E2.0.CO%3B2-4


http://links.jstor.org/sici?sici=0022-1082%28199407%2949%3A3%3C851%3AANATPA%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0162-1459%28199706%2992%3A438%3C748%3APIFANN%3E2.0.CO%3B2-L&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0306-7734%28198708%2955%3A2%3C163%3AATFNOO%3E2.0.CO%3B2-3&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0002-8282%28199106%2981%3A3%3C580%3AEFEPVT%3E2.0.CO%3B2-Y&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28197808%2965%3A2%3C297%3AOAMOLO%3E2.0.CO%3B2-4&origin=JSTOR-pdf

http://www.jstor.org

LINKED CITATIONS
- Page4 of 5 -

A Simple, Positive Semi-Definite, Heter oskedasticity and Autocorrelation Consistent
Covariance Matrix

Whitney K. Newey; Kenneth D. West

Econometrica, Vol. 55, No. 3. (May, 1987), pp. 703-708.

Stable URL:

http:/links.jstor.org/sici 2sici=0012-9682%28198705%2955%63A 3%3C703%3A A SPSHA %63E2.0.CO%3B2-F

A Simple Nonparametric Test of Predictive Performance
M. Hashem Pesaran; Allan Timmermann

Journal of Business & Economic Statistics, Vol. 10, No. 4. (Oct., 1992), pp. 461-465.
Stable URL:

http://links.jstor.org/si ci ?sici=0735-0015%28199210%2910%3A 4%3C461%3AA SNTOP%3E2.0.CO%3B2-C

Predictability of Stock Returns: Robustness and Economic Significance
M. Hashem Pesaran; Allan Timmermann

The Journal of Finance, Vol. 50, No. 4. (Sep., 1995), pp. 1201-1228.
Stable URL:

http://links.jstor.org/sici?sici=0022-1082%28199509%2950%3A 4%3C1201%3A POSRRA %3E2.0.CO%3B2-Z

Testsfor Specification Errorsin Classical Linear L east-Squares Regression Analysis
J. B. Ramsey

Journal of the Royal Statistical Society. Series B (Methodological), Vol. 31, No. 2. (1969), pp.
350-371.

Stable URL:

http:/links.jstor.org/sici 2sici=0035-9246%281969%2931%3A 2%3C350%3A TFSEI C%3E2.0.CO%3B82-8

A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear
Modelsand Artificial Neural Networks

Norman R. Swanson; Halbert White

Journal of Business & Economic Satistics, Vol. 13, No. 3. (Jul., 1995), pp. 265-275.
Stable URL:

http://links.jstor.org/sici?sici=0735-0015%28199507%2913%3A 3%3C265%3AAMATAT%3E2.0.CO%3B2-C


http://links.jstor.org/sici?sici=0012-9682%28198705%2955%3A3%3C703%3AASPSHA%3E2.0.CO%3B2-F&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0735-0015%28199210%2910%3A4%3C461%3AASNTOP%3E2.0.CO%3B2-C&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-1082%28199509%2950%3A4%3C1201%3APOSRRA%3E2.0.CO%3B2-Z&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0035-9246%281969%2931%3A2%3C350%3ATFSEIC%3E2.0.CO%3B2-8&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0735-0015%28199507%2913%3A3%3C265%3AAMATAT%3E2.0.CO%3B2-C&origin=JSTOR-pdf

http://www.jstor.org

LINKED CITATIONS
- Page5of 5-

A Modédl Selection Approach to Real-Time M acr oeconomic Forecasting Using Linear Models
and Artificial Neural Networks

Norman R. Swanson; Halbert White

The Review of Economics and Statistics, Vol. 79, No. 4. (Nov., 1997), pp. 540-550.
Stable URL:

http://links.jstor.org/sici?sici=0034-6535%28199711%2979%3A 4%3C540%3AAM SATR%3E2.0.CO%3B2-R

Nonlinearity Testsfor Time Series

Ruey S. Tsay

Biometrika, Vol. 73, No. 2. (Aug., 1986), pp. 461-466.

Stable URL:

http:/links.jstor.org/si¢i 2si ci=0006-3444%28198608%62973%3A 2%63C461%3ANTFT S%3E2.0.CO%3B2-9



http://links.jstor.org/sici?sici=0034-6535%28199711%2979%3A4%3C540%3AAMSATR%3E2.0.CO%3B2-R&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0006-3444%28198608%2973%3A2%3C461%3ANTFTS%3E2.0.CO%3B2-9&origin=JSTOR-pdf

