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David A. Hsieh
University of Chicago

Testing for Nonlinear
Dependence in Daily Foreign
Exchange Rates™

I. Introduction

The purpose of this article is to investigate
whether changes in foreign exchange rates ex-
hibit nonlinear dependence. For almost an entire
decade, the stylized fact about exchange rates is
that they behave like random walks. Let S, de-
note the U.S. dollar price of a unit of foreign
currency at date ¢z. Mussa (1979) observes that s,
= log(S,) can be described as a random walk.
Meese and Rogoff (1983) show that simple ran-
dom walk models dominate structural models in
terms of predictive performance in foreign ex-
change rates. The random walk model is charac-
terized as follows. Let x, = s, — s,_; be the
logarithmic growth rate of the exchange rate.
If x, is statistically independent of past observa-
tions x,_i, X;—3, . . . , then s, follows a random
walk.

A random walk model of exchange rates has
some unappealing implications. It means that the
sample path and the (unconditional) variance of

* T am most grateful to William Brock, Blake LeBaron,
and José Scheinkman for providing help and guidance. Im-
portant computer algorithms were supplied by Blake Le-
Baron. In addition, I have benefited from discussions with
Wayne Ferson, James Poterba, and Peter Rossi, and work-
shop participants at the University of Chicago, Arizona State
University, New York University, and the University of Al-
berta at Edmonton. An anonymous referee provided ex-
tremely useful comments and suggestions on earlier drafts.
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The purpose of this ar-
ticle is to investigate
whether daily changes
in five major foreign
exchange rates contain
any nonlinearities. Al-
though the data contain
no linear correlation,
evidence indicates the
presence of substantial
nonlinearity in a multi-
plicative rather than
additive form. Further
examination reveals
that a generalized auto-
regressive conditional
heteroskedasticity
(GARCH) model can
explain a large part of
the nonlinearities for
all five exchange rates.
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the levels of exchange rates are unbounded. It also imposes some
restrictions on models of exchange rate determination, as pointed out
in Manas-Anton (1986). I note further than a random walk exchange
rate does not imply, nor is it implied by, rational expectations or mar-
ket efficiency.!

Thus far, there has been no strong statistical evidence confirming the
random walk model. Most investigations have focused on the linear
predictability (or lack thereof) of exchange rate changes. At best, the
data suggest that exchange rate changes are uncorrelated. This is not
sufficient to prove statistical independence, in view of the nonnormal-
ity of x,.2 It is possible for exchange rate changes to be linearly uncor-
related and nonlinearly dependent. Theoretically, there is no reason to
believe that economic systems must be intrinsically linear. Emp‘vi-
cally, there is some evidence that exchange rate changes exhibit non-
linear dependence. Hsieh (1988a) rejects the null hypothesis that x, is
independent and identically distributed (iid) for daily price changes of
five currencies from 1974 to 1983 and finds that this rejection can
be attributed to changing means and variances. Manas-Anton (1986)
shows that x? is serially correlated, even though x, itself is not.

One explanation of the nonlinear dependence is that exchange rate
changes are purely deterministic processes that ‘‘look’ random. An
excellent summary of chaotic systems can be found in Scheinkman and
LeBaron (in this issue). This article will instead focus on a second
explanation of nonlinear dependence: that exchange rate changes are
nonlinear stochastic functions of their own past. I employ a method
proposed by Brock, Dechert, and Scheinkman (1987) to test directly
for nonlinear dependence and attempt to distinguish between different
types of nonlinearity. I find substantial evidence of nonlinear depen-
dence in daily exchange rate changes, which implies that new theories
must be developed to account for this stylized fact.

II. Nonlinear Stochastic Systems

Empirical work has been leading theoretical research in nonlinear time-
series models. Priestley (1980) proposes a general framework to handle
nonlinear time series. This class of models is much richer than linear
time-series models. Here are several well-known examples. Robinson
(1979) proposes the nonlinear moving average model, the simplest one
being

X, =€ + 0 €_1€_>. 2.1

1. Lucas (1978) contains a general equilibrium asset-pricing model in which asset
prices do not necessarily behave as random walks.

2. See Burt, Kaen, and Booth (1977), Westerfield (1977), Rogalski and Vinso (1978),
Manas-Anton (1986), and Hsieh (1988a).
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Tong and Lim (1980) deal with the threshold autoregressive model,
such as

X, = ox_q + €, ifx,_1=1,
) 2.2)
= Bx,_, + €, otherwise.

Granger and Andersen (1978) introduce the bilinear time-series model,
as in

Xy = € + o X1 €—1. (2.3)

In the three examples above, €, is a sequence of normal iid random
variables. A fourth example of a nonlinear system is Engle’s (1982)
autoregressive conditional heteroskedasticity (ARCH) model, of which
the simplest is

X, = €, 2.4)

where ¢, is conditionally normally distributed, with zero mean and
variance i, = [a + ¢ x?_].

Time series generated by these systems all exhibit little or no serial
correlation, and yet x, is not stochastically independent of x,_ . Thus,
traditional tests of linear dependence (such as autocorrelation coeffi-
cients, run tests, etc.) will not detect the nonlinear dependence.

There has been little theoretical work in economics that gives rise to
nonlinear time-series models. This is, of course, not a weakness of
these nonlinear models. Rather, it is indicative of the difficulty in solv-
ing and analyzing nonlinear stochastic general equilibrium models. The
nonlinear moving average and the bilinear model can be justified as
second-order approximations of the Wold representation, which sta-
tionary (linear and nonlinear) time series possess. Threshold autore-
gressive and ARCH models have enjoyed slightly more attention in the
theoretical literature. A threshold autoregressive model can be found
in Aiyagari, Eckstein, and Eichenbaum (1985). The idea of their paper
is that the price of a storable good will switch between two linear
stochastic processes, depending on whether inventory is positive or
zero. Hsieh (1988b) presents a nonlinear stochastic rational expecta-
tions model of exchange rates under central bank intervention. This is
a nonlinear switching model, similar to a threshold autoregression.

The most popular nonlinear model in empirical econometric work
has been ARCH, which is very useful in describing heteroskedasticity
in many economic time series. There are, of course, theoretical rea-
sons to believe that conditional moments are important determinants of
asset prices since most intertemporal asset-pricing models give rise to
Euler equations that involve conditional expectations of marginal
utilities across assets and across time periods. It is therefore not hard
to visualize conditional variances and covariances showing up in asset
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demand functions. The problem in generating an ARCH specification is
that the Euler equation must be solved out completely to obtain a
characterization of the asset prices, a difficult task when the model is
nonlinear. Recently, Lai and Pauly (1988) offer a model in which
speculators in the foreign exchange market with incomplete informa-
tion about market fundamentals use a Kalman filter to extract informa-
tion and form expectations. The equilibrium exchange rate then turns
out to be an autoregressive moving average (ARMA) process with
conditionally heteroskedastic errors.

III. Testing Nonlinearity: The BDS Statistic

A method to test for nonlinear dependence makes use of the idea of the
‘“‘correlation integral.”” Given a time series {Z,: t = 1, ..., T} of D-
dimensional vectors. Define the correlation integral C(€) as

~ jim 2
CO) = lim s D 1421, Z), 3.1

i<j

where I¢(x, y) is an indicator function that equals one if || x — y || < €,
and zero otherwise, where || || is the sup-norm. The correlation inte-
gral C(€) measures the fraction of the pairs of points of {Z,} that are
within a distance of € from each other.

The correlation integral is used by Grassberger and Procaccia (1983)
to define the ‘‘correlation dimension’’ of {Z,}:

v = lim [log C(€)/log €], if the limit exists. 3.2)
€—0

Physicists use the correlation dimension to distinguish between chaotic
deterministic systems and stochastic systems. However, the lack of a
proper statistical theory is a drawback to the analysis. In fact, Ramsey
and Yuan (1987) show that the estimated correlation dimension may be
substantially biased even in samples with as many as 2,000 obser-
vations.

This article follows an alternative strategy, proposed by Brock, De-
chert, and Scheinkman (1987), referred to as the BDS test. Instead of
trying to distinguish a chaotic system from a stochastic system, they
propose to test the null hypothesis that the data are independently and
identically distributed, using a procedure that has power against both
deterministic chaos and nonlinear stochastic systems.

The BDS test computes a statistic based on the correlation integral.
Let{x,:t = 1,..., T} be a sequence of observations that are indepen-
dent and identically distributed. Form N-dimensional vectors x»¥ = (x,,
Xr+1> - - - » Xren—1)- These are called ‘‘N-histories.”” Calculate the
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_ 2 N N
%%D—Em¢3;Mm&L (3.3)

where Ty = T — N + 1. Brock, Dechert, and Scheinkman (1987) show
that under the null hypothesis {x,} is iid with a nondegenerate density F,

Cn(, T) —» C;(©)N with probability one, as T — o,

for any fixed N and €. Furthermore, they show that \/T[CN((,’ , T — C
(€, T)™] has a normal limiting distribution with zero mean and variance:

N—1
o) = 4[KN +2 Z KN=IC% + (N — 1)2°C*N — N’KC*N~7, (3.4)
j=1
where
C=CK = [[F(z + ¢ — F(z — 0ldF(2),
K =K® = [[[F(z + €) — F(z — ©)dF(z).

Note that C1(€, T) is a consistent estimate of C(£), and

6
T = DT =) 2 1o X Idxe 1) G.5)

is a consistent estimate of K(€). Thus, ox(€) can be estimated consis-
tently by on(€, T), which uses C,(€¢, T) and K(¢, T) in place of C(€) and
K(€). Under the null hypothesis, the BDS statistic

wn(€, T) = VT [Cn(€, T) — Cy(&, TNV on(, T) (3.6)

K¢, T) =

has a standard normal limiting distribution.
This test has an intuitive explanation. The correlation integral Cy(¢€,
T) is an estimate of the probability that any two N-histories, x¥ = (x,,

Xeits o oo Xpan—1) and x¥ = (x5, X415 - . - » Xs+ N—1), are within € of
each other, that is,
Cn(€, T) = prob{jx,.; — xs44 <€ forali=0,1,...,N — 1},
as T — o,

If the x,’s are independent, then, for [t — s| > N,
N-1
CnE, T)—> n prob{|x;; — x5+ < €}, as T— .
i=0

Furthermore, if the x,’s are also identically distributed, then
Cn, T) = Ci()N, as T— .

Simulations in Brock, Dechert, and Scheinkman (1987) show that this
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test has power against simple nonlinear deterministic systems as well
as nonlinear stochastic processes.

The BDS statistic gives some information about the type of depen-
dence in the data. Suppose wx (€, T) is a positive number. The proba-
bility of any two N-histories, (x;, X;+1, - . . , X; 4+ nv—1) and (xg, Xs4 1, - - - »
Xs+n—1), being ‘‘close’’ together is higher than the Nth power of the
probability of any two points, x, and x,, being together. This means that
some ‘‘clustering’’ is occurring too frequently in an N-dimensional
space. In other words, some ‘‘patterns’’ of exchange rate movements
occur more frequently than would be predicted had the data been truly
random.

One final point to note is that the BDS statistic tests the null hy-
pothesis of a random independent and identically distributed system. A
rejection of this null hypothesis is consistent with some type of depen-
dence in the data, which could result from a linear stochastic system, a
nonlinear stochastic system, or a nonlinear deterministic system. Addi-
tional diagnostic tests are needed to determine the source of rejection.

It is appropriate here to discuss other tests of nonlinearity. McLeod
and Li (1983) show that the autocorrelation coefficients and Box-Pierce
QO-statistics of the squared residuals of an ARMA model can be used to
test for nonlinear dependence. This method, of course, can be applied
to the raw data. To avoid confusion, I use p,(k) and p,.(k) to denote the
kth autocorrelation coefficient of {x,} and {x?}, and Q.(K) and Q,.(K) to
denote the Box-Pierce Q-statistic for the first K autocorrelations of {x}
and {xZ}. The Q..(K) statistic is clearly related to Engle’s (1982) test for
heteroskedasticity since the former uses the autocorrelation coeffi-
cients of {x?} while the latter uses their partial autocorrelation coeffi-
cients.

Tsay (1986) proposes a different test of nonlinearity. This is a more
powerful generalization of Keenan’s (1985) test. The Tsay test is com-
puted in three steps: (a) Regress x, on the vectorw, = (1 x,_1...X;,_a)’
and save the residuals u,. (b) Regress the vector z, = (X>_; X,—1X;—2 . . .
x2_ )" on w, and save the residual vector V,. Note that z, is an M(M +
1)/2 vector of the unique elements of the cross products {x,_;x,_;, i#
Jri,j=1,..., M} (c) Regress u, on V,, saving the residual v,, and form
the statistic

{={[5Vau]) 2 V;V]I ' [E Viu)mM[Evi(T - M — m — D], (3.7

where m = M(M + 1)/2. The limiting distribution of { is F(m, T — M
— m — 1). Simulations in Tsay (1986) show that this test has good
power against the nonlinear moving average and the bilinear models. It
is, however, possible that the Tsay test has low power against ARCH
models. Consider the simplest ARCH process

X =p t e, (3.3
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where €, (conditional on past information) is normal, with zero mean
and variance 1, = a + ¢ x?_ 1, fora >0, 0 < ¢ < 1. It suffices to choose
M = 2. In step a, I regress x, on (1 x,_; x,_5). Asymptotically, the
residuals will be ¢,. In step b, I regress x2_1, x,_1 X,—2, and x>_, on (1
X;_1X;,_»). Asymptotically, the residuals will be €?_,, €,_; €,_», and €>_,.
In step c, I regress the residuals of step a on the vector of residuals of
step b, that is, asymptotically, I regress €, on €2_;, €,_1 €,_, and €2_,.
We are unlikely to find any significant coefficients, since the mean of ¢,
conditional on past data is zero.

Another popular nonlinearity test uses the bispectrum, as in Hinich
(1982) and Hinich and Patterson (1985). The weakness of this proce-
dure is that it has low power against the class of processes with zero
third-order cumulants. It turns out that Engle’s (1982) ARCH process
is one such candidate. I therefore omit the bispectrum test because
ARCH is a very good description of the data.

IV. Application to Foreign Exchange Rates

The data consist of daily closing bid prices of foreign currencies in
terms of U.S. dollars from the interbank market provided by the Uni-
versity of Chicago Center for Research on Security Prices. Five major
currencies are used: British pound (BP), Canadian dollar (CD),
Deutsche mark (DM), Japanese yen (JY), and Swiss franc (SF). There
are a total of 2,510 daily observations, from January 2, 1974, to Decem-
ber 30, 1983. The rates of change are calculated by taking the
logarithmic differences between successive trading days.

Table 1 provides summary statistics of the data. All five currencies
have very heavy tails. The kurtosis coefficients are all substantially
larger than that of the standard normal distribution (which is 3). Table 2
gives the autocorrelation of the five currencies. As expected, there is
little linear dependence in the data. Standard errors and the Box-Pierce

TABLE 1 Summary Statistics of Log Price Changes, 1974-83
log(S,/S,_,) - 100
BP CD DM JY SF

Mean —.0184 —.0089 .0005 .0077 .0171
Median .0000 .0098 .0000 .0000 .0000
SD .5921 2234 .6372 .6260 .7889
Skewness —.4136 —.3149 —.4249 —.2044 —.2835
Kurtosis 8.90 8.61 12.79 11.27 10.22
Maximum 3.7496 1.5492 3.6686 3.5703 4.4466
Minimum —4.6623 —1.8677 —17.0967 —6.2566 —17.0054
Runs test: 1.96 —.86 2.38 .64 77

N(,1) (.0500) (.3898) (.0173) (.5222) (.4413)

NortEe.—Marginal significance level (two-tailed test) is in parentheses. Number of observations =
2,510. See text for definition of abbreviations.
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TABLE 2 Autocorrelation Coefficient of Log Price Changes, 1974-83
(Heteroskedasticity-consistent SEs)
Lags BP CD DM JY SF
p(1) —.0216 .0406 —.0638* —.0569 —.0410
[.0286] [.0354] [.0274] [.0254] [.0311]
px(2) —.0025 .0201 .0021 .0237 .0046
[.0279] [.0267] [.0351] [.0260] [.0289]
px(3) —.0075 .0176 .0240 .0344 .0050
[.0248] [.0274] [.0261] [.0245] [.0265]
px(4) —.0064 .0317 —.0244 .0055 —.0229
[.0237] [.0282] [.0261] [.0249] [.0270]
p:(5) .0224 .0740* 10265 .0386 —.0074
[.0275] [.0254] [.0289] [.0265] [.0290]
px(6) —.0021 10212 .0373 .0140 .0561
[.0254] [.0254] [.0251] [.0240] [.0252]
px(7) —-.0124 .0306 .0113 —.009%4 -.0070
[.0221] [.0268] [.0235] [.0218] [.0241]
px(8) —.0155 —.0065 .0128 .0093 —.0290
[.0226] [.0240] [.0248] [.0235] [.0233]
px(9) .0586* .0483 10391 .0739* .0385
[.0218] [.0237] [.0232] [.0238] [.0257]
px(10) .0017 0266 .0333 .0715* .0296
[.0253] [.0221] [.0225] [.0245] [.0273]
px(20) .0247 —.0238 —.0061 .0067 —.0099
[.0214] [.0216] [.0239] [.0252] [.0241]
px(30) —.0033 —.0405 —.0203 .0095 —.0004
[.0237] [.0217] [.0249] [.0234] [.0222]
px(40) 0197 —.0083 .0271 .0566* —.0053
[.0236] [.0239] [.0221] [.0230] [.0233]
px(50) .0170 .0170 .0206 —-.0267 .0029
[.0224] [.0212] [.0222] [.0216] [.0258]
Adjusted
Box-Pierce
0,(50) 39.71 54.35 44 .85 70.27 44.72
(.8512) (.3123) (.6796) (.0308) (.6846)

Note.—Marginal significance levels are in parentheses. Heteroskedasticity-consistent SEs are in
brackets. Abbreviations are defined in text.
* Significantly different from zero at the 1% level (one-tailed test).

QO-statistics are adjusted for heteroskedasticity according to Diebold
(1988). They show little serial correlation. Nonparametric tests, such
as the runs test, also fail to detect any linear dependence.

Table 3 reports the BDS statistics, which indicate substantial non-
linear dependence in the data. In computing the BDS statistics, I
have two important issues to deal with: the choice of £ and N, and the
small sample properties of the BDS statistics. These issues are inti-
mately related. For a given N, £ cannot be too small because Cn(¢, T)
will capture too few points; also € cannot be too large because Cn(¢, T)
will capture too many points. For my purposes, € is set in terms of the
standard deviation of the data, that is, £ = 1 means that it is one
standard deviation of the data.
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TABLE 3 BDS Test: Raw Data
N [4 BP CD DM JY SF
2 1.50 8.71 11.12 9.41 8.64 9.34
3 1.50 11.68 13.91 12.52 11.47 12.62
4 1.50 13.41 16.27 15.16 13.73 15.31
5 1.50 14.99 18.26 17.37 15.89 17.46
6 1.50 16.61 20.18 19.62 18.42 19.55
7 1.50 18.21 22.09 21.43 20.70 21.43
8 1.50 19.65 24.10 23.40 23.11 23.33
9 1.50 21.12 26.06 25.46 25.57 25.45
10 1.50 22.89 28.08 27.65 28.25 27.93
2 1.25 9.76 11.89 9.53 9.92 9.88
3 1.25 13.17 14.87 12.84 13.63 13.73
4 1.25 15.38 17.47 15.88 16.52 17.00
5 1.25 17.60 19.80 18.71 19.50 20.00
6 1.25 19.93 22.42 21.70 23.05 22.87
7 1.25 22.43 25.26 24.38 26.66 25.77
8 1.25 25.08 28.40 37.45 30.89 29.11
9 1.25 27.95 31.74 30.81 35.69 33.01
10 1.25 31.50 35.42 34.66 41.37 37.88
2 1.00 10.73 12.61 9.86 10.95 10.82
3 1.00 14.74 15.75 13.70 15.60 15.24
4 1.00 17.93 18.75 17.32 19.72 19.38
5 1.00 21.57 21.78 21.11 24.61 23.44
6 1.00 25.65 25.59 25.50 30.74 28.07
7 1.00 30.44 30.06 29.97 38.05 33.25
8 1.00 36.42 35.28 35.48 47.62 39.92
9 1.00 43.75 41.36 42.11 59.81 48.50
10 1.00 53.30 48.65 50.36 75.96 59.93
2 75 11.63 12.95 10.34 13.09 11.69
3 75 16.76 16.07 14.83 19.73 16.89
4 75 21.69 19.53 19.46 26.66 22.44
S 75 28.16 23.57 25.07 36.25 28.62
6 75 36.57 28.95 32.55 49.38 36.64
7 .75 48.26 35.57 41.62 67.95 46.96
8 75 65.76 43.87 54.11 95.26 62.00
9 75 91.92 54.55 71.52 13591 83.66
10 75 131.14 68.65 95.66 195.80 115.51
2 .50 14.69 12.65 10.84 17.23 12.81
3 .50 22.67 15.70 16.62 27.81 19.45
4 .50 33.16 19.91 23.24 42.66 27.88
S .50 50.21 25.02 32.93 67.55 37.24
6 .50 78.63 32.20 48.67 110.04 52.89
7 .50 131.65 41.97 72.22 184.82 76.23
8 .50 231.40 55.74 112.48 321.97 113.37
9 .50 433.09 74.92 186.11 580.91 173.69
10 .50 843.42 105.57 317.35 1062.04 279.16

Note.—See text for definition of terms.
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I present the BDS statistics for € = 1.5, 1.25, 1.0, .75, and .50 and N
= 2,3,...,10for the raw data. It is clear that the BDS statistics all lie
in the extreme positive tail of the standard normal distribution. The
data strongly reject the null hypothesis of iid. Note that the BDS statis-
tics for low dimensions (e.g., N = 2, 3, 4) are not sensitive to the
choice of ¢, but those for higher dimensions (e.g., N = 8, 9, 10) are.
The reason is that, while I have 1,250 nonoverlapping 2-histories at
dimension 2, I only have 250 nonoverlapping 10-histories at dimension
10.

Since the BDS statistics in table 3 are so large, one might question
whether they are reasonable. The large BDS statistics can arise in two
ways: either the finite sample distribution under the null hypothesis of
iid is poorly approximated by the asymptotic normal distribution, or
the BDS statistics are large when the null hypothesis of iid is violated.

Monte Carlo evidence indicates that the BDS statistic for my data
can reliably be approximated by its asymptotic distribution. Table 4
presents bootstrap experiments using the data in this study. I compute
the BDS statistics for 625 random permutations of the ordering of
the data. (There are 2,510! orderings, which is an enormous number.
The bootstrap results are essentially the same if we sample with re-
placement.) The mean BDS statistic is close to zero, and the standard
deviation is close to one. At low dimensions, it is normally distributed.
The observed ordering of the data, in contrast, yields BDS statistics
that are larger than those from all 625 random permutations. This
clearly shows that the observed ordering is not randomly sampled from
the 2,510! permutations.

Tables 5-7 present Monte Carlo evidence regarding the size of the
BDS statistic under the null hypothesis of iid, performed in Hsieh and
LeBaron (1988a). These tables indicate that, at sample sizes of 1,000,
asymptotic normality is appropriate for data drawn from the standard
normal, Student-z with 3 degrees of freedom, double exponential, and
chi-square with 4 degrees of freedom, when ¢ is between 1 and 2, and
that asymptotic normality is appropriate for data drawn from the uni-
form and bimodal distributions only when € is between 1.5 and 2.
However, the first four distributions are most relevant for my data,
which are unimodal and heavy tailed.

Table 8 gives the distribution of the BDS statistic under five alterna-
tives: autoregression of order 1 (AR1), moving average of order 1
(MA1), nonlinear moving average, ARCH of order 1, threshold auto-
regressive model, and the tent map, performed in Hsieh and LeBaron
(1988b). They show that, for samples of 1,000 observations, the aver-
age BDS statistic is around 10 and can become as large as 185. If the
sample size is enlarged from 1,000 to 2,500, these averages should
increase by another 50%. Hence the BDS statistics reported in table 3
are not ‘‘usually’’ large when compared to these alternative models.
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TABLE 4 Distribution of BDS Statistics at ¢ = 1 (625 Random Samples of 2,510
Points without Replacement)
N BP CD DM JY SF
2:
Mean —-.04 —.04 —.01 .07 —.04
SD 1.05 1.01 1.04 .96 1.07
Skewness .15 —.14 -.07 .00 .09
Kurtosis 2.92 2.98 2.91 2.72 2.79
3:
Mean -.07 —.05 —.05 .07 —.05
SD 1.05 .99 1.01 .94 1.03
Skewness .06 -.10 —.11 .15 .07
Kurtosis 2.87 2.86 2.97 2.94 2.75
4:
Mean —.06 -.03 -.05 .06 -.07
SD 1.05 .99 1.01 .94 1.04
Skewness 11 .04 -.07 22 .07
Kurtosis 3.00 2.97 2.82 3.00 2.79
S:
Mean —.04 —-.02 —.04 .05 —.06
SD 1.05 .98 1.02 95 1.04
Skewness .24 12 —.08 24 .06
Kurtosis 3.43 2.96 2.85 3.06 2.76
6:
Mean —.04 —.01 -.03 .05 —.05
SD 1.05 .98 1.02 .95 1.05
Skewness .36 .20 —.05 .23 .10
Kurtosis 3.81 2.89 2.78 3.14 2.70
7.
Mean -.03 -.01 -.03 .05 —.06
SD 1.04 97 1.02 .96 1.05
Skewness .49 .25 .03 .24 15
Kurtosis 4.21 2.93 2.67 3.15 2.70
8:
Mean —-.02 -.01 —-.02 .05 -.05
SD 1.04 .97 1.02 .97 1.06
Skewness .62 31 11 31 24
Kurtosis 4.74 2.93 2.62 3.28 2.75
9:
Mean .00 —.01 .00 .05 —.04
SD 1.05 .97 1.01 .97 1.07
Skewness .74 .39 17 42 32
Kurtosis 5.30 3.01 2.63 3.47 2.81
10:
Mean .02 —-.02 .00 .06 ©—.04
SD 1.06 .99 1.01 .97 1.08
Skewness .85 .46 .24 47 .40
Kurtosis 5.96 3.12 2.66 3.51 2.88

Note.—Abbreviations are defined in text.
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TABLE 5 Size of BDS Statistics at Dimension 2 (2,000 Replications; 1,000 Points
per Replication)
4
Nominal
25 .50 1.00 1.50 2.00 Size
Standard
normal:

% < —2.33 4.65 1.40 1.05 .90 .80 1.00

% < —1.96 8.95 3.25 2.90 2.45 2.65 2.50

% > 1.96 6.30 3.70 2.25 2.40 2.50 2.50

% > 2.33 3.60 1.55 .90 .70 .90 1.00
1(3):

% < —2.33 1.25 .65 .85 .50 .40 1.00

% < —1.96 3.25 2.50 2.20 2.05 1.20 2.50

% > 1.96 4.15 3.10 2.80 3.20 3.55 2.50

% > 2.33 1.90 1.50 1.10 1.45 1.80 1.00
Double

exponential:

% < —2.33 1.25 95 75 .70 .60 1.00

% < —1.96 3.10 2.75 2.85 2.40 2.30 2.50

% > 1.96 3.30 3.00 3.20 3.30 3.10 2.50

% > 2.33 1.45 1.25 1.45 1.70 1.75 1.00
xX@):

% < —2.33 1.65 .90 1.10 1.20 1.10 1.00

% < —1.96 5.00 3.05 3.00 3.35 2.45 2.50

% > 1.96 5.05 3.80 3.85 3.90 3.70 2.50

% > 2.33 3.25 2.10 1.90 1.65 2.15 1.00
Uniform:

% < —2.33 44.95 21.75 1.45 1.40 1.40 1.00

% < —1.96 46.05 26.60 3.60 3.00 3.15 2.50

% > 1.96 42.45 24.30 5.05 2.85 2.85 2.50

% > 2.33 41.40 21.80 3.10 1.30 1.25 1.00
Bimodal:

% < —2.33 2.30 2.55 52.70 1.40 1.10 1.00

% < —1.96 5.45 5.00 54.70 3.85 3.10 2.50

% > 1.96 6.45 5.75 29.20 3.85 3.05 2.50

% > 2.33 3.45 3.05 28.10 2.05 1.40 1.00

Note.—Approximate SE is 1.12 for these probabilities.

Furthermore, table 8 shows that the BDS has good power against these
alternative hypotheses.

The Monte Carlo evidence supports the conclusion that the BDS test
strongly rejects the null hypothesis of iid. To ensure that the BDS test
is not merely picking up some linear dependence in the data (since
table 8 shows that BDS has power against an AR process), I prefilter
the data by the following autoregression:

X = Bo + BmDus,r + BeDr,: + BwDw,, + BrDgr, + BgHOL,

m
+ Z Bixe—i + s,

i=1

where Dys,, D1, Dw,, and Dg, are dummy variables for Monday,
Tuesday, Wednesday, and Thursday, respectively, and HOL, is the
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TABLE 6 Size of BDS Statistics at Dimension 5 (2,000 Replications; 1,000 Points
' per Replication)
¢
Nominal
.25 .50 1.00 1.50 2.00 Size
Standard
normal:

% < —2.33 29.85 3.60 55 .80 75 1.00

% < —1.96 32.75 7.40 2.35 2.35 2.55 2.50

% > 1.96 29.65 8.15 2.90 2.40 2.50 2.50

% > 2.33 26.95 5.30 1.40 1.10 1.30 1.00
1(3):

% < —2.33 6.05 .70 .70 .85 .60 1.00

% < —1.96 9.55 2.25 2.30 2.55 2.50 2.50

% > 1.96 11.00 4.20 3.10 3.50 3.55 2.50

% > 2.33 7.55 2.25 1.95 1.70 1.60 1.00
Double

exponential:

% < —2.33 5.90 .35 75 95 75 1.00

% < —1.96 9.65 2.10 2.40 2.60 2.75 2.50

% > 1.96 10.30 3.70 2.90 2.25 2.50 2.50

% > 2.33 7.00 1.75 1.25 .95 1.30 1.00
xX@):

% < —2.33 16.15 .95 .85 .85 1.00 1.00

% < —1.96 20.65 3.45 2.30 2.25 2.30 2.50

% > 1.96 19.20 5.30 3.45 3.30 3.00 2.50

% > 2.33 15.40 2.95 1.75 1.25 1.50 1.00
Uniform:

% < —2.33 49.20 35.50 4.05 1.50 1.30 1.00

% < —1.96 49.60 37.40 7.55 3.00 2.95 2.50

% > 1.96 48.05 38.50 6.85 3.75 3.40 2.50

% > 2.33 47.90 36.85 4.30 1.55 1.25 1.00
Bimodal:

% < —2.33 15.45 7.25 46.00 2.50 1.45 1.00

% < —1.96 20.00 10.80 47.20 5.70 3.30 2.50

% > 1.96 17.85 10.25 41.05 5.30 2.70 2.50

% >2.33 13.65 6.85 39.95 2.80 1.40 1.00

Note.—Approximate SE is 1.12 for these probabilities.

number of holidays (excluding weekends) between two successive
trading days. The lag length of the AR(m) model is chosen for which
the adjusted Q.(50) test is not significant at the 10% level. The
identified models are m = 0, 5, 6, 10, and 6, respectively, for the BP,
CD, DM, JY, and SF. An alternative procedure uses 10 lags for all five
currencies.

It is appropriate to deal with the induced serial correlation in fitted
residuals. Brock (1987) shows that the asymptotic distribution of the
BDS statistic applies to residuals of linear regressions as well as the
original data.> Baek and Brock (1988) extend this result for vector
autoregressions.

3. I have verified this in Monte Carlo experiments. The BDS statistics applied to
residuals from an AR1 (p = .5 and .95) and an MA1 (8 = .5 and .95) conform very well to
the asymptotic normal distribution, using 2,000 replications of 1,000 observations each.
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TABLE 7 Size of BDS Statistics at Dimension 10 (2,000 Replications; 1,000 Points
per Replication)
4
Nominal
.25 .50 1.00 1.50 2.00 Size
Standard
normal:

% < —2.33 99.85 39.35 .80 .60 1.05 1.00

% < —1.96 99.85 39.60 2.55 1.80 2.65 2.50

% > 1.96 15 34.05 5.00 3.15 2.70 2.50

% > 2.33 15 32.90 3.65 1.55 1.30 1.00
t(3):

% < —2.33 95.00 5.45 .40 .85 .90 1.00

% < —1.96 95.15 9.60 1.35 2.55 2.50 2.50

% > 1.96 3.70 12.60 3.90 3.05 3.15 2.50

% > 2.33 3.65 9.40 2.00 1.70 1.45 1.00
Double

exponential:

% < —2.33 49.45 6.90 .25 .65 1.10 1.00

% < —1.96 95.90 12.50 1.00 2.00 2.80 2.50

% > 1.96 1.00 13.80 3.70 2.80 2.25 2.50

% > 2.33 1.00 11.15 2.15 1.25 1.30 1.00
X*(4):

% < —2.33 98.95 19.10 .30 .50 55 1.00

% < —1.96 98.95 24.35 1.55 1.85 2.15 2.50

% > 1.96 1.05 20.90 4.60 3.65 2.85 2.50

% > 2.33 1.05 17.35 2.65 1.75 1.40 1.00
Uniform:

% < —2.33 99.85 51.60 16.30 .90 .95 1.00

% < —1.96 99.85 51.95 20.85 3.40 2.50 2.50

% > 1.96 15 42.30 18.70 4.40 3.55 2.50

% > 2.33 15 41.20 15.50 2.50 1.70 1.00
Bimodal:

% < —2.33 93.10 35.50 47.95 5.80 .90 1.00

% < —1.96 93.10 39.15 48.40 9.75 2.90 2.50

% > 1.96 6.90 32.55 47.00 8.85 3.10 2.50

% > 2.33 6.90 30.45 46.55 5.30 1.40 1.00

Note.—Approximate SE is 1.12 for these probabilities.

Table 9 reports the BDS test of the two sets of filtered data for € = 1.
They do not differ substantially from those using the raw data, which
suggests that the BDS test is not merely picking up some linear depen-
dence but is in fact detecting strong nonlinear dependence in the data.

Table 10 gives the results of other tests of nonlinearity of the raw
data. The autocorrelation coefficients of the squared data, p,,(k), and
the Ljung-Box Q,.(K) of the squared data are both substantially larger
than the corresponding p,(k) and Q,(K) in table 2, corroborating the
BDS inference that the data contain important nonlinearity. Inter-
estingly, the Tsay test picks up little nonlinearity when M = 2 or 4,
except for the CD. But at M = 8 and 10, the Tsay test is able to detect
some nonlinearity.
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TABLE 8 Distribution of BDS Statistics for Various Alternatives (2,000
Replications of 1,000 Points)

AR1 MAI1 Nonlinear ARCH Threshold Tent

N p=05 06=05 MA b =0.5 AR Map
Mean (SD)
at € = 1.00:
2 15.98 9.68 6.90 12.26 5.84 114.90
(2.46) (1.76) (1.55) (1.70) (1.51) (3.25)
3 14.92 9.47 9.08 11.98 5.47 111.93
(2.46) (1.99 (1.57) (1.85) (1.48) (4.24)
4 13.95 8.94 9.57 11.39 4.99 115.94
(2.45) (1.66) (1.65) (1.96) (1.46) 4.75)
5 13.25 8.46 9.68 10.88 4.60 121.02
(2.51) (1.69) 1.77) (2.09) (1.46) (5.49)
6 12.76 8.07 9.66 10.48 4.29 128.69
(2.60) (1.73) (1.91) (2.23) (1.47) (6.46)
7 12.42 7.77 9.62 10.19 4.04 138.68
(2.73) (1.81) 2.07) (2.40) (1.50) (7.78)
8 12.21 7.53 9.59 9.98 3.83 151.24
(2.90) (1.91) (2.26) (2.60) (1.55) (9.53)
9 12.11 7.35 9.60 9.85 3.66 166.61
(3.12) (2.04) 2.47) (2.84) (1.62) (11.78)
10 12.08 7.20 9.63 9.78 3.51 185.24

(3.38) 2.19) 2.72) (3.10) (1.71) (14.73)
% of replications
rejected at
1% (two-tailed)

level at

o = 1:

2 100.00  100.00 100.00 100.00 98.90 100.00
3 100.00  100.00 100.00 100.00 98.45 100.00
4 100.00  100.00 100.00 100.00 95.65 100.00
5 100.00 99.95 100.00 100.00 92.00 100.00
6 100.00 99.95 100.00 100.00 87.65 100.00
7 100.00 99.95 100.00 100.00 83.65 100.00
8 100.00 99.90 100.00 100.00 79.05 100.00
9 100.00 99.75 100.00 99.95 74.60 100.00
10 100.00 99.45 100.00 99.90 70.05 100.00

Nortes.—The figures in the table are the percentage of test statistics with absolute value greater
than 2.576. One SE bound is 1.12%. Standard errors are in parentheses.

ARI1: X, = pX—1 + €&

MAL: x, =0¢€_; + ¢

Nonlinear MA: X, =€ + .8¢_1€_»

ARCH: x = [1 + &x2_11%

Threshold AR: X, = —-S5x_1+e€, ifx,_;<.5
= 4x_;+te, ifx,_,=.5

Tent: X, =2x-q, ifx,_;<.5

2 —2x-q, ifx,.y=.5
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TABLE 9 BDS Test: Filtered Data
N 4 BP CD DM JY SF
lags = 0 5 6 10 6
2 1.00 11.09 12.37 8.60 10.60 10.28
3 1.00 15.00 15.43 12.82 15.29 14.73
4 1.00 18.06 18.06 16.42 19.72 18.78
5 1.00 21.56 20.85 20.32 24.77 22.82
6 1.00 25.56 24.32 24.69 30.78 27.35
7 1.00 30.01 28.21 29.25 37.94 32.46
8 1.00 35.63 32.59 34.78 47.33 38.98
9 1.00 42.65 37.59 41.37 59.31 47.21
10 1.00 51.57 43.75 49.57 75.21 58.20
lags = 10 10 10 10 10
2 1.00 10.51 12.35 8.63 10.60 10.26
3 1.00 14.71 15.40 12.83 15.29 14.75
4 1.00 18.01 18.03 16.55 19.72 18.87
5 1.00 21.63 20.68 20.49 24.77 22.92
6 1.00 25.63 24.02 24.83 30.78 27.46
7 1.00 30.35 27.73 29.34 37.94 32.63
8 1.00 36.19 31.93 34.81 47.33 39.27
9 1.00 43.20 36.81 41.37 59.31 47.63
10 1.00 52.20 42.85 49.53 75.21 58.79

Note.—All test statistics are significant at the 1% level. Abbreviations are defined in text.

V. Discriminating between Different Types of Nolinearities

In this section, I try to sort out the type of nonlinearity in the data. Let

u, denote the linearly filtered data, that is, u, is the residual from the

autoregression with 10 lags and daily dummies in the previous section.

We can distinguish between two types of nonlinear dependence in u;:
Additive dependence:

Uy = vp + [ty oy gy Uty o - o U k)5 5.D
Multiplicative dependence:

u = th(xl—la e Xk Up—15 « -+ ul—k)a (52)

where v, is an iid random variable with zero mean and independent of
past x;s and u;s, and f( ) an arbitrary nonlinear functionof x, 1, . . .,
Xi—x, and u,_y, . . ., u,_y, for some finite k. Additive dependence
postulates that nonlinearity enters only through the mean of the pro-
cess, which is closely related to Priestley’s state-dependent model
(1980; see eq. [3.14], p. 53). The nonlinear moving average, the thresh-
old autoregression, and the bilinear model are examples of additive
dependence. Multiplicative dependence postulates that nonlinearity
enters only through the variance of the process, which is essentially the
general form of conditional heteroskedasticity in Engle (1982; see eq.
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TABLE 10 Some Standard Tests for Nonlinearity: Raw Data
Lag BP CD DM JY SF
Autocorrelation
coefficients
of squared
log price changes:
Pxx(1) 1333 .2806 .0753 .0603 1549
Pxx(2) .1200 .1024 1773 .0674 1192
pxx(3) L0677 .1160 .0609 .0494 .0835
Pxx(4) 10522 .1290 .0607 .0538 .0899
Pxx(5) 1137 .0804 .0931 .0746 1218
Pxx(6) 0776 0805 .0490 .0433 .0647
Pxx(7) .0291 .1041 .0328 .0192 .0492
Pxx(8) .0355 .0588 .0464 .0371 .0390
Pxx(9) .0240 .0534 .0302 .0412 .0721
pxx(10) .0756 .0288 10228 .0495 .0948
Ljung-Box
0,x(50) 365.84* 593.36* 215.06* 206.09* 531.87*

(.0000) (.0000) (.0000) (.0000) (.0000)
Tsay test for

nonlinearity:
M=2: 2.19 4.13* .62 .74 1.46
F(3,2504) (.0857) (.0064) (.6061) (.5315) (.2221)
M= 4 2.04 4.95% 1.96 1.74 1.17
F(10,2495) (.0261) (.0000) (.0338) (.0666) (.3062)
M =6: 1.55 4.64% 2.30* 2.05* 1.71
F(28,2474) (.0524) (.0000) (.0007) (.0034) (.0231)
M =8 1.67* 3.25* 2.05* 2.05* 1.42
F(36,2465) (.0076) (.0000) (.0002) (.0002) (.0194)
M = 10: 2.15* 2.51* 2.09* 2.24* 1.64*
F(55,2444) (.0000) (.0000) (.0000) (.0000) (.0023)

Note.—Marginal significance levels are in parentheses. Abbreviations are defined in text.
* Significantly different from zero at the 1% level (one-tailed test).

[5], p- 989). Note that the ARCH-M (i.e., ARCH-in-the-mean) model,
used in Domowitz and Hakkio (1985) and Diebold and Pauly (1988), is a
hybrid since nonlinearity enters both the mean and the variance.

Both additive and multiplicative nonlinearity imply that u«? is cor-
related with its own lags. This, of course, is evident in the autocorrela-
tion coefficients of the squared raw data in table 10. However, multi-
plicative dependence implies that

E[ut'xt—la e s Xp—hy Up—15 - - o ut—k] = 0’ (53)
while additive dependence implies that
E[utlxt—la ce s X gy Up s - 5 Ui g] # 0. (5.4)

I can exploit this distinction to discriminate between the two types of
nonlinearity. Suppose f( ) is at least twice continuously differ-
entiable. I can approximate it by a second-order Taylor series expan-
sion around zero and obtain terms such as u,_u,_j, X, _j, and
x,—x,—;. Multiplicative dependence implies that u, is not correlated
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with these terms, while additive dependence implies that «, is usually
correlated with at least some of these terms. (Note that Pemberton and
Tong [1981] give examples of nonlinear autoregressive models whose
odd product moments are zero.)

To implement a test, I define p,,.(i, /) = E(uu,—_u,—;)/p;. Set up
multiplicative nonlinearity as the null hypothesis, which implies p,,,.(i,
j) = 0 for all i, j > 0, and test it against the composite alternative
hypothesis that p,,,.(i, j) # 0 for some i, j > 0. I estimate p,,,(i, j) by

iy ) = [% S, sty gty ,] / [—}- s u%]l's. 5.5)

Under the null hypothesis of p,..(i, j) = 0 and auxiliary assumptions
about the behavior of {u;}, VTI(UT) S, wu,— s — ;] is asymptotically
normally distributed, with mean zero and variance w(i, j) = plimz_,.(1/
T) 3, u?u?_u?_;, provided that the probability limit exists. Then ry.(i, j)
is asymptotically normally distributed, with mean zero and variance
w(i, j)/oS, which can be consistently estimated by [(1/T) 3 w?u?_u5_ )/
[(1/T) 3. u?1?. An asymptotic test of pu.(i,j) = 0 can then be obtained.

This procedure is very similar to the Tsay (1986) test for nonlinear-
ity. I test pu..(i, /) = 0 individually, while Tsay (1986) tests jointly for
Puui, ) = 0 for 0 < i, j < k. There is, however, an important dif-
ference. Tsay (1986) assumes that u, is iid, while I assume that
Elulu,_1, . . ., u;_i] = 0 along with sufficient moment conditions to
guarantee the asymptotic normality of r,,,(i, j) and consistent estima-
tion of its variance. The reason is that the Tsay (1986) test is designed
to detect any type of nonlinearity, whether it is additive or multiplica-
tive. My test is designed to reject only in the presence of additive
nonlinearity but not multiplicative nonlinearity. However, it should be
clear that the Tsay test will have good power only against additive
nonlinearity (when p,,.(i, j) # 0 for some i, j), but it will have low
power against multiplicative nonlinearity (when p,,,(i, j) = 0 for all i,
J)-

To check that the third-order moment test has power against additive
nonlinearity, I apply this test to the alternative models in table 8. The
results are reported in table 11. The statistic VT ry .0, j)/[w(, j)/o$]%°
is used to test whether third-order moments are different from zero, up
to the fourth lag. A rejection is registered if the absolute value of this
statistic is larger than 2.576, constituting a two-tailed test at the 1%
significance level. The test rejects the null hypothesis of zero third-
order moments at approximately the nominal size of 1% for the AR1,
the MA1, and the ARCH models, which have no additive nonlinearity.
The test also rejects the null hypothesis of zero third-order moments at
about 99% for the nonlinear moving average (at i = 2, j = 1), the
threshold autoregression (at i = 1,j = 1), and the tent map (ati = 1,
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= 1,and i = 2,j = 2), which have additive nonlinearity. This shows
that the third-order moment test has good power against additive non-
linearity. In addition, the third-order moment test is able to detect
additive nonlinearity in a hybrid model, rejecting 64% for the ARCH-M
(ati = 1 and j = 1). Although this rejection rate is low, the power rises
to 84% when the sample size increases to 2,500 observations.

Table 12 reports r,,.(i, j) and their standard errors when {u,} is the
residual from the tenth-order autoregression with dummies for days of
the week and holidays. None of them are significantly different from
zero at the 1% level. Although the table reports only the results fori =
J = 5, none of the third-order moments up to i = j = 10, other than
Puu(S, 6) for the CD, p,,....(2, 10) for the JY and p,,,.(6, 10) for the SF, is
significantly different from zero at the 1% level. Furthermore, the re-

TABLE 12 Third-Order Moments of Filtered Data

Lag
i J BP CD DM JY SF
1 1 —.124 -.132 —.086 —.060 —.103
(.105) (.150) (.081) (.073) (.110)
2 1 008 —.054 —.008 024 021
(.050) (.065) (.053) (.035) (.048)
2 2 -.109 —.030 .008 004 009
(.104) (.094) (.176) (.074) (.101)
3 1 —.003 —.112 .048 —.011 —.016
(.042) (.046) (.052) (.033) (.052)
3 2 -.012 .006 —.030 —.013 -.015
(.042) (.055) (.052) (.032) (.047)
3 3 —.001 .176 -.014 031 —.069
(.074) (.114) (.079) (.075) (.103)
4 1 —.034 -.1 —.00 032
(.040) (.054) (.037) (.030) (.049)
4 2 017 .067 —.009 —.055
(.045) (.041) (.061) (.041) (.057)
4 3 068 078 .032 045 -
(.031) (.079) (.031) (.032) (.038)
4 4 -.026 171 —.095 094 —.069
(.067) (.109) (.106) (.092) (.091)
5 1 —-.019 —.076 .044 074 054
(.047) (.051) (.049) (.036) (.049)
5 2 -.019 -.02 —.038 —.065 —.035
(.047) (.032) (.067) (.034) (.045)
5 3 009 —-.037 .015 -.019 —.031
(.037) (.040) (.054) (.038) (.051)
5 4 —.069 —.025 .048 036 —-.021
(.035) (.052) (.039) (.038) (.044)
5 5 —.026 020 -.014 016 080
(.093) (.068) (.085) (.073) (.119)

Note.—Standard errors are in parentheses. Abbreviations are defined in text.
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sults do not change if I use the filtered data from the Box-Jenkin
identification procedure (i.e., lags of 0, 5, 6, 10, and 6 for the BP, CD,
DM, JY, and SF), or if I use the raw data themselves. The evidence
supports the view that the changing of variances is responsible for the
rejection of iid in exchange rate changes.

In the attempt to model changing variances, I recognize that hetero-
skedasticity can arise in two ways. An exogenous shift in policy regime
can lead to a change in variance of exchange rates. This type of ‘‘exog-
enous’’ heteroskedasticity will cause the BDS test to reject iid, but it is
not what I mean by ‘‘nonlinearity’’ since the change in variance is
unpredictable based on past exchange rate changes. However, vari-
ance changes can arise endogenously and persist over time, as in
ARCH processes. This type of conditional heteroskedasticity will also
cause the BDS test to reject iid, and it is an example of a nonlinear
time-series model since the change in variance is predictable based on
past exchange rate changes.

If heteroskedasticity in exchange rates arises exogenously, it would
be (by definition) difficult to model without knowing what the exoge-
nous variables are. A full treatment is outside the scope of this article. I
use a simplistic model of ‘‘exogenous’’ heteroskedasticity by assuming
that the exogenous variable is time. Suppose that exchange rate
changes within a month have the same mean and variance, which can
change across months. To test this hypothesis, I apply the following
transformation to standardize the data. For each month, the sample
mean and standard deviation are computed. Each observation is stan-
dardized by subtracting the monthly mean and dividing by the monthly
standard deviation. This method removes most of the skewness (ex-
cept for the JY) and a large part of leptokurtosis in the data. In fact, this
transformation should remove the rejection of iid. The results are
mixed. The BDS statistics in table 13 are substantially lower than those
in table 9. As a matter of fact, the CD and SF now pass the BDS test.
But the BP, DM, and JY still fail the test. The Q,.(50) statistic detects
nonlinear dependence in the BP, DM, JY, and SF. Furthermore, the
runs test and the adjusted Q,(50) pick up linear dependence. Only the
Tsay test fails to find any nonlinearity. This evidence suggests that
the simple model of ‘‘exogenous’’ heteroskedasticity is not adequate to
describe the data.

For the remainder of this article, I concentrate on modeling condi-
tional heteroskedasticity, using Engle’s (1982) ARCH model and Bol-
lerslev’s (1986) generalized ARCH (GARCH) model. Applications of
ARCH and GARCH to exchange rates can be found in Bollerslev
(1987), Diebold (1988), Diebold and Nerlove (1986), Diebold and Pauly
(1988), Engle and Bollerslev (1986), Hsieh (1987), Manas-Anton (1986),
and Milhgj (1987). I estimate the simplest GARCH model, which is
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TABLE 13 Tests of Nonlinearity: Standardized Data
N 4 BP CD DM JY SF
BDS Tests:
2 1.00 2.28 .65 3.04* 2.52% 1.55
3 1.00 2.77* .19 2.85* 3.67* 1.64
4 1.00 3.05* .24 2.75* 4.74% 1.84
5 1.00 3.52* 15 2.79* 5.50* 1.45
6 1.00 3.83%* .15 3.08* 6.63* 1.06
7 1.00 4.13* .05 3.04* 6.75* 37
8 1.00 4.50* -.02 3.08* 7.33* -.09
9 1.00 4.85* —-.16 3.31* 7.98* —.47
10 1.00 5.30* - .47 3.46* 8.70* —.64
Runs test: 1.94 1.38 4.89* 1.58 2.85*
N(@©,1) (.0262) (.0838) (.0000) (.0571) (.0022)
Q,(50) 121.64* 93.80* 117.60* 98.13* 106.53*
(.0000) (.0001) (.0000) (.0001) (.0000)
0,:(50) 90.16* 68.82 94.12* 97.31* 78.93*

(.0000) (.0399) (.0000) (.0000) (.0056)
Tsay test for

nonlinearity:

M =2 2.05 .14 1.34 .60 1.76
F(3,2504) (.1032) (.9324) (.2585) (.6191) (.1509)

M =4 1.20 1.08 1.17 .98 1.57
F(10,2495) (.2897) (.3738) (.3062) (.4585) (.1093)

M =6 1.05 .89 .81 .69 1.26
F(21,2482) (.3973) (.6054) (.7107) (.8474) (.1905)

M =8: .96 .95 .83 .76 .88
F(36,2465) (.5373) (.5545) (.7529) (.8480) (.6735)

M = 10: 1.35 91 .76 .73 .87
F(55,2444) (.0451) (.6629) (.9034) (.9320) (.7405)
Skewness —-.0789  —.0912 —.0522 .2420 .0240

Kurtosis 3.89 3.19 3.33 3.97 3.42

Note.—Abbreviations are defined in text. Marginal significance levels are in parentheses.
* Significant at the 1.0% level (one-tailed test).

specified as follows:
x; = Bo + BmDwm,: + BrDr,: + BwDw, + BrDr, + BsHOL,

m
+ Z Bxi—; + €,

i=1

(5.6)

where m is 0, 5, 6, 10, and 6, respectively, for the BP, CD, DM, JY,
and SF and ¢, (conditional on past data) is normally distributed, with
zero mean and variance h,, such that

h, = Yo t+ 'YMDM,t + 'YTDT,t + 'YWDW,t + 'YRDR,t + ygHOL, .7)
+ yhe_; + dei_;. .
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TABLE 14 Tests of Nonlinearity: Standardized Residuals,
GARCH(1, 1)-Normal
N 4 BP CD DM JY SF
BDS Tests:
2 1.00 2.94* 2.11 -1.18 —-1.03 -.28
3 1.00 3.93* 2.03 -.85 -1.11 17
4 1.00 4.47* 1.96 —.18 —.65 .46
5 1.00 5.19* 1.86 .67 -.32 .40
6 1.00 6.03* 1.93 1.53 .28 .40
7 1.00 7.17* 1.96 2.03 .70 .15
8 1.00 8.46* 1.95 2.60* 1.25 .02
9 1.00 10.26* 1.75 3.13* 1.85 -.09
10 1.00 12.42* 1.55 3.79* 2.38 -.03
Runs test: .74 —-.86 -1.10 .46 —-1.14
N(,1) (.2297) (.1949) (.1357) (.3228) (.1271)
0,(50) 58.25 54.30 56.64 51.56 50.05
(.0736) (.0526) (.0263) (.0273) (.0913)
0,x(50) 41.86 40.78 75.94* 38.97 49.13

(.4771) (:5245) (.0010) (.6047) (.2091)
Tsay test for

nonlinearity:
M =2 .90 .24 .46 2.99 .55
F(3,2504) (.4424) (.8684) (.7142) (.0295) (.6524)
M = 4 .79 1.67 45 1.34 .90
F(10,2495) (.6386) (.0820) (.9218) (.2029) (.5323)
M = 6: .76 1.23 .48 1.04 .84
F(21,2482) (.7719) (.2140) (.9774) (.4095) (.6719)
M =8: .85 .83 .64 .83 72
F(36,2465) (.7220) (.7529) (.9528) (.7678) (.8915)
M = 10: .94 .81 73 .78 .92
F(55,2444) (.6011) (.8402) (.9320) (.8804) (.6425)
Skewness -.13 —.06 .002 —.40 .18
Kurtosis 9.91 4.79 6.68 13.23 5.92
Goodness of
fit: 357.73* 97.37* 75.71* 355.29* 138.96*
x2(50) (.0000) (.0001) (.0109) (.0000) (.0000)

Note.—Abbreviations are defined in text. Marginal significance levels are in parentheses.
* Significant at the 1.0% level.

After estimation, I perform diagnostic tests on the standarized resid-
uals:

7, = é/hV2, (5.8)

where ¢, is the residual of the mean equation and fz, its estimated
variance.

The diagnostic tests for all five currencies are given in table 14. The
runs test and Q,(50) find no first-order dependence, while Q,.(50) finds
second-order dependence only in the DM. On the basis of these two
tests, other researchers have concluded that GARCH fits most of these
currencies. I have added the Tsay test and the BDS test. The Tsay test
finds no evidence of nonlinearity in any of the currencies. The BDS test
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also finds no evidence of nonlinearity in the CD, JY, and SF, some
nonlinearity (at dimensions 8, 9, and 10) for the DM, and strong non-
linearity for the BP.

I must point out that this procedure is often biased in favor of accept-
ing the model. Tauchen (1985) shows that diagnostics of maximum
likelihood models may have a different asymptotic distribution from
those applied to the raw data and gives examples of diagnostics that are
biased toward accepting the model when no adjustments are made to
account for the presence of estimated parameters. For the diagnostics
in this article, there are standard methods to adjust the asymptotic
distribution for the estimated parameters. For Q.(50), the degrees of
freedom are reduced from 50 to 50 — (m + 6). For Q,,(50), the degrees
of freedom are reduced from 50 to 50 — (g + 6). For the goodness of
fit, the degrees of freedom are not reduced since there are no parame-
ters to estimate in the standard normal. For the modified Levene test of
equality of monthly variances, no adjustment is made because I am not
sure how it should be done. In any case, there are so many degrees of
freedom (i.e., 119 in the numerator and 2,390 in the denominator) that
any adjustment is unlikely to have any important effect.

Table 15 provides evidence that the ‘‘nuisance’’ parameter may
affect the asymptotic distribution of the BDS test. 1 generate
GARCH(1, 1) models of the following type:

2, hy =1+ 25x2_, + .7 h,_y, (5.9)

where ¢, iid N(0, 1). The parameter values of .25 and .7 are close to
those estimated for the exchange-rate data. I perform 2,000 repli-
cations, each with 1,000 observations. The BDS statistics of GARCH
standardized residuals are normally distributed, but their standard er-
rors are substantially below one. Other (unreported) simulations using
ARCH with normal errors and GARCH with Student-¢ errors also give
similar results. Rather than making the necessary adjustments to the
diagnostics, which can be computationally very complicated, I shall
merely note their potential biases here.*

I also check whether the standardized residuals are normally distrib-
uted, which is assumed in the GARCH model above. The Pearson
goodness-of-fit test gives x3(50) statistics of 357.73, 97.37, 75.71,
355.29, and 138.96, all significant at the 1% level. Several nonnormal

X, =h

4. 1 could adjust the BDS statistic as follows. Ordinarily, I use the critical value of
2.576 from a standard normal distribution to conduct a 1% (two-tailed ) asymptotic test.
For GARCH standardized residuals, I can multiply 2.576 by the standard deviation
reported in table 15. This means the critical values are 1.98, 1.60, 1.42, 1.37, 1.39, 1.47,
1.60, 1.75, and 1.96 for dimensions 2—10 when (¢/0) = 1. Using these critical values,
BDS detects no nonlinearity in the SF. It finds some slight nonlinearity in the DM and JY
at higher dimensions, some nonlinearity in the CD for dimensions 2-8, and substantial
nonlinearity in the BP. This adjustment, however, is only suggestive since it could vary
with the sample size as well as the parameters of the model.
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TABLE 15 Distribution of BDS for GARCH(1, 1)-Normal Standardized Residuals
(2,000 Replications; 1,000 Points per Replication)
N BP CD DM JY SF
2:
Mean —.03 -.02 —-.02 -.01 .00
SD 85 77 .76 80 1.00
Skewness 16 07 .05 10 .00
Kurtosis 2.99 3.18 3.18 3.17 3.00
3:
Mean -.05 —.03 —-.02 —.01 .00
SD 78 62 .60 64 1.00
Skewness .19 14 04 04 .00
Kurtosis 3.13 3.07 2.98 2.90 3.00
4:
Mean -.07 —.04 —.02 00 .00
SD 84 55 51 54 1.00
Skewness 19 15 .01 .04 .00
Kurtosis 3.27 3.07 2.98 2.86 3.00
5:
Mean —.07 —.03 -.01 00 .00
SD 1.04 53 .46 49 1.00
Skewness 14 18 .06 05 .00
Kurtosis 3.31 3.17 3.06 2.92 3.00
6:
Mean —.06 -.03 —-.01 00 .00
SD 1.40 54 .44 47 1.00
Skewness .10 20 .07 03 .00
Kurtosis 3.35 3.01 2.98 2.96 3.00
7:
Mean —.06 -.03 -.01 00 .00
SD 1.99 57 45 47 1.00
Skewness .20 23 .05 .61 .00
Kurtosis 3.22 3.00 3.00 3.03 3.00
8:
Mean -.02 -.03 —.01 00 .00
SD 3.02 .62 .46 48 1.00
Skewness 39 26 .03 .00 .00
Kurtosis 3.23 3.05 2.93 2.97 3.00
9:
Mean —.06 -.02 -.01 00 .00
SD 4.56 .68 48 .49 1.00
Skewness 77 .29 .01 —-.03 .00
Kurtosis 3.89 3.18 2.93 2.95 3.00
10:
Mean -.02 -.01 -.01 .00 .00
SD 7.12 .76 .50 S1 1.00
Skewness 1.60 33 .01 —-.04 .00
Kurtosis 6.90 3.31 2.98 2.95 3.00

NoTe.—Abbreviations are defined in text. GARCH(1, 1) model:

x =h"¢, h =1+ 252, + .Th,_y, e iid NO,1).
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distributions are then used, with the Student-r and the generalized
error distribution appearing to give the best fit.> None of the Pearson
x%(50) goodness-of-fit tests are significant at the 1% level for these two
distributions. Note that the degrees of freedom are reduced by one
since there is one parameter to estimate in the Student-f and the gener-
alized error distribution. This is a conservative adjustment, as dis-
cussed in Kendall and Stuart (1970, vol. 2, ch. 30). The diagnostic tests
on the standardized residuals are reported in tables 16 and 17.

The GARCH(1, 1) Student-¢ model is not rejected by any diagnostic
test for the CD and the SF. It also seems to fit the DM since the only
rejection comes from a BDS statistic of 2.62 at dimension 10. It does
not seem to fit the BP and JY. The Tsay test finds nonlinearity for the
BP and JY. The BDS test finds nonlinearity in the JY at dimensions
greater than 3. The runs test also picks up some dependence in the JY.
The Q,.(50) appears to be unusually low for the BP and unusually high
for the JY. There may be some problem with the Q,,(50) test and the
Tsay test since the Student-z has low degrees of freedom for the BP and
JY (just below 3), which means that fourth-order moments do not
exist. In addition, the standardized residuals for both the BP and JY
have enormous coefficients of kurtosis (314.67 and 43.25, repectively.)
This is consistent with the estimated models since a Student-¢ distribu-
tion with 3 degrees of freedom has infinite kurtosis. However, this is
certainly contrary to the spirit of ARCH and GARCH models, particu-
larly in light of the fact that the monthly standardized data in table 13
exhibit substantially lower kurtosis. Furthermore, simulations of
GARCH models with the estimated parameters yield data that are so
extremely ill behaved that I have no doubt that exchange-rate data
could not have been generated by such a model. One possible explana-
tion for these negative results is that the densities of the BP and JY data
have very high peaks at zero, which are driving the degrees of freedom
of the standardized Student-¢ distribution to low levels.

The GARCH(1, 1)-generalized error distribution also give similar
results. It is not rejected by any diagnostic test for the CD and SF. It
also seems to fit the DM since the only rejection comes from the Q,(50)
statistic of 61.65, which has a marginal significance level of 0.90%. But
it does not seem to fit the BP and JY. The BDS test finds nonlinearity in
the BP at dimensions greater than 2, while the Tsay test finds non-

5. The generalized error distribution is used in Nelson (1988). The density function is
given by

gx) = .5 v T@3h) (1)~ Sexp(—.5 |x/\]"),
where
A = TAW) S T@Bh) 5 272,

When v = 2, g(x) is the standard normal density. When v = 1, g(x) is the double
exponential density. When v = 0, g(x) is the uniform density.
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TABLE 16 Tests of Nonlinearity: Standardized Residuals, GARCH(1, 1)-Student ¢

N ¢ BP CD DM JY SF
BDS Tests:
2 1.00 1.79 2.00 —.69 1.77 .26
3 1.00 1.66 1.86 - .43 2.19 .98
4 1.00 1.45 1.70 .13 2.59 1.28
S 1.00 1.03 1.51 .61 2.66* 1.18
6 1.00 .74 1.54 1.21 2.88* .95
7 1.00 .65 1.50 1.49 2.83* .56
8 1.00 .37 1.44 1.85 2.88* .29
9 1.00 .23 1.24 2.22 2.92% .05
10 1.00 .17 1.04 2.65* 2.92* -.03
Runs test: 1.86 -1.02 —2.14 —2.57* —-1.54
N(,1) (.0314) (.1539) (.0162) (.0051) (.0618)
0.(50) 47.50 52.00 60.52 39.21 47.73
(.3320) (.0757) (.0115) (.2476) (.1337)
0.:(50) .76 38.75 43.11 389.07* 55.93
(1.0000) (.6144) (.4236) (.0000) (.0736)
Tsay test for
nonlinearity:
M=2: 4.52* .24 .84 24.79* .53
F(3,2504) (.0039) (.8684) (.4743) (.0000) (.6659)
M = 4 .96 1.62 .59 2.25 1.16
F(10,2495) (.4765) (.9477) (.8234) (.0130) (.3133)
M =6: .55 1.21 41 1.94* .88
F(21,2482) (.9505) (.2308) (.9916) (.0064) (.6188)
M = 8: .62 .82 .59 1.36 .70
F(36,2465) (.9632) (.7678) (.9754) (.0753) (.9100)
M = 10: .59 .80 .65 1.11 .92
F(55,2444) (.9930) (.8544) (.9786) (.2704) (.6425)
Skewness 5.14 —.38 —-.38 -2.11 12
Kurtosis 314.67 4.90 11.97 43.25 6.80
Goodness of fit: 69.08 57.35 70.67 56.90 53.59
x2(50) (.0381) (.2213) (.0287) (.2337) (.3383)

Note.—Abbreviations are defined in text. Marginal significance levels are in parentheses.
* Significant at the 1.0% level.

linearity in the JY. The Q,.,(50) appears to be unusually small for the BP
and quite high for the JY. In addition, the kurtosis is very large for both
currencies.

V1. Conclusion

This article shows that daily exchange-rate changes are not indepen-
dent of past changes. Although there is little linear dependence in the
data, the BDS test and autocorrelations of the squared data detect
strong nonlinear dependence. Evidence from third-order moments in-
dicates that the nonlinearity is likely to enter through variances rather
than through means. This is consistent with the presence of conditional
heteroskedasticity.

Generalized ARCH models with normal and nonnormal conditional
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TABLE 17 Tests of Nonlinearity: Standardized Residuals, GARCH(1, 1)-

Generalized Error Distribution
N 14 BP CD DM JY SF
BDS Tests:

2 1.00 2.32 2.10 —-1.04 1.23 .00

3 1.00 2.76* 1.93 —.86 1.44 .58

4 1.00 2.83* 1.73 —.24 1.84 .82

5 1.00 2.77* 1.54 27 1.92 .69

6 1.00 2.87* 1.58 91 2.22 .44

7 1.00 3.21* 1.57 1.24 2.21 .06

8 1.00 3.46* 1.56 1.66 2.33 -.16

9 1.00 3.93* 1.40 2.06 2.42 -.36

10 1.00 4.43* 1.18 2.52 2.48 —.41

Runs test: 1.78 —-1.26 —1.98 -2.18 —1.94
N(@©,1) (.0375) (.1038) (.0239) (.0146) (.0262)

Q,(50) 69.68* 53.32 61.65* 51.23 51.98
(.0081) (.0630) (.0090) (.0292) (.0649)

0,.(50) 13.14 39.84 59.05 84.37* 50.19

(1.0000)  (5662)  (0422)  (0001)  (.1806)
Tsay test for

nonlinearity:
M=2 .80 22 .56 7.52% .54
F(3,2504) (.4066) (.8818) (.6457) (.0001) (.6592)
M=4 .99 1.60 .50 1.80 1.1
F(10,2495) (.4497) (.1004) (.8910) (.0556) (.3503)
M=6 72 1.20 .43 1.39 .88
F(21,2482) (.8168) (.2396) (.9886) (.1106) (.6188)
M=38 .85 .81 .61 1.01 72
F(36,2465) (.7220) (.7823) (.9677) (.4527) (.8915)
M=10 .84 .79 .68 .88 92
F(55,2444) (.7933) (.8678) (.9656) (.7217) (.6425)
Skewness 1.44 —.06 —-.18 —-1.31 17
Kurtosis 36.98 4.86 8.94 30.04 6.35
Goodness of fit: 73.11 53.57 64.05 73.36 55.34
x2(50) (.0182) (.3390) (.0874) (.0173) (.2802)

NoTe.—Abbreviations are defined in text. Marginal significance levels are in parentheses.
* Significant at the 1.0% level.

distributions are estimated to try to account for conditional hetero-
skedasticity. Conditional normality is strongly rejected in all curren-
cies in favor of conditional nonnormal distributions. In fact, the
GARCH(1, 1) model using either the Student-t or generalized error
distribution can describe the CD and SF very well and the DM reason-
ably well. None of the GARCH models, however, can fit the BP and JY
satisfactorily. Regardless of the fit of the model, diagnostics show that
the GGARCH(I , 1) model can account for most of the nonlinearity in the
data.

Whether I am able to successfully model all five currencies, the

6. It is interesting to note that Scheinkman and LeBaron (in this issue) find important
nonlinearities in stock returns after allowing for conditional heteroskedasticity. Private
correspondence with William Brock and Blake LeBaron indicates that stock returns
exhibit many statistically significant third-order moments. This may explain why ARCH
and GARCH do not capture all the nonlinearity in stock returns.
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central message remains as follows: conditional heteroskedasticity ac-
counts for a large part of the nonlinearity in daily exchange rates. Thus,
models of short-term exchange-rate determination should be devel-
oped to explain this stylized fact.
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