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The attention that technical analysis receives
from financial markets is somewhat of a puzzle.
According to Wiener-Kolmogorov prediction
theory, time-varying vector autoregressions
(VARSs) should yield best forecasts of a stochas-
tic process in the mean square error (MSE)
sense. Yet, quasitotality of traders use technical
analysis in day to day forecasting although it
bears no direct relationship to Wiener-
Kolmogorov prediction theory. In fact, technical
analysis is a broad class of prediction rules with
unknown statistical properties, developed by
practitioners without reference to any formalism.
This article investigates statistical properties
of technical analysis in order to determine if
there is any objective basis to the popularity of
its methods. Broadly, there are two issues of in-
terest. First, can one devise formal algorithms
that can generate buy and sell signals identical to
the ones given by technical analysis—that is, are
any of these rules (mathematically) well defined?
The second issue is to what extent well-defined
rules of technical analysis are useful in prediction
over and above the forecasts generated by
Wiener-Kolmogorov prediction theory.
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This article attempts a
formal study of techni-
cal analysis, which is
a class of informal
prediction rules, often
preferred to Wiener-
Kolmogorov predic-
tion theory by partici-
pants of financial
markets. Yet Wiener-
Kolmogorov predic-
tion theory provides
optimal linear fore-
casts. This article in-
vestigates two issues
that may explain this
contradiction. First,
the article attempts

to devise formal algo-
rithms to represent
various forms of tech-
nical analysis in order
to see if these rules are
well defined. Second,
the article discusses
under which conditions
(if any) technical analy-
sis might capture those
properties of stock
prices left unexploited
by linear models of
Wiener-Kolmogorov
theory.
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Normally, just the resources spent on using and developing new
forms of technical analysis should provide sufficient motivation for
this article. However, a series of interesting papers makes such a study
more relevant. For example, Brockett, Hinich, and Patterson (1985)
and Hinich and Patterson (1985) have argued that several time series,
among them asset prices, are stochastically nonlinear. Thus any
method that can capture the nonlinearity of asset prices can potentially
improve forecasts generated by the Wiener-Kolmogorov prediction
theory. For example, Wiener-Kolmogorov theory will not utilize the
information contained in higher-order moments of nonlinear processes.
It is possible that, in developing technical analysis, practitioners have
informally attempted to use the information contained in higher-order
moments of asset prices. In fact, it appears that since the October 19,
1987, crash of financial markets, traders have shown more interest in
technical analysis—possibly because a crash of that magnitude is a
nonlinear event, and the framework provided by the Wiener-
Kolmogorov theory would fail to handle it properly.

In particular, linear models are incapable of describing at least two
types of plausible stock market activity that are of interest to partici-
pants in financial markets. First is the problem of how to issue sporadic
buy and sell signals. By nature, this problem is nonlinear. The decision
maker observes some indicators, and at random moments, issues sig-
nals. VARs cannot explicitly generate such signals. The second exam-
ple involves ‘‘patterns’” that may exist in observed time series. Linear
models such as VARs can handle these patterns only if they can be
fully characterized by the first- and second-order moments. This basi-
cally involves any pattern with smooth curvatures. A speculative bub-
ble, which generates a smooth trend and then ends in a sudden crash,
cannot be handled easily by linear models.

This article shows that most patterns used by technical analysts need
to be characterized by appropriate sequences of local minima and/or
maxima and will lead to nonlinear prediction problems. It is well
known that the theory of the minima and maxima of stochastic pro-
cesses can be very tedious (Leadbetter, Lindgren, and Rootzen 1983).
Under these circumstances, technical analysis may serve as a practical
way of using the information contained in such statistics. At the least,
this is a possibility that needs to be investigated.'

To the best of my knowledge, there is no formal study of the pre-

1. The popularity of technical analysis admits a second explanation. If markets are
efficient, asset prices would behave (approximately) as Martingales. Then, VARs would
yield trivial-looking forecasts, such as {X,,, = X,, 7 = 1, 2. . .}. Finding it unattractive
to report such forecasts that remain constant over the forecasting horizon, traders might
use (irrationally) techniques that give them nontrivial-looking forecasts, even though
they are suboptimal. This interpretation requires that financial markets continue to allo-
cate significant resources on a practice that has negative returns.
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dictive power of technical analysis. Existing studies are mostly di-
rected toward practical applications, informal treatments of which
Pring (1980) is a good example. One of the first illustrations of technical
analysis is the discussion of Dow theory in Rhea (1932). Although not
directly related to any form of technical analysis, the survey by Tong
(1983) and the pioneering work of Granger and Andersen (1978) pro-
vide some of the tools used here.>

The article is organized as follows. First, I discuss some reasons
behind conducting such a study. In the next section I introduce the
notion of Markov times and show that a rule of technical analysis has
to generate Markov times in order to be well defined. I then discuss
results that can help in deciding whether a rule generates Markov times
or not. I show under what conditions well-defined forms of technical
analysis can be useful over and above the Wiener-Kolmogorov predic-
tion theory. Finally, I provide examples using the Dow-Jones industri-
als from 1792 to 1976.

Can Technical Analysis Be Formalized?

Pring (1980) introduces ‘‘technical analysis’’ and related methods as
follows:

The technical approach to investment is essentially a reflection of
the idea that the stock market moves in trends which are determined
by changing attitudes of investors to a variety of economic, mone-
tary, political and psychological forces. The art of technical analy-
sis, for it is an art, is to identify changes in such trends at an early
stage and to maintain an investment posture until a reversal of that
trend is indicated. . . . By studying the nature of previous market
turning points, it is possible to develop some characteristics which
can help identify major market tops and bottoms. Technical analysis
is therefore based on the assumption that people will continue to
make the same mistakes that they made in the past.?

Clearly, technical analysis covers a broad category of highly subjec-
tive forecasting rules. To simplify the discussion, I first adopt a prelimi-
nary classification. A survey of the literature suggests three major
classes to group various forms of technical analysis.

Letting {X,, ¢t = 0, 1, . . .} represent asset prices, the first class of
rules issues signals of market turning points using level crossings of
the X, process. The level is almost always defined using various local

2. A recent example to the popularity of technical analysis is the following. *‘Starting
today The New York Times will publish a comprehensive three-column market chart
every Saturday. . . . History has shown that when the S&P index rises decisively above
its (moving) average the market is likely to continue on an upward trend. When it is
below the average that is a bearish signal.”’ [New York Times, March 11, 1988]

3. Pring (1980), p. 2.
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FiG. 1.—The trend crossing method. a, Long-term Dow showing important
bull-market trend lines. b, Long-term Dow showing important bear-market
trend lines. Source: Pring (1980).
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maxima or minima of {X,}. It is the choice of the level that differentiates
one rule from another. Figures 1a and 15 illustrate two examples. The
bull (bear) markets are signaled as the Dow-Jones industrials cross
trend lines determined by appropriate local maxima (minima). We label
this class of rules the trend crossing method.

Figure 2 displays a second major category labeled moving average
method. Various moving averages of an observed series are obtained
and the intersections of these averages are interpreted as buy and sell
signals.

The third group consists of various patterns, whose occurrence is
claimed to signal particular types of future behavior by {X,}. Some of
these patterns are shown in figure 3. This article argues that, in princi-
ple, all these patterns can be fully characterized using appropriate local
minima and maxima. Hence, any pattern can potentially be formalized.
However, I show that formal identification of local minima and maxima
that can accomplish this is likely to be quite tedious.



Naive Trading Rules 553

Major sell signal
Major sell signal November 26,1976
/Aprnl 19,1973 > /

980
4 -week moving
940 average
900
860

820
50 - week moving

780 average

740

700 \Mu]pr buy signal
660 April 4,1975

620 13 - week moving average

TT T 1T 1T T 1T rTrrrrrrr o .rr

11111111'1[1!lIIlIIlIIHIlIlllII LAL L L) lllllllilllllll
1973 1974 1975 1976 1977 1978

Fic. 2.—The moving average method, Dow-Jones industrials, 1973-79.
Source: Pring (1980). Reprinted by permission of Dow Theory, Inc.

Thus, the first step of the analysis is to quantify and formalize,
whenever possible, these three categories of technical analysis. I pro-
ceed in two stages. First, I prove that any method that relates to
crossings of moving averages constitutes a well-defined prediction
methodology. Second, I show that patterns or trend crossings used in
obtaining market signals are almost always related to some sequences
of local minima and maxima, and, more important, are generally ill
defined in their current formulation. I discuss these points using the
important notion of Markov times. In fact, one contribution this article
makes is to recognize the importance of Markov times as a tool to pick
well-defined rules for issuing signals at market turning points.

Markov Times

Let {X,} be an asset price observed by decision makers. Let {I,} be the
sequence of information sets (sigma-algebras) generated by the X, and
possibly by other data observed up to time ¢.

DEerINITION. We say that a random variable 7 is a Markov time if
the event

A=<t}

is I-measurable—that is, whether or not 7 is less than ¢ can be decided
given I,. According to this definition, Markov times are random time
periods, the value of which can be determined by looking at the current
information set. Thus, Markov times cannot depend on future informa-
tion. In order to see the distinction between Markov times and non-
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Fic. 3b.—Triangles, Dow Jones industrial average, 1938. Source: Pring
(1980).

Markov times better, and to emphasize the importance of this concept
in studying methods of technical analysis, two examples are discussed.

Example 1. Let 7, denote the date at which a process {X,}, ob-
served continuously, shows a 10% jump for the first time during ¢ €
[0, o):

7, = inf{ € [0, ©) : d(In X,)/dt > .1}. )
t

Then T, is a Markov time since, by looking at the current information
set, it is possible to tell whether such a jump in X, has occurred
or not.

Example 2. Let 1, denote the beginning date of a business cycle or
a stock market uptrend. Then, 1, is not a Markov time since, in order
to know whether 7, = ¢, one needs to have access to [,,,, s > 0. In
fact, suppose one is at time ¢ and that an uptrend started at time 1, =
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t — 2. In general, one has to wait more than 2 months to be sure that
an upturn is under way. Thus, one needs /,,,, 3, 4, . . . before one
knows {1, < t}—that is, future information is needed before deciding
which value T, has assumed.

Clearly, any well-defined technical analysis rule has to pass the test
of being a Markov time since any buy or sell signal should, in principle,
be an announcement based on data available at time ¢. If a rule gener-
ates a sequence of buy and sell orders that fail to be Markov times,
then the procedure would be using future information in order to issue
such signals. The procedure would anticipate the future. This implies
a signaling decision based on considerations that are not part of the
available information at time ¢. These are often the subjective feelings
of the forecaster or information not available to the general public.

It is surprising that such infeasible rules of technical analysis may
look perfectly reasonable when illustrated on a chart displaying past
data. In using charts, an investigator may implicitly use ‘‘future’’ infor-
mation while defining a procedure. For example, note that, on a chart



556 Journal of Business

displaying observed data, the beginning dates of any uptrend can easily
be identified, yet these dates are not Markov times as example 2 dem-
onstrates. Graphic methods are not the best ways of determining
classes of Markov times that are useful in prediction. Yet, more often
than not, this is how technical analysis rules are defined. Hence the
importance of developing formal algorithms that can duplicate the buy
and sell signals given by technicians.

This discussion suggests that any method that exploits the current
inflection point of a series will fail to generate Markov times since
these latter are not /-measurable. At the same time, several popular
forms of technical analysis use past local maxima (minima) and these
are I,-measurable.

We now have a criterion to determine which rules of technical analy-
sis can be quantified. Indeed, if one can show that signals generated
by a rule of technical analysis are Markov times, then this would simul-
taneously imply (1) that the method can be quantified, (2) that it is
feasible, and (3) that one can investigate its predictive power using
formal statistical models.

The following theorem is important in sorting out Markov times.

TueoreM. Let {X,} be a random process assuming values on the
real line R. Let B be the set of all intervals belonging to R, and I, be
the information set at time ¢. Then the times {75},

T =inf{it<s:X,EA,AEB}, )
t

are Markov times (Shiryayev 1985).

Basically, this theorem states that the first entry of X, in an interval
A is always a Markov time. The interval in question can, for example,
be [0, ®) or (—, 0]; but it can also depend on the I, itself since, if X,
€ A,, we can define Y, = X, — f(A,) such that Y, € [0, ], as long as
A, is I, measurable. For example, suppose that a forecaster intends to
issue a sell signal as soon as observed price X, crosses, from above, a
trend line f(Z,, ):

S, 1) =a,t + b,

where a, and b, are I,-measurable slope and intercepts of the trend line.
Then a signal is issued at:

T = inf{t: X, <fU, 1)}

This signal deals with the first entry of X, in a time-dependent set
A, = [0, f(Z,, ]. The time dependence of A, can easily be eliminated
by redefining

Y,=X,—fd,?
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and issuing a signal at the first entry on Y, in (—<, 0]:

T =inf{t:Y,<0}.
t

Hence the above theorem can be applied to first entries of X, in /,-mea-
surable sets as well.

Also, the fact that the theorem deals with the first entry is not a real
restriction. The same theorem can be proven for nth entry of X, into
A. The important restriction is that n be known a priori by the fore-
caster. In fact, I intend to show below that most methods of technical
analysis are ill defined precisely because they do not set this parameter
n a priori. Below is shown which of the broad forms of technical
analysis can be formulated as Markov times.

Characterizing Moving Average Crossings

Figure 2 illustrated an example of how moving average crossings are
used to signal turning points. To formalize these moving average cross-
ings I first define

n—1 m—1
Z, = [(1/@2){,_3] - [(l/m)ZX,_s]. 3)
s=0 s=0

The ‘‘moving average’’ rule of technical analysis then uses sign
changes in Z, to generate the times {r;} sequentially as

T = lnf{t > Ti— 1 Z,Z,_I < O}, (4)
t

with 7, defined as zero.

Now consider what (3) and (4) say in words. I basically calculate
two moving averages of the X, process. Assuming that n > m, the first
moving average will be smoother than the second one in the sense of
having relatively more power at low frequencies. Then, as soon as Z,,
7,_; < t changes sign, the rule in (4) will assign the value of ¢ to T,
These latter are signals of major market downturns and upturns ac-
cording to the moving average method of technical analysis.

I now show that the {r;} are Markov times, and that they constitute
a well-defined method of prediction. Clearly, the product Z,_,Z, is
measurable with respect to I,—that is, given I,, the value of Z,_,Z, is
known. The 1, are then defined as the first entry of Z,_,Z, in the interval
(=, 0) € R. Thus the 7; are Markov times according to the theorem
above. This makes the moving average method a statistically well-
defined procedure. We should, in principle, be able to evaluate the
contribution of the {1} in predicting market turning points using formal
tools.



558 Journal of Business

Characterizing Trend Crossings

Methods that use crossings of observed data with trend lines, defined
in a variety of ways, constitute the most common form of technical
analysis. In contrast to the moving average method, it is not possible
to determine a unique definition that would encompass all trend cross-
ing rules. The notion of a moving average immediately suggests a math-
ematical formulation, whereas trend crossings appear to be based on
arbitrary hand-drawn trends in charts illustrating historical data. Fig-
ure 1 displays an example. The main idea behind trend crossing meth-
ods is to determine two linear trends, one above, the other below, that
would envelop the portion of the data observed since the last turning
point. Then, upcrossings (downcrossings) of the upper (lower) enve-
lope are taken as signals of market strength (weakness).

It is clear that all trend lines that envelop observed data can be
defined by using only two extrema of the portion of the series under
consideration. In order to obtain an upper envelope, the two highest
local maxima are used. Two lowest local minima define, similarly, a
lower envelope. Thus, the theory of local minima (maxima) of time
series will play an important role in investigating this type of technical
analysis.

I first show that most signals generated using trend lines are not
Markov times. Let ¢, and ¢, be the times of onset of the two lowest
(highest) local minima (maxima) of X, during the period (t;_,, ], where
7,_, is assumed to be known. Let X, and X, be the values of these
minima (maxima). Consider the trend line T(),

T(1) = [(X; — Xp)/(t; — 1))@ + [(Xot) — Xi10)/(t; — 1)), (5)

for ¢, > t, > 7,_,. This function defines a straight line that goes through
the two lowest (highest) local minima (maxima) observed during the
interval (t,_,, t]. As in the previous case, we obtain the times {r;} using

Z,=X,-Tq), 6)
and
w=inf{t:t>_,,Z,Z,_, <O} @)
t

I now show that the times {r;} generated by this algorithm will not be
Markov times.

It is clear that if the Z, defined by (6) is I,-measurable, and if we
adopted the rule in (7) to determine the {r;}, then this would be the
first entry in the interval [0, ©) by an I,-measurable random variable,
and the 7, would be Markov times. But it turns out that, in general, Z,
is not I-measurable since ¢, and ¢, are never specified as the times of
onset of the first two (or the nth) local minima (maxima) during 7;,_; <
t. In practice, the ¢, and ¢, are simply said to be two lowest (highest)
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local minima (maxima) that occur after some predetermined time T;_,.
But such an event is not /-measurable since, before it can be decided
whether a local maxima is highest or second highest, one needs to
know the levels of subsequent maxima. Figure 4 illustrates this point.
None of the trend lines shown here utilize the first two local maxima
in determining the T(¢). There were several local maxima between the
selected ¢, and ¢,, and these were ignored in obtaining the trend lines
of figure 4. Two of these are shown on figure 4 as dotted lines.

Thus we see that trend crossing techniques will not generate Markov
times unless one specifies an /,-measurable mechanism for ignoring the
local minima (maxima) between ¢, and ¢,.

Characterization of Patterns

The third class of procedures used by technical analysts utilizes the
occurrence of various patterns to issue signals. Some of these patterns
are shown in figures 3a—c. The theorem above suggests that, if these
patterns are well-defined signals of upcoming events, one should be
able to formulate them as first entries of an I-measurable random
process in a set A € R. In this article, the two most popular patterns
are considered, namely, ‘‘triangles’’ and ‘‘head and shoulders.’’ I first
show that, in principle, these patterns can be formally defined using
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particular sequences of local minima and maxima. Second, I claim
that, in their current formulation, these patterns are not /-measurable
events.

An example of head and shoulders is shown in figure 3a. According
to this figure, a head and shoulders pattern is observed whenever the
trend lines that envelop the data behave as a step function: two sets
of local minima with similar heights, separated by some higher local
minima during the interval (1;_;, f]. Let the mutually exclusive sets,

fto<...<t}, e <...<t}, {1 <...<t,<t}, (®

denote the times of onset of three sets of (lowest) consecutive local
minima up to time ¢. To obtain a head and shoulders pattern, the
heights of the local minima in the first and third sets must be (approxi-
mately) the same, say M*. In addition, the levels of the local minima
in the second set must be significantly higher, say M**. Then a (sell)
signal is issued the first time X, falls below M* once such a pattern
takes shape. That is to say,

7, = inf{X, < M*, (>t}
t

Since {t; < t,i =1, ..., k}, the local minima defined in (8) are
I-measurable. Hence an event describing head and shoulders becomes
I-measurable once a formal way of subdividing the three sets of local
extrema shown in (8) is selected. Such a criterion is needed in order
to decide when the local minima in the middle exceed significantly the
local minima in the first and third sets. This requires an a priori selec-
tion of a lower bound on the difference M** — M*, although the
levels of M* and M** need not be specified individually. If all these
conditions are met, a head and shoulders pattern becomes I-mea-
surable.

This construction shows that actual signals generated using observed
head and shoulders patterns are not Markov times. For example, in
figure 3, the first occurrence of such an event is illustrated by the line
AB rather than the suggested head and shoulders pattern CD selected
by technicians. The only way one would select CD is if one anticipated
that a local minimum such as D would occur at time ¢. Accordingly,
in this example, the decision of whether T = ¢ or not depends on future
values of the underlying series. The stopping time illustrated in figure
3a cannot be a Markov time.

Further, head and shoulders patterns defined formally as above are
likely to be probability-zero events if one insists that the minima in
the first and second sets have the same height M*. Conversely, remov-
ing this requirement will impose further a priori restrictions on the sets
of local minima shown in (8).

Figure 3b illustrates a triangle. In principle, this pattern can also be
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defined using consecutive local minima and maxima. To generate such
a triangle, consecutive local maxima have to be in descending, and
consecutive local minima in ascending order. Thus let

{tmax.1 < - - - <tmaxit and {Max, > Max, > . .. > Max,} )

represent the times of onset and the heights of k consecutive local
maxima of X, during 7;_; < ¢. Similarly, let {,;, ; < ... < ty.«} and
{Min, < ... < Min} be the times of onset and heights of k lowest
local minima during the same period. Then, a buy or sell signal is
generated as soon as observed X, exceeds the last local maxima or
falls below the latest local minima (see fig. 3b). More precisely,

7, = inf {Max, > ...> Max, < X,or Min; <...<Min, > X,}, (10)
t

for 7,_; < t.

Clearly, this is an /-measurable event, hence a prediction method
using triangles defined this way will generate Markov times. Yet this
does not mean that, in practice, the signals generated using triangles
are nonanticipatory. In fact, what makes the above signals /,-measur-
able is the a priori specification of the parameter k, namely, the number
of minima or maxima that one has to observe before the crossing
occurs. If this information is omitted from the definition, the use of
triangles will cease to generate Markov times. Without this parameter,
even two consecutive local extrema can generate a triangle. Clearly,
this is not what technical analysts have in mind, as shown in figure 3b.
If two extrema are not sufficient, then how many does one need?
Obviously, the answer to these questions necessitates a priori selection
of some parameter such as k.

Finally, in figure 3¢, we show another pattern, namely, gaps in daily
price ranges. In contrast to other patterns, the use of gaps does gener-
ate Markov times since a signal is issued the first time three consecu-
tive gaps are observed. This constitutes a first entry into an interval
and leads to Markov times.

A Criterion on Practical Use

Suppose a method of technical analysis is known to generate Markov
times {r;} as signals of market turning points. A forecaster may, in
addition, want to know the size of the probability p(r; < «), i = 1,
2, . . . before investing resources in applying this rule. Indeed, if this
probability is less than one, then the rule may never give a signal. This
may be uneconomical. Yet, in terms of formal statistical criteria, there
is nothing wrong with a Markov time that fails to be finite. In this
section, I discuss which categories of technical analysis are likely to
yield finite Markov times.
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DeriNiTION.  We say that a Markov time T is finite if
Pt <o) =1. (11

It is clear that a Markov time that is not finite may fail to be a
financially rewarding method of forecasting since it may never give a
positive or negative signal in spite of being well defined.

It turns out that only in very few cases the {r;} generated by technical
analysis will be finite, hence usable, in the sense above. The major
exception is the method of moving averages. I show below the condi-
tions under which the moving average method generates finite Markov
times.

ProposiTiON 1.  If the observed process {X,} is stationary and m-de-
pendent, all moving average methods characterized by (3)-(4) generate
finite Markov times.

Proof. Let Z,be given by (3). If X, is stationary, then Z,and Z,Z,_,
are stationary (e.g., Breiman 1968, proposition 6.6). Also note that,
due to stationarity, E[Z,] = 0, hence 0 < P(Z, = 0) < 1, unless Z, =
0 almost surely. Let

Y,=ZZ_, t=0,1....

Clearly, P(Y, = 0) < 1. Now, I apply the theorem provided in the
Appendix. Consider

P(Y,<0,atleastoncefort=n)=1- P(Y,>0,Y,>0,...Y,>0).

The theorem in the Appendix requires this probability be one, as n
goes to infinity. To show that this is indeed true, note that, if X, is
m-dependent, the Y,’s sufficiently apart will also be independent. Thus,
select an integer u so that Y, and Y,, , are independent. We utilize such
Y,’s sufficiently apart to write, for large n,

P(Y,>0, Y,>0,...Y,>0=<P(Y,>0P(Y,>0)...P(Y,>0)
= P(Y,> 0)*
by stationarity and m-dependence. As we let kK — o,
P(Y,> 0)"—0,
since P(Y, > 0) < 1, as shown above. Thus,
P(Y,=0atleastonce) = 1.

Hence, all conditions of the theorem supplied in the Appendix are
satisfied and Markov times 7, 7,, . . . , T, are finite.

Note that assumptions such as stationarity and mixing, a simple
form of which is m-dependence, are needed to obtain this result. This
might seem unnecessary, but without similar assumptions, one cannot
guarantee the finiteness of these Markov times. Indeed, if the process
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F16. 5.—An infinite Markov time

X, is explosive enough, then a moving average method may not gener-
ate finite Markov times.*

One implication of this is that trend crossing methods of technical
analysis might not always yield finite Markov times—even after a pre-

4. Here is an example provided by the referee. Let X, be generated by an explosive
AR(1) model:

X, =BX,_, +e t=12...

where B > 2, and ¢, are independently and identically distributed random variables with
uniform distribution over the interval [—1, 1]. Note that the event E = {X, is always
larger than 1 and tends to «} has positive probability. Now, consider two moving aver-
ages with 1 and 2 terms, respectively. Then Z, defined by formula (3) is equivalent to

Z, = (IIDIB — DX,-y + €.

With this Z,, we have 1 = « on the event E.
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cise definition is adopted. To illustrate this, note that a trend line T(s)
such as the one shown in figure 5, will admit the representation,

I(s) =a, + b,s s>1t, (12)

where a, and b, > 0 are I,-measurable intercept and slope. Now, the
difference,

D,=X,—a,—b,s, s>t,

is clearly not stationary. So the assumptions of proposition 1 are not
satisfied for D;, s > t. Hence, even with stationary and m-dependent
{X.}, as s goes to infinity, P(X; — a, — b,s = 0) may equal one, and
X, may never cross the trend line 7T(s) again. Under these conditions,
implied Markov times may be infinite even though they are well de-
fined. For example, this may be the case if {X,} is given by

X, =€ + S¢,_,

where the distribution of the independently and identically distributed
(i.i.d.) errors {¢,} has finite support:

Pe,za)=0 0<a<om,

Remark. Note that, even if a rule generates signals that are finite
with high probability, with, say, P(1; < ©) = .9, this may still create
major problems for practical users. In fact, such a probability implies
that one out of every 10 signals may be infinite—assuming that the
signals are sufficiently apart, and that they are not correlated. For a
forecaster working in real time, a long waiting period then implies
either a large (but finite) 1; or, with smaller probability, an outcome
where no signal will be given. In this latter case, the forecaster should
switch to other rules. Since technical analysis never specifies how one
rule should be abandoned in favor of others, the requirement that
P(r; < ©) = 1is less trivial than it seems at the outset.

Predictive Power of Technical Analysis

The fact that some methods of technical analysis admit a formal defini-
tion is important. Yet well-defined sequences of finite Markov times
{r;} may still have no predictive value. Thus, the next question is,
Under what conditions (if any) would the well-defined procedures of
technical analysis be useful in prediction over and above the standard
econometric models?

There are two results. The first deals with the usefulness of technical
analysis under the assumption that observed data can be characterized
as linear processes. I adopt the following definition of linearity.
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DEFINITION. A process {X,}, E[X,] < « is said to be linear, or has
the linear regression property, if, for s = 0,

E[XI+X|XI—1’ Xt_z, o .. ’Xt—k] = althl + ...+ akXt,k.

That is, the process is linear if expectations of X, given finite past X’s
are linear in the latter. In particular, Gaussian processes are linear. In
fact, the class of processes that have the linearity property is identical
to the sub-Gaussian processes (Hardin 1982). However, our definition
of linearity is not identical to the one given in Hardin (1982), who does
not discriminate between past and future X’s as conditioning factors.

RemARrk. It is interesting to note that the definition of linearity that
we have here is not equivalent to E[X,|X,_;, X,_,, X,_; . . .] being a
linear combination of past X,’s. It is possible to construct finite moving
average (MA) processes with infinite autoregressive representations,
that are not linear according to the definition used here.’

I now show that nonlinearity of asset prices is a necessary condition
for the usefulness of technical analysis.

ProrosiTiON 2. If the X, process is linear in the sense above, then
no sequence of Markov times obtained from a finite history of {X,} can
be useful in prediction over and above (vector) autoregressions.

Proof. If {r;} are Markov times obtained from a finite history of

{X,}, they must be measurable with respect to {X,, X,_;, . . . , X,_,},
some finite k. This means that
EX, X X1 Xy <4}l

E[Xt+x|{Xr’ Xt—la e ’Xt—k}]
=ooX, + o X,_; + ...+ X,

due to the linearity of {X,}.

This proposition may have important implications for technical anal-
ysis. First of all, it can be seen that one necessary condition for the
usefulness of any technical analysis rule is the requirement that asset
prices be nonlinear in the sense of the definition above. For example,

S. An interesting example provided by the referee is the following: Let €, be i.i.d. and
—1 with probability 2/3
“ { 2 with probability 1/3.
Construct the process X, using
X, =€+ S5¢_,.

Clearly, X, has an infinite autoregressive representation, hence, is a linear combination
of all past X,’s. Yet, E[X,|X,_,] cannot be linear in X,_,. To see this, note that E[X,|X,_,
= 0] can be directly calculated to be —1/2, yet if E[X,|X,_; = 0] were linear in X,_, in
the sense of our definition, E[X;|X,_; = 0] would have to equal zero. This contradiction
implies that the X, process cannot have a linear regression property as defined here.
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if a rule is well defined and yet stock prices are Gaussian, then, due
to proposition 2, we immediately know that the rule is useless as a
prediction technique. If, however, there is some evidence that stock
prices are nonlinear, technical analysis may be useful in prediction—
that is, it may be a simple way of taking such nonlinearities into ac-
count. Under these conditions, the question of whether technical anal-
ysis rules have any predictive power becomes an empirical issue.

Recent work such as Hinich and Patterson (1985) and Diebold (1989)
provide evidence on the nonlinearity of data from financial markets.
Yet because notions of linearity and nonlinearity used in these papers
and here are not identical, these empirical results do not necessarily
imply that there are forms of technical analysis useful in prediction.
For example, Diebold (1989) shows that taking nonlinearities into con-
sideration does not improve forecasts of exchange rates, although
there appears to be a great deal of evidence that these latter are non-
linear.

Since Martingales are linear processes, a corollary to proposition 2
is the following:

CoroLLARY. If the X, process is a Martingale, then no sequence of
finite Markov times {1;}, calculated from a finite history of {X,}, can be
useful in prediction over and above linear regressions.

The point is that, if some technical analysis rules are indeed useful
in prediction, then this should rule out a Martingale representation for
the series under consideration. Using these propositions we provide
some empirical results.

Empirical Results. To illustrate how one can test the predictive
value of technical analysis, I select the method claimed to work the
best according to participants in financial markets. ‘‘Although techni-
cal analysts caution that investors should consider a variety of factors
in trying to discern the market’s direction, they say the single, clearest
factor is probably the 150-day moving average. History has shown that
when the (Dow-Jones) index rises decisively above its moving average
the market is likely to continue on an upward trend. When it is below
the average it is a bearish signal.”’®

The moving average method was one of the few rules that generated
Markov times. Also, these Markov times were easy to quantify. This,
plus one other consideration, made me choose stock prices as the X,
in (3), and the 150-day moving average as the X} We then use the
algorithm in (4) to obtain a sequence of Markov times {r;}. The last
consideration for making these selections was the availability of a long
sample for the Dow-Jones index. In fact, when using Dow-Jones indus-
trials it is possible to go all the way to 1792 and work with almost a
200-year-long monthly data series. This greatly facilitates investigating

6. New York Times (March 11, 1988).
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the predictive power of technical analysis since on-and-off prediction
rules are likely to yield relatively few signals compared to regular
monthly data.

Proposition 2 and the corollary that follows it provide the necessary
framework to do the empirical work. According to these, we need to
show that, given a long autoregression, the addition of Markov times
to the right-hand side does not improve forecasts of Dow-Jones indus-
trials. If this is the case, then the rule in question will have no pre-
dictive value.

Thus I let

n

k
Xt+p. = Z X, ;i + Z B:D,_; + €ip n>0, n<k, (13)
i=1 =

i=1
where

1 ifX,> X¥* hasoccurred attgiven X,_, < X} |,
D,=¢ -1 ifX, <X} hasoccurredatgiven X, ;> X} |,

0 otherwise,

and where the disturbances {¢,} form an innovation sequence with re-
spect to the finite history of X,,

Eleu | X1 X, ] = 0.

According to this, €, measures all unpredictable events between ¢
and ¢t + p. The {B;} represents the contribution of the Markov times
{7;} in explaining X,,, over and above the own past of the series. To
the extent the D,’s are obtained from {X,_,, . . . , X,_,}, they should
have no contribution to forecasting X, , beyond the finite history of
X, if this latter is a linear process.

There is an important point that concerns inference with equation
(13). Note that (13) requires a sufficiently long autoregressive compo-
nent (i.e., a large k). Otherwise, if k is small, then some D,_;’s may
become significant simply because they are calculated from a more
distant past of {X,}.

The parameter p in (13) determines how many periods ahead one is
forecasting. It captures the claim that the moving average method de-
tects changes in long-run trends, and that it is not necessarily useful
for 1-period-ahead forecasts. Hence the value of w should be selected
as greater than 1 or 2 months. In the empirical work reported below,
I selected p (arbitrarily) as 12 months. The results remain qualitatively
similar for p greater than 12. Inference with the equation shown in
(13) appears to be straightforward at the outset. However, if u > 1,
the errors of equation (13) will be serially correlated, and this needs
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TABLE 1 Dow-Jones Industrials, 1792:1-1851:12

Label and Lag Coefficient t-statistic

Dow Jones industrials:
18 .83 3.8
19 —.14 —.45
20 .03 05
21 .02 03
22 .03 05
23 -.03 -.09
24 —.05 -.15
25 —.01 —.04
26 .01 04
27 —.05 —.15
28 .01 05
29 .01 05
30 —.05 —.15
31 .01 04
32 .26 1.34

Dummy
18 .45 1.16
19 .63 1.39
20 .67 1.35
21 .58 92
22 .61 1.06
23 .50 71
24 32 69

Constant 1.51 7.12

Note.—R? = .73; sum of square of residuals = 3592; F-statistic = .46. 1792:1 = January 1792.

to be taken into account. In fact, the error structure in these equations
will always be given by a (. — 1)th-order MA process:

€=v,tav,_+av, ,+av,_ 3+ ...+ Ay Vieu—1s (14)

where the {v,} are the innovations in the X, process.

I corrected for the serial correlation shown in (14) using Hannan’s
efficient procedure. In fact, the {¢,} can be consistently estimated by
applying ordinary least squares to (13). The periodogram of these
(first-stage) residuals is then calculated. The Fourier transform of X,
is divided by the corresponding entries of the square root of the peri-
odogram of residuals. This series is then transformed back to the time
domain. Equation (13) is estimated with these transformed data.

Empirical results are provided in tables 1-3. The results are interest-
ing. The F-tests on the D, are insignificant for the subperiods 1795—
1851, and 1852-1910. However, they are highly significant for the pe-
riod 1911-76. Thus the particular moving average rule of 150 days
seems to have a significant predictive power for the latter part of the
sample. It is interesting to note that any general belief by market parti-
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TABLE 2 Dow-Jones Industrials, 1852:12-1910:12

Label and Lag Coefficient t-statistic

Dow Jones industrials:
18 .86 4.60
19 .00 01
20 -.08 —.31
21 .04 17
22 -.21 -.80
23 -.09 -.34
24 .08 29
25 —-.06 -.20
26 —.04 —-.16
27 .07 27
28 —-.16 —.66
29 —.06 —-.24
30 .06 23
31 -.01 -.02
32 55 3.15

Dummy
18 .53 .67
19 .85 1.0
20 1.1 1.3
21 1.5 1.9
22 1.9 2.4
23 1.8 2.3
24 1.2 1.8

Constant 4.1 5.4

Note.—R? = .72; sum of square of residuals = 36120.202; F-statistic = .050330. 1852:12 =
December 1852.

cipants that such a rule is useful would be self-fulfilling and would lead
to significant {1,}.

For this last period, all lags of the dummy variable that indicates
buy (+1), sell (—1), and no action (0) signals are significant. Further-
more, the signs are in the right direction, in that they are all positive.
It is also interesting to note that the coefficients of the dummy vari-
able have a nice reverse V shape, with the peak occurring at lag 23
(table 1).

Hence, the moving average method does seem to have some pre-
dictive value beyond the own lags of Dow-Jones industrials. In fact,
the results displayed in these tables remained qualitatively similar
when different values were used for w, except for p = 1, where the
150-day moving average turned out to be insignificant in all equations.’

7. Estimates of the same equation with w = 1 yields no significant lags for the dummy
variable in consideration. This supports the contention that the method predicts longer-
run behavior of the X,.
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TABLE 3 Dow-Jones Industrials, 1911:1-1976:12

Label and Lag Coefficient t-statistic

Dow Jones industrials:
18 .19 2.34
19 —.04 -.39
20 .01 .05
21 18 1.36
22 .05 34
23 .04 25
24 .19 1.31
25 12 78
26 .01 04
27 .09 61
28 .02 13
29 .07 48
30 .02 14
31 —.01 -.05
32 .09 1.11

Dummy
18 26.9 2.9
19 28.3 2.9
20 28.4 2.9
21 28.2 2.9
22 30.1 3.1
23 30.8 3.2
24 21.8 2.4

Constant 19.6 4.6

Note.—R? = .91; sum of square of residuals = 6521516; F-statistic = 3.71. 1911:1 = January
1911.

Conclusions

This article discussed some criteria that one can apply in evaluating
the set of ad hoc prediction rules widely used in financial markets and
generally referred to as technical analysis. I showed that a few of
these rules generate well-defined techniques of forecasting. Under the
hypothesis, economic time series are Gaussian, and even well-defined
rules were shown to be useless in prediction.

At the same time, the discussion indicated that if the processes under
consideration were nonlinear, then the rules of technical analysis might
capture some information ignored by Wiener-Kolmogorov prediction
theory.

Tests done using the Dow-Jones industrials for 1911-76 suggested
that this may indeed be the case for the moving average rule.

Appendix
ProposiTION (Breiman 1968). Let the process {Y,} be stationary, such that

P(Y, =0 atleast once) = 1;
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then the 7, I = 1, 2, . . . are finite almost surely and on the sample space
{w: Y, = 0} they form a stationary sequence under the probability p(:| Y, =
0), and

Elr,| Yy = 0] = 1/p(Y, = 0).
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