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Testing for Linear and Nonlinear
Granger Causality in the Stock
Price-Volume Relation

CRAIG HIEMSTRA and JONATHAN D. JONES*

ABSTRACT

Linear and nonlinear Granger causality tests are used to examine the dynamic
relation between daily Dow Jones stock returns and percentage changes in New
York Stock Exchange trading volume. We find evidence of significant bidirectional
nonlinear causality between returns and volume. We also examine whether the
nonlinear causality from volume to returns can be explained by volume serving as a
proxy for information flow in the stochastic process generating stock return vari-
ance as suggested by Clark’s (1973) latent common-factor model. After controlling
for volatility persistence in returns, we continue to find evidence of nonlinear
causality from volume to returns.

THIS ARTICLE USES LINEAR and nonlinear Granger causality tests to examine
the dynamic relation between daily aggregate stock prices and trading vol-
ume. Causality tests can provide useful information on whether knowledge of
past stock price movements improves short-run forecasts of current and
future movements in trading volume, and vice versa. We provide empirical
support for the argument made by Gallant, Rossi, and Tauchen (1992) that
more can be learned about the stock market through studying the joint
dynamics of stock prices and trading volume than by focusing only on the
univariate dynamics of stock prices. In addition, our analysis produces styl-
ized facts about how daily aggregate stock prices and trading volume are
intertemporally related, which may prove useful to future theoretical and
empirical work on the stock market.
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Most of the empirical work on the stock price-volume relation focuses on
the contemporaneous relation between trading volume and stock returns (see
Karpoff (1987)). Studies that explicitly test for causality between stock prices
and trading volume (Rogalski (1978), Smirlock and Starks (1988), Jain and
Joh (1988), and Antoniewicz (1992)) rely exclusively on traditional linear
Granger causality tests. Although such tests have high power in uncovering
linear causal relations, their power against nonlinear casual relations can be
low (see Baek and Brock (1992a) and Hiemstra and Jones (1993)). For this
reason, traditional Granger causality tests might overlook a significant non-
linear relation between stock returns and trading volume.

In this article, we use both linear and nonlinear causality tests to study
daily Dow Jones stock returns and percentage changes in New York Stock
Exchange (NYSE) trading volume. Consistent with the empirical work of
Kim, Nelson, and Startz (1991), who document a structural break in the
generating mechanism for aggregate stock returns at the end of 1946, the
causality tests are conducted over the 1915 to 1946 and 1947 to 1990 periods.
We employ the traditional Granger test to investigate the presence of linear
predictive power between stock prices and trading volume. The nonlinear
Granger causality test used here is based on nonparametric estimators of
temporal relations within and across time series. It is a modified version of
Baek and Brock’s (1992a) nonlinear Granger causality test. The modified test
relaxes Baek and Brock’s assumption that the time series to which the test is
applied are mutually independent and individually independent and identi-
cally distributed. Instead, it allows each series to display weak (or short-term)
temporal dependence. When applied to the residuals of vector autoregres-
sions, the modified Baek and Brock test can be used to determine whether
nonlinear dynamic relations exist between given time series.

The importance of testing for both linear and nonlinear Granger causality
between stock prices and trading volume is illustrated by our results. The
traditional linear Granger test detects unidirectional Granger causality from
stock returns to trading volume. In contrast, the modified Baek and Brock
test provides evidence of significant nonlinear bidirectional Granger causality
between stock returns and trading volume in both sample periods. These
results illustrate the promising nature of the Baek and Brock approach to
causality testing as a specification tool for uncovering significant nonlineari-
ties in the dynamic interrelationships between economic variables.

We also examine the extent to which the nonlinear predictive power of
trading volume for stock returns detected by the modified Baek and Brock
test can be attributed to volume serving as a proxy for the daily flow of new
information into the market. According to Clark’s (1973) mixture of distribu-
tions model, information flow is a latent common factor that affects both daily
stock returns and trading volume. Andersen (1992), among others, notes that
the common-factor model provides an explanation for the volatility persis-
tence associated with autoregressive conditional heteroskedasticity (ARCH)
in daily stock returns when Clark’s i.i.d. (independent and identically dis-
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tributed) assumption for information flow is relaxed. Therefore, the evidence
of nonlinear Granger causality from trading volume to stock returns could be
due to simple volatility effects associated with information flow. After filter-
ing the stock returns series with exponential generalized ARCH (EGARCH)
models to control for volatility persistence, the modified Baek and Brock test
continues to show evidence of significant nonlinear Granger causality from
trading volume to stock returns in both sample periods.

The remainder of this article proceeds as follows. In the first section, we
discuss possible explanations for the presence of a causal relation between
stock prices and trading volume. We also review some recent theoretical and
empirical work using heterogeneous trading models that suggest that impor-
tant insights about the stock market can be learned by allowing for nonlin-
earities between stock prices and trading volume. Section II briefly presents
the notion of Granger causality and traditional linear tests for its presence.
Section III presents Baek and Brock’s (1992a) nonparametric approach to
nonlinear Granger causality testing and the modified version of their test
used here. Our application of the linear and nonlinear Granger causality
tests to daily aggregate stock returns and trading volume follows in Section
IV. In Section V, we examine the extent to which the detected nonlinear
causality from trading volume to stock returns can be explained by simple
volatility effects in stock returns. Finally, Section VI provides a summary and
concludes.

I. The Stock Price-Volume Relation
A. Explanations for a Causal Stock Price-Volume Relation

There are several explanations for the presence of a causal relation between
stock prices and trading volume. First, the sequential information arrival
models of Copeland (1976) and Jennings, Starks, and Fellingham (1981)
suggest a positive causal relation between stock prices and trading volume in
either direction. In these asymmetric information models, new information
flows into the market and is disseminated to investors one at a time. This
pattern of information arrival produces a sequence of momentary equilibria
consisting of various stock price-volume combinations before a final, complete
information equilibrium is achieved. Due to the sequential information flow,
lagged trading volume could have predictive power for current absolute stock
returns and lagged absolute stock returns could have predictive power for
current trading volume. ~ »

Tax- and non-tax-related motives for trading are a second explanation.
Tax-related motives are associated with the optimal timing of capital gains
and losses realized during the calendar year. Non-tax-related motives include
window dressing, portfolio rebalancing, and contrarian strategies. Lakon-
ishok and Smidt (1989) show that current volume can be related to past stock
price changes due to tax- and non-tax-related trading motives. The dynamic
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relation is negative for tax-related trading motives and positive for certain
non-tax-related trading motives.!

A third explanation involves the mixture of distributions models of Clark
(1973) and Epps and Epps (1976). These models provide differing explana-
tions for a positive relation between current stock return variance and
trading volume. In the mixture model of Epps and Epps (1976), trading
volume is used to measure disagreement as traders revise their reservation
prices based on the arrival of new information into the market. The greater
the degree of disagreement among traders, the larger the level of trading
volume. Their model suggests a positive causal relation running from trading
volume to absolute stock returns. On the other hand, in Clark’s (1973)
mixture model, trading volume is a proxy for the speed of information flow, a
latent common factor that affects contemporaneous stock returns and volume.
There is no true causal relation from trading volume to stock returns in
Clark’s common-factor model.

Noise trader models provide a fourth explanation for a causal relation
between stock returns and trading volume. These models can reconcile the
difference between the short- and long-run autocorrelation properties of
aggregate stock returns. Aggregate stock returns are positively autocorre-
lated in the short run, but negatively autocorrelated in the long run. Since
noise traders do not trade on the basis of economic fundamentals, they
impart a transitory mispricing component to stock prices in the short run.
The temporary component disappears in the long run, producing mean
reversion in stock returns. A positive causal relation from volume to stock
returns is consistent with the assumption made in these models that the
trading strategies pursued by noise traders cause stock prices to move. A
positive causal relation from stock returns to volume is consistent with the
positive-feedback trading strategies of noise traders, for which the decision to
trade is conditioned on past stock price movements (see DeLong, Shleifer,
Summers, and Waldmann (1990)).

B. Explanations for Nonlinearities Between Stock Prices and Trading Volume

Granger (1989) argues that univariate and multivariate nonlinear models
represent the proper way to model a real world that is “almost certainly
nonlinear.” As noted by Hsieh (1991) and Brock (1993), the recent focus on
nonlinear structure in stock price movements is motivated by the richer types
of asset behavior that nonlinear models provide researchers. Large stock

! One of the tax-related motives for trading predicts a negative lagged relation from stock price
changes to volume given that investors have an incentive to realize capital losses before the end
of the calendar year, since taxes are paid by most investors on a calendar-year basis. On the
other hand, portfolio rebalancing, one of the non-tax-related trading motives, predicts a positive
association, since investors who do not hold the market portfolio may well sell those stocks whose
prices have risen to restore portfolio diversification. See Lakonishok and Smidt (1989) for further
discussion.
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price swings and abrupt changes in stock market volatility can only be
properly modelled with nonlinear models.

Hinich and Patterson (1985), Scheinkman and LeBaron (1989), Brock,
Hsieh, and LeBaron (1991), and Hsieh (1991), among others, document
evidence of significant nonlinear dependence in stock returns. Hiemstra and
Jones (1992) also find evidence of significant nonlinearities in aggregate
trading volume. In addition to significant univariate nonlinear dependence in
both series, the causal relation between stock prices and trading volume
could also be nonlinear.

Recent theoretical and empirical work in finance has moved away from
traditional representative-agent trading models to trading models with het-
erogeneous agents. This change in focus has produced models in which
endogenous volume plays an important role in asset price determination.
Some of the work using heterogeneous agent trading models suggests and
finds evidence of nonlinear dynamics in the stock price-volume relation. For
example, Brock (1993) develops a nonlinear theoretical noise trading model of
stock returns and volume in which rapid stock price movements and volatility
bursts are related to volume movements across different groups of traders.
His model is based on trading behavior where estimation errors made by
traders are correlated.

Campbell, Grossman, and Wang (1993) develop a model, with two classes of
risk-averse traders, which has implications for the autocorrelation properties
of stock returns as a nonlinear function of trading volume. In their model,
market makers take the opposite side of liquidity-induced trades only if they
are compensated with an increase in expected stock returns. There is an
abnormally large increase in volume followed by stock return reversals for
such trades. In contrast, for information-related trades, stock prices move to
their new equilibrium levels without reversals. Campbell, Grossman, and
Wang (1993) find empirical support for their model’s prediction that stock
return autocorrelations decline with trading volume.

LeBaron (1992) and Duffee (1992) use regression models similar to the one
used by Campbell, Grossman, and Wang (1993) to document evidence of
significant nonlinear interactions between stock returns and trading volume.
LeBaron finds that persistence in aggregate stock returns is directly related
to the current rate of change in volume. Duffee finds that the strength of the
transitory component in aggregate stock prices is related to trading volume,
which is used as a proxy for noise trading behavior.

II. Linear Granger Causality Testing

In this section, we discuss the definition of Granger causality and the basic
approach used in previous studies to test for its presence. Because the
traditional linear approach is well known, we offer only a brief discussion
here. In the next section, we present a detailed discussion of new statistical
techniques developed by Baek and Brock (1992a), which can be used to test
for nonlinear Granger causality.
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A. Definitions

As originally specified, the general formalization of Granger (1969) causal-
ity for the case of two scalar-valued, stationary, and ergodic time series {X,}
and {Y,} is defined as follows. Let F(X,|1,_,) be the conditional probability
distribution of X, given the bivariate information set I,_, consisting of an
Lx-length lagged vector of X,, say X/% . =(X,_;., X,_ Lx+1"" Xt—l)’ and
an Ly-length lagged vector of Y,, say Y/ Ty =Yy Y Y )
Given lags Lx and Ly, the time series {Y,} does not strictly Granger cause
{X,} if:

F(X,\I_) =F(X,|(I,_, -Y",)), t=1,2,... 6h)

If the equality in equation (1) does not hold, then knowledge of past Y values
helps to predict current and future X values, and Y is said to strictly
Granger cause X. Similarly, a lack of instantaneous Granger causality from
Y to X occurs if:

F(X,11,_y) = F(X, | (I, , + Y,)), 2)

where the bivariate information set is modified to include the current value of
Y. If the equality in equation (2) does not hold, then Y is said to instanta-
neously Granger cause X.

As shown in equations (1) and (2), strict Granger causahty relates to the
past of one time series influencing the present and future of another time
series. Whereas, instantaneous causality relates to the present of one time
series influencing the present of another time series. Due to problems in
distinguishing between instantaneous causality and instantaneous feedback,
we consider only strict Granger causality.?

B. Testing

To test for Granger causality in the time domain, previous studies have
used the optimality of linear one-step-ahead least squares predictors to
Jjustify substituting conditional expectations into the definition in equation
(1). Minimum mean square prediction error is used as the criterion to
evaluate incremental predictive power. In the bivariate case, the presence of
Granger causality is tested by evaluating the predictive power of one time
series for another. Because linear least squares predictors are used in imple-
menting the test, the linear approach only tests for causality in the means
between economic variables (see Granger and Newbold (1986)).

We use the Granger test in our study. This is a well-known test for
bivariate causality, which involves estimating a linear reduced-form vector

2 See Geweke, Meese, and Dent (1983), Geweke (1984), and Granger and Newbold (1986) for
discussion of Granger causality testing procedures and issues relating to measurement errors,
aggregation bias, omitted variable bias, and distinguishing between instantaneous causality and
instantaneous feedback.
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autoregression (VAR):
X, = A(L)X, + B(L)Y, + Uy,
Y, =C(L)X, + D(L)Y, + Uy,, t=1,2,...,

where A(L), B(L), C(L), and D(L) are one-sided lag polynomials of orders a,
b, ¢, and d, in the lag operator L with roots outside the unit circle and no
roots in common. The regression errors, {Uy ,} and {Uy ,}, are assumed to be
mutually independent and individually i.i.d. with zero mean and constant
variance.

To test for strict Granger causality from Y to X in this linear framework, a
standard joint test (F- or y2-test) of exclusion restrictions is used to deter-
mine whether lagged Y has significant linear predictive power for current X.
The null hypothesis that Y does not strictly Granger cause X is rejected if
the coefficients on the elements in B(L), i.e., B, (i = 1,...,b), are jointly
significantly different from zero. Bidirectional causality (or, feedback) exists
if Granger causality runs in both directions, in which case, the coefficients on
the elements in both B(L) and C(L) are jointly different from zero.?

(3)

III. Nonlinear Granger Causality Testing

One important problem with the linear approach to causality testing is that
such tests can have low power detecting certain kinds of nonlinear causal
relations. Brock (1991) presents a simple bivariate nonlinear model to illus-
trate how linear causality tests, such as the Granger test, can fail to uncover
nonlinear predictive power. He uses the following model:

X, =BY, . X, ute 4)

where {Y,} and {¢,} are mutually independent and individually i.i.d. N(0, 1)
time series, B8 denotes a parameter, and L and M denote lag lengths. Note
that X, depends on a past value of Y,, yet linear tests would incorrectly
indicate that there is no lagged dynamic relation between X, and Y,, since all
autocorrelations and cross correlations are zero.

Baek and Brock (1992a) propose a nonparametric statistical method for
uncovering nonlinear causal relations that, by construction, cannot be de-
tected by traditional linear causality tests. Their approach uses the correla-
tion integral, an estimator of spatial probabilities across time, to detect
relations between time series. Using their method, nonlinear causal relations
have been found between money and income (Baek and Brock (1992a)),
aggregate stock returns and macroeconomic factors (Hiemstra and Kramer
(1993)), and producer and consumer price indices (Jaditz and Jones (1993)).
In this section, we describe the Baek and Brock (1992a) approach to testing
for nonlinear Granger causality.

3 Since hypothesis tests are sensitive to the truncation of the lag polynomials on the dependent
and independent variables, care must be taken in choosing the lag lengths. See Thornton and
Batten (1985) and Jones (1989) for a discussion and statistical comparison of alternative
techniques for setting lag lengths in conducting causality tests. Besides lag length considera-
tions, attention should also be paid to nonstationarities in the data.
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A. The Baek and Brock Approach to Causality Testing

Our discussion of the Baek and Brock (1992a) approach begins with a
testable implication of the definition of strict Granger noncausality in equa-
tion (1). Consider two strictly stationary and weakly dependent time series
{X,} and {Y,}, t = 1, 2,....* Denote the m-length lead vector of X, by X" and
the Lx-length and Ly-length lag vectors of X, and Y,, respectively, by X%

and Y, . That is,
X"=(X,, X,1 15> Xyim-1)» m=1,2,..., t=1,2,...,
X=X ps Xy pavts s Xim1)s
Lx=1,2,..., t=Lx+1,Lx+2,..., (5)
yvtliyLy = (Yt—Ly’ Y::—Ly+1""’yvt—-1)’
Ly=1,2,..., ¢t=Ly+1,Ly+2,....
For given values of m, Lx, and Ly > 1 and for e > 0, Y does not strictly
Granger cause X if:
Pr(I X — X7l < e|lIX[7, — XE, ] <e, IVEY, — YR, Il <e)

s—Lx

s—

= Pr(IX - X7l <e|lXFr, - XEli<e), (6

where Pr(-) denotes probability and | - || denotes the maximum norm.® The
probability on the LHS of equation (6) is the conditional probability that two
arbitrary m-length lead vectors of {X,} are within a distance e of each other,
given that the corresponding Lx-length lag vectors of {X,} and Ly-length lag
vectors of {Y,} are within e of each other. The probability on the RHS of
equation (6) is the conditional probability that two arbitrary m-length lead
vectors of {X,} are within a distance e of each other, given that their
corresponding Lx-length lag vectors are within a distance e of each other.

B. A Nonparametric Statistical Testing Procedure

To implement a test based on equation (6), it is useful to express the
conditional probabilities in terms of the corresponding ratios of joint probabil-

*The Baek and Brock approach to nonlinear Granger causality testing uses correlation-
integral estimators of spatial probabilities for vector time series. For certain strictly stationary
and weakly dependent processes, Denker and Keller (1983) show that correlation-integral
estimators are consistent. By definition, weakly dependent processes display short-term tempo-
ral dependence, which decays at a sufficiently fast rate. See Denker and Keller (1983, pp.
505-507) for formal discussions of weakly dependent processes and the conditions under which
their consistency results hold.

% The maximum norm for Z = (Zy, Zy, ..., Zyg) € RE is defined as max(Z,), i = 1, 2,..., K. A
more general version of the test can be devised by using different scale parameter values, e,
corresponding to the lead and lag vectors. The test can also be easily generalized beyond the
bivariate case considered here. As will be discussed in Section III.C, when applied to the null
errors of vector autoregressions, equation (6) is a condition for nonlinear strict Granger non-
causality. In this case, equation (6) holds for all m, Lx, and Ly > 1 and for all e > 0.
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ities. Let C1(m + Lx, Ly, e)/C2(Lx, Ly, e¢) and C3(m + Lx, e)/C4(Lx, e)
denote the ratios of joint probabilities corresponding to the LHS and RHS of
equation (6). These joint probabilities are defined as,®

Cl(m + Lx, Ly, e) = Pr(I X 5 — XAr N <e, 1V, — Y2 ll <e),
C2(Lx, Ly, e) = Pr(lIX}7, — XI5 | <e, IV, — Y Ml <e),
C3(m + Lx, e) = Pr(|| X" 1 L2 — X 4Ex|| < e),

C4(Lx, e) = Pr(| XL, — XL*, | <e).

)

The strict Granger noncausality condition in equation (6) can then be ex-
pressed as

Cl(m + Lx,Ly,e) C3(m + Lx,e)

C2(Lx, Ly, e)  C4(Lx,e) ®)

for given values of m, Lx, and Ly > 1 and e > 0.

Correlation-integral estimators of the joint probabilities in equation (7) are
used to test the condition in equation (8). For the time series of realizations
on X and Y, say {x,} and {y,} for ¢t = 1,2,..., T, let {x]"}, {x/",}, and {y/7, )}
denote the m-length lead and Lx-length lag vectors of {x,} and the Ly-length
lag vector of {y,} as defined in equation (5). Also, let I(Z,, Z,, e) denote a
kernel that equals 1 when two conformable vectors Z; and Z, are within the
maximum-norm distance e of each other and 0 otherwise. Correlation-
integral estimators of the joint probabilities in equation (7) can then be
written as

Cl(m + Lx, Ly, e, n) = ——— Y Y I(xH2*, x™Hhx o)

t<s

n(n— 1)
‘I(ytL—yLy’ ys—yLy’ e)

C2(Lx, Ly> e, n) = — 1) ZZI(xt Lx> ¥ s Lx’ e)

t<s

(9)
' I(ytL—yLy’ ys—yLy’ e)

C3(m + Lx, e, n) ZZI(x;n-El;x, ;‘n-iil;cx, e),
o 1) t<s

C4(Lx,e,n)— Y'Y I(xF5,, xk2 Lz e,
-1 t<s

t,s =max(Lx,Ly) +1,...,T—-m+1, n=T+1—-m — max(Lx, Ly).
6 By definition, the conditional probability Pr(A | B) can be expressed as the ratio Pr(A N

B)/Pr(B). Note that the maximum norm allows us to write Pr(| X" — X"l <e, IIXt e~
X% |l <e)as Pr(| X lx — XmALs|| <e).



1648 The Journal of Finance

Using the joint probability estimators in equation (9), the strict Granger
noncausality condition in equation (6) can be tested. For given values of m,
Lx, and Ly > 1 and e > 0, under the assumptions that {X,} and {Y,} are
strictly stationary, weakly dependent, and satisfy the mixing conditions of
Denker and Keller (1983), if {Y,} does not strictly Granger cause {X,} then,

Cl(m + Lx, Ly,e,n) C3(m+ Lx,e,n)
C2(Lx, Ly, e, n) a C4(Lx,e, n)

2 N(0, 0%(m, Lx, Ly, e)), (10)

Vn

where o2(m, Lx, Ly, e) and an estimator for it are given in the Appendix.’

C. Testing for Nonlinear Granger Causality

To test for nonlinear Granger causality between {X,} and {Y,}, the test in
equation (10) is applied to the two estimated residual series from the VAR
model in equation (3), {Uyx,} and {Uy }. In this case, the null hypothesis is
that {Y,} does not nonlinearly strictly Granger cause {X,}, and equation (10)
holds for all m, Lx, and Ly > 1 and for all e > 0. By removing linear
predictive power with a linear VAR model, any remaining incremental pre-
dictive power of one residual series for another can be considered nonlinear
predictive power (see Baek and Brock (1992a)).

Two issues related to the statistical properties of the test should also
be discussed before proceeding. One issue concerns the asymptotic distribu-
tion of the test when it is applied to the residuals of VAR models. Baek and
Brock (1992b) show that the asymptotic distribution of their variant of the
test in equation (10) is the same when it is applied to consistently estimated
residuals as when it is applied to the mutually independent and individually
i.id. errors of the maintained VAR model.® Their version of the test is said to
be nuisance-parameter-free (NPF) for such models. A similar NPF result has
yet to be produced for the modified Baek and Brock test used here. Nonethe-
less, Hiemstra and Jones (1993) present Monte Carlo evidence that suggests
that the modified test is robust to nuisance-parameter problems. They find a
close correspondence between the asymptotic and finite-sample statistical
properties of the modified test when it is applied to consistently estimated
errors corresponding to a given VAR model.

" A significantly positive test statistic in equation (10) suggests that lagged values of ¥ help to
predict X, whereas a significant negative value suggests that knowledge of the lagged values of
Y confounds the prediction of X. For this reason, we argue that the test statistic in equation (10)
should be evaluated with right-tailed critical values when testing for the presence of Granger
causality.

8 Baek and Brock’s version of the test is based on the assumption of mutually independent and
individually i.i.d. for the errors of the maintained VAR model. The modified test holds under the
more general case where the errors are allowed to be weakly dependent. The fundamental
difference between the two versions of the test occurs in the estimators for o2(m, Lx, Ly, e) in
equation (10).
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Another issue relates to the finite-sample size and power properties of the
Baek and Brock testing procedure. Using Monte Carlo simulations, Hiemstra
and Jones (1993) find that the modified Baek and Brock test has remarkably
good finite-sample size and power properties against a variety of linear and
nonlinear Granger causal and noncausal relations.” On the other hand, Baek
and Brock (1992a) and Hiemstra and Jones (1993) find that the finite-sample
size of Baek and Brock’s version of the test, which assumes that the series to
which the test is applied are mutually independent and individually i.i.d., can
be considerably larger than its nominal size. For this reason, we recommend
that applications of the test should use either our modified version of the test
or Baek and Brock’s version of the test using bootstrapped critical values.

IV. Granger Causality Between Aggregate Stock Prices and
Trading Volume

In this section, we present our application of the linear and modified Baek
and Brock causality tests to aggregate daily stock prices and trading volume.
We first discuss the data and sample periods used in the tests. Then we
report the results of the tests and offer several caveats in interpreting them.

A. Data and Sample Periods

We compute stock returns from daily closing prices for the Dow Jones Price
Index. For the period 1915 to 1940, stock returns are based on the Dow Jones
Industrial Average. For the period 1941 to 1990, stock returns are based on
the Dow Jones 65 Composite Index.!® As in Campbell, Grossman, and Wang
(1993) and Gallant, Rossi, and Tauchen (1992), the trading volume series is
total daily trading volume on the NYSE. The daily stock returns are continu-
ous rates of return, computed as 100 times the first difference of the natural
logarithm of the daily stock price, P,, in successive time periods; that is,
100 - In(P,/P,_).1!

Because causality tests can be sensitive to nonstationarities associated
with structural breaks, it is important to study periods when the univariate

® The Monte Carlo results are for a variety of bivariate time-series processes and are based on
sample sizes of 500 and 1000 observations, a lead length of m = 1, common lag lengths of
Lx=Ly=1, 2,...,5, and scale parameter values of e¢ = 1.5, 1.0, and 0.5, corresponding to
standardized series for X and Y. The Monte Carlo experiments relating to the finite-sample size
of the test suggest among other things that the test is robust to the presence of structural breaks
in time series and contemporaneous correlation in VAR errors.

10 For the 1915 to 1918, 1919 to 1928, and the 1929 to 1940 periods, stock returns are based on
the Dow Jones 12, 20, and 30 Industrials indices, respectively. The authors thank Harold
Mulherin and Mason Gerety for providing the daily stock price and trading volume data for the
1915 to 1987 period. One of the authors updated the data through the end of 1990. For the entire
1915 to 1990 period, the data come from the Wall Street Journal and Barron’s.

! The stock return is not a total market return since dividends are not included. In their work
on the S &P 500 Index, Gallant, Rossi, and Tauchen (1992) find that their conclusions are not
affected by including or excluding dividends in the calculation of stock returns.
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and bivariate stochastic processes generating stock prices and trading volume
can be considered stationary. To avoid disruptions from the closing of the
NYSE at the end of 1914, we omit pre-1915 data. Kim, Nelson, and Startz
(1991) document a structural break at the end of 1946 in the stochastic
process generating aggregate stock returns. Stock returns over the period up
to 1946 display mean reversion, while for the post-1946 period stock returns
display persistence.!? In other work, Jones, Mulherin, and Titman (1992) find
that certain measures of noise trading behavior only have significant predic-
tive power for stock market volatility during a pre-1947 period. Based on
these results, we examine the dynamic relation between stock returns and
trading volume for the 1915 to 1946 and 1947 to 1990 periods.!3

Although not presented here, the autocorrelation functions for the natural
logarithm of daily trading volume in both the 1915 to 1946 and 1947 to 1990
periods display the slow decay characteristic of integrated time series. This
autocorrelation pattern suggests that differencing might be the appropriate
transformation to make volume stationary.'* We conduct augmented Dickey-
Fuller tests, which indicate an autoregressive unit root in the logarithm of
volume for both sample periods. The augmented Dickey-Fuller regressions
are estimated with a constant and linear time trend and the data-dependent
procedures discussed in Hall (1993) are used to determine the number of
augmentation terms.!> Based on the augmented Dickey-Fuller test results,
trading volume is expressed as a percentage change; that is, 100 - In(V,/V,_,).

We remove systematic day-of-the-week and month-of-the-year calendar
effects from stock returns and percentage volume changes using a two-step
procedure similar to the one used in Gallant, Rossi, and Tauchen (1992).1¢

2 See also Fama and French (1988) and Poterba and Summers (1988). Richardson (1993)
argues that what appears to be mean reversion in these studies is actually consistent with a
random walk model of stock returns.

3 In addition, Saturday trading ended in the latter part of 1952, minimum brokerage
commission rates were deregulated in 1975, and early 1982 witnessed the introduction of stock
index futures and index options. These changes also suggest the possibility of a different dynamic
relation between stock returns and trading volume between the two periods.

14 Gallant, Rossi, and Tauchen (1992) detrend the logarithm of volume by regressing it on a
quadratic time trend for the period 1928 to 1987 to adjust for the U-shaped pattern of volume
over this period. LeBaron (1992) and Campbell, Grossman, and Wang (1993) use a long,
moving-average adjustment to detrend volume, expressing it as a deviation from a 100-day
moving average of volume.

15Ty determine the number of augmentation terms, we use a general-to-specific data-
dependent procedure in Hall (1993). In this procedure, the maximum lag space searched over
is set at some arbitrarily large upper bound a priori and a ¢- or F-test is used to eliminate
insignificant augmentation terms. The computed Dickey-Fuller ¢-statistics for the 1915 to 1946
and 1947 to 1990 periods are —3.36 and —3.68, indicating a failure to reject the unit root null
hypothesis at the 95 and 99 percent confidence levels, respectively. The critical values for the test
are taken from Fuller (1976, p. 373).

16 No adjustment is made to account for the Bank Holiday of 1933. Unlike Gallant, Rossi, and
Tauchen (1992), we make no adjustment for intramonth effects or gaps between trading days due
to weekends and holidays. To account for the possibility of different calendar effects across the
two sample periods, we estimate the calendar-adjustment regressions in equations (11) and (12)
separately for the two sample periods.
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We adjust both the mean and variance of the stock return and volume series
for both of these effects. For the returns series the two-step adjustment
procedure involves estimating the regression equations,

R, =D, B + ¢ (Mean Equation) (11)
In(é?) = D,y + v, (Variance Equation) (12)

where D, denotes a vector of daily, monthly, and World War II dummy
variables, B and y; denote conformable parameter vectors, €, and v, denote
error terms, and €, denotes the ordinary least squares (OLS) estimated error
in equation (11). Analogous regressions are estimated for percentage volume
changes.

For each series, the variance equation (12) is used to standardize the
residuals from the mean equation (11). For example, the calendar-adjusted,
standardized stock returns are computed as,

T = &
B (D32 (1

where ¥ denotes the OLS estimate of y;. We use the calendar-adjusted,
standardized stock returns, {R[}, and similarly adjusted percentage volume
changes, {V,"}, in our analysis.

B. Linear Granger Test Results

To implement the linear Granger test, we estimate the VAR model speci-
fied in equation (3) with calendar-adjusted stock returns and percentage
volume changes. The model can be expressed as,

R = A(L)R} + B(L)V,' + Uy,,

14
Vi =c)V + D(LR} +U,,, t=1,2,...,T. s
We estimate the parameters in each equation with OLS and calculate White
(1980) heteroskedasticity-consistent standard errors. To determine appropri-
ate lag lengths for the lag polynomials, we use Akaike’s (1974) information
criterion.!” Although not reported, residual diagnostics based on Durbin’s
(1969) cumulative periodogram test show that the lag lengths on the depen-
dent variable eliminate serial correlation in the residuals.
Table I reports the results of the Granger test. Lag lengths on the depen-
dent and independent variables and computed xZ-statistics with their
marginal significance levels are also reported. Focusing on rejections of the

" To determine the optimal univariate lag lengths, we use Akaike’s (1974) information
criterion to search over a maximum lag space of 40 lags. To determine the optimal bivariate lag
lengths, we conduct a search over a maximum lag of 20 lags for the independent variable. The
substantial difference in the univariate lag structure for both stock returns and trading volume
in the post-1946 period is consistent with a structural break in the stochastic processes
generating both series at the end of 1946.
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Table I
Linear Granger Causality Test Results

This table reports the results of the linear Granger causality test. Lr and Lv denote the number
of lags on the calendar-adjusted stock returns and percentage volume change series. Both lag
lengths are set with the Akaike (1974) information criterion. Sig denotes the marginal signifi-
cance level of the computed yx2-statistic used to test the zero restrictions implied by the null
hypothesis of Granger noncausality.

H,: Volume Changes Do Not H,: Stock Returns Do Not
Cause Stock Returns Cause Volume Changes
Lr Lv x2 Sig Lv Lr X2 Sig
Panel A: January 1915-December 1946 (No. of Observations = 9,526)
11 7 13.7 0.06 9 12 714 0.00
Panel B: January 1947-December 1990 (No. of Observations = 11,238)
34 2 2.8 0.25 39 20 91.3 0.00

null hypothesis of Granger noncausality at the 5 percent nominal significance
level, the Granger test shows evidence of unidirectional causality from stock
returns to percentage volume changes for both the 1915 to 1946 and 1947 to
1990 periods. On the other hand, Granger noncausality from volume changes
to stock returns cannot be rejected at 5 percent significance in either period.
(The null can be rejected, however, at the 6 percent significance level for the
1915 to 1946 period.) These results contrast sharply with those of the
modified Baek and Brock test, which are reported next.

C. Modified Baek and Brock Test Results

To conduct the modified Baek and Brock test, values for the lead length m,
the lag lengths Lx and Ly, and the scale parameter e must be chosen. Unlike
linear causality testing, there is no literature on the appropriate way to
specify optimal values for lag lengths and the scale parameter. On the basis
of the Monte Carlo results in Hiemstra and Jones (1993), for all cases, we set
the lead length at m = 1, and set Lx = Ly, using common lag lengths of 1 to
8 lags. In addition, for all cases, the test is applied to standardized series
using a common scale parameter of e = 1.50, where o = 1 denotes the
standard deviation of the standardized time series.'®

Table II presents the results of the modified Baek and Brock test applied to
the estimated VAR residuals, {Uy, ,} and {Uy, }, corresponding to stock returns
and percentage volume changes in equation (14). There is evidence of bidirec-

18 implement the test, each series is standardized so that the two series share a common
standard deviation, i.e., o = 1, and thereby share a common scale parameter. We also use scale
parameter values of 1.00 and 0.50 in conducting the test. These results are not reported since
they are similar to the results reported in Table II. The complete set of results is available from
the authors on request.
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Table II

Nonlinear Granger Causality Test Results

This table reports the results of the modified Baek and Brock nonlinear Granger causality test
applied to the VAR residuals corresponding to the calendar-adjusted stock returns and percent-
age volume change series. Lx = Ly denotes the number of lags on the residuals series used in the
test. In all cases, the tests are applied to unconditionally standardized series, the lead length, m,
is set to unity, and the length scale, e, is set to 1.5. CS and TVAL, respectively, denote the
difference between the two conditional probabilities in equation (8) and the standardized test
statistic in equation (10). Under the null hypothesis of nonlinear Granger noncausality, the test
statistic is asymptotically distributed N(0, 1).

H,: Stock Returns Do Not H,: Volume Changes Do Not
Cause Volume Changes Cause Stock Returns
Lx = Ly CS TVAL CS TVAL
Panel A: January 1915-December 1946 (No. of Observations = 9,526)
1 0.0084 7.208 0.0078 6.249
2 0.0170 9.659 0.0127 7.426
3 0.0187 9.448 0.0129 6.662
4 0.0207 9.453 0.0135 6.368
5 0.0214 9.156 0.0144 6.286
6 0.0217 8.723 0.0149 6.112
7 0.0217 8.232 0.0147 5.717
8 0.0225 7.964 0.0140 5.097

Panel B: January 1947-December 1990 (No. of Observations = 11,238)

1 0.0078 7.124 0.0049 4.600
2 0.0141 9.109 0.0092 6.105
3 0.0165 9.298 0.0111 6.209
4 0.0185 9.112 0.0139 6.761
5 0.0199 9.025 0.0147 6.463
6 0.0228 9.692 0.0164 6.705
7 0.0251 9.767 0.0155 5.948
8 0.0253 9.018 0.0140 5.118

tional nonlinear Granger causality between stock returns and trading volume
in both the 1915 to 1946 and 1947 to 1990 periods. This result holds for all
the common lag lengths used in conducting the test. None of the standardized
test statistics is smaller than 4.60, seemingly strong evidence of nonlinear
Granger causality between stock returns and trading volume in both direc-
tions.

D. Discussion

It is beyond the scope of our study is determine which of the four general
explanations for the presence of a causal relation between stock prices and
trading volume described in Section I.A are supported by the causality tests.
The results can be viewed as being consistent with the predictions of more
than one of the competing explanations. For example, both non-tax-related
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trading models and noise trading models predict a significant causal relation
from stock prices to volume. Another example is that causality from trading
volume to stock returns is consistent with sequential information arrival
models and the mixture of distributions model of Epps and Epps (1976).

The use of the nonlinear causality test is complicated further by the fact
that each of the explanations predicts a particular signed causal relation. It is
not possible to determine whether significant nonlinear predictive power
detected by the modified Baek and Brock test is evidence of positive or
negative nonlinear causality. Nonetheless, the substantial difference in the
results between the linear and nonlinear Granger causality tests demon-
strates the importance of testing for both linear and nonlinear predictive
power between economic variables. Moreover, these results illustrate the
value of the Baek and Brock statistical methodology as a specification tool in
modeling dynamic relationships.

It is interesting to compare the results of the modified Baek and Brock test
with those of Gallant, Rossi, and Tauchen (1993). Gallant, Rossi, and Tauchen
(1993) use nonlinear impulse response functions to examine the joint dynam-
ics between daily Standard and Poor’s 500 Index stock returns and NYSE
trading volume over the 1928 to 1987 period. They too find evidence of strong
nonlinear impacts from lagged stock returns to current and future trading
volume. In contrast to our results, however, only weak evidence of a nonlin-
ear impact from lagged volume to current and future stock returns is detected
using their modeling technique. They argue that their results suggest that
stock returns can be viewed as being nearly Granger causally prior to trading
volume. Our results, showing strong nonlinear Granger causality between
stock returns and trading volume in both directions, do not lend themselves
to such an interpretation.

V. Volatility Persistence and Nonlinear Causality from
Volume to Returns

In this section, we investigate whether the modified Baek and Brock test is
influenced by a latent-variable effect associated with information flow that
can account for volatility persistence in stock returns. In particular, we
examine the extent to which the nonlinear predictive power of trading volume
for stock returns can be explained by volume serving as a proxy for daily
information flow in the stochastic process generating stock return variance as
suggested by Clark’s (1973) latent common-factor model.*®

A. Clark’s Common-Factor Model

Letting R,, V,, and S, denote the daily stock return, the level of trading
volume, and the latent speed of information flow into the market at time ¢,

! We thank the referee for suggesting that we address this issue and for indicating how to
conduct the analysis.



Granger Causality in the Stock Price-Volume Relation 1655

the common factor model can be expressed as
R,=G(S,) ¢

(15)
V, = F(St)’

where €, denotes an ii.d. noise term and G(-) and F(-) denote certain
functions. Note in equation (15) that information flow affects the stock return
variance, i.e., var(R,) = G*(S,) - var(e,).

Andersen (1992) notes that the common-factor model in equation (15)
provides an explanation for the volatility persistence associated with ARCH
dependence in daily stock returns when Clark’s i.i.d. assumption for informa-

tion flow is relaxed. Since Hsieh (1991) finds that much of the nonlinear
structure in daily stock returns is related to ARCH dependence, it is possible
that the nonlinear Granger causality from trading volume to stock returns
could be due to simple volatility effects associated with information flow. As
such, if lagged volume captures temporal dependence in the latent speed of
information flow, the modified Baek and Brock test could merely be detecting
spurious causality from lagged volume to current stock return variance.’

We fit one of the family of ARCH models to the aggregate stock returns
series to control for volatility persistence. Because our interest lies only in
testing the null hypothesis of nonlinear Granger noncausality from volume to
stock returns after controlling stock returns for conditional heteroskedastic-
ity, we apply the modified Baek and Brock test to the new VAR residual
series for ARCH-filtered stock returns and the residual series for volume
from equation (14) used previously.

B. Results of the Adjustment with EGARCH Filtering of Stock Returns

The EGARCH model developed by Nelson (1991) is used to control for
ARCH dependence in calendar-adjusted stock returns. The EGARCH(p, q)
model is given by,

Rl =¢,¢ |1I,_;, ~N(0, 0?),
In(0,?) = o + a; In(o,% ) + -+ +a, ln(at?;p)
+ B1[¢(€t—l/v0t2—1) + 7(|€t—1/v o= y@/m) )]
+ o +Bq[¢(£t—q/\/?—q) + 'Y(lft—q/\/o'tz—ql - \/(2/77) )]>
t=1,2,..., (16)

where ag,..., a,, B,..., By, ¢, and y denote parameters. In such a model,
GARCH effects are parameterized by the «; parameters, and the asymmetric

% Lamoureux and Lastrapes (1990) find that volatility persistence in individual common stock
returns can be explained by current trading volume as suggested by Clark’s (1973) model. In
contrast, Richardson and Smith (1994) do not find much support for Clark’s model in daily stock
returns using generalized method of moments estimation procedures.
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sign- and magnitude-of-error ARCH effects on the conditional variance are
respectively modelled by the B;¢(e,_;/ \/ gl ;) and Biy(e_;/ V a2 i
—y(2/m)) terms. The EGARCH specification allows negative shocks to
affect the conditional variance differently than positive shocks, and therefore
is consistent with the conditional skewness displayed by stock returns.

We use the EGARCH model for two reasons. First, Nelson (1991) finds that
an EGARCH model adequately captures volatility persistence in daily aggre-
gate stock returns for the 1962 to 1987 period. Second, Nelson (1990) demon-
strates that EGARCH models have lognormal conditional variances in contin-
uous time. An implication of this is that, as the sampling interval becomes
shorter in discrete time, the distribution of innovations (i.e., squared returns)
is a normal-lognormal mixture of distributions as in Clark’s model. For these
reasons, the EGARCH model seems to be an appropriate ARCH model to use
in testing for causality from volume to stock returns in the context of Clark’s
common-factor model.

We use the Akaike (1974) criterion to determine the lag truncation lengths
associated with the GARCH effects. In comparison to Nelson (1991), larger
values of p are required to control for persistence in the conditional variance
of the stock returns series used here. Based on our specification testing, we
fit EGARCH(4,1) and EGARCH(5,1) models to calendar-adjusted stock
returns in the 1915 to 1946 and 1947 to 1990 periods, respectively.?! Table III
reports the maximum-likelihood parameter estimates and their asymptotic
t-statistics for the two EGARCH models.?? The table also reports test statis-
tics associated with Engle’s (1982) Lagrange multiplier test for remaining
ARCH dependence in the standardized estimated residuals. In both sample
periods, there is evidence of significant GARCH and sign- and magnitude-of-
error effects in daily stock returns. And, the null hypothesis of i.i.d. standard-
ized errors for both EGARCH models is not rejected at the 5 percent nominal
significance level by the Engle test.

We estimate the following modified version of the linear regression for
stock returns in equation (14) to produce a new residual series for stock
returns, namely

(e/V62) = AL e/V/62) + BV + U,  t=1,2,...,T, A7

where {¢,/ \/6,2} = {R]/ 1/} denotes the conditionally standardized calen-
dar-adjusted stock returns and {U, ,} denotes the VAR regression error.2 We
test for nonlinear Granger causality from volume to stock returns using the

% In the specification testing, we use the Akaike (1974) criterion to search over values of p
that range from 1 to 6, with ¢ = 1.

22 We use the BFGS algorithm (see Press et al. (1988), pp. 324-327) to estimate the parame-
ters.

% We use the Akaike (1974) criterion to determine appropriate lag lengths for the lag
polynomials A(L) and B(L). For the 1915 to 1946 period, lag lengths of 11 and 1 for the
EGARCH(4,1)-filtered stock returns and trading volume are used. For the 1947 to 1990 period,
lag lengths of 3 and 2 for the EGARCH(5,1)-filtered stock returns and trading volume are used.
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Table III
Estimated EGARCH Models for Stock Returns

This table reports the maximum-likelihood parameter estimates and Berndt et al. (1974)
estimated asymptotic ¢-statistics (&, AT) for EGARCH(4, 1) and EGARCH(5, 1) models given by

RI = €&, € |It—l ~JV(O, O'tz),

In(o,?) = ag + a; In(g,2 ) + ay In(0,2,) + a3 In(o,23) + a4 In(o,2,)

tag In(o2) + ag(( -1/ Vol 1) + ar(ler/yola ] = V@/m),
t=1,2,....

for the calendar-adjusted daily stock returns in the 1915 to 1946 and 1947 to 1990 sample
periods. Also reported are Engle’s (1982) Lagrange multiplier test statistics (LM) for ARCH
dependence in the conditionally standardized estimated residuals. The Engle test is based on 12
autocovariances. Under the i.i.d. null hypothesis, the test is asymptotically distributed x2(12).
Critical values for the test at the 5 and 1 percent nominal significance levels are 21.03 and 26.22,
respectively.

Parameter i & AT:

13 13

Panel A: January 1915-December 1946 EGARCH(4, 1) Estimates (No. of Observations = 9,526)

0 0.0011 0.098
1 0.9059 24.064
2 —0.1240 —2.147
3 0.0201 0.301
4 0.1701 3.925
5 —_ J—

6 —0.1228 —14.579
7 0.2413 21.471

LM 19.36

Panel B: January 1947-December 1990 EGARCH(5, 1) Estimates (No. of Observations = 11,238)

0 0.0031 0.314
1 0.4249 12.840
2 0.2437 6.303
3 0.1713 4.255
4 0.0384 0.843
5 0.0933 2.117
6 —0.1200 —16.945
7 0.2391 27.839
LM 16.02

modified Baek and Brock test applied to the estimated VAR residuals for
conditionally standardized stock returns, {U,,}, corresponding to equation
(17), and the estimated VAR residuals for volume, {Uy ,}, in equation (14).
Table IV reports the results of the nonlinear Granger causality test applied
to the EGARCH-filtered stock returns. At 5 percent nominal significance, the
modified Baek and Brock test rejects the null hypothesis of strict nonlinear
Granger noncausality from trading volume to the EGARCH-filtered stock
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Table IV

Nonlinear Granger Causality Test Results with

EGARCH-Filtered Stock Returns

This table reports the results of the modified Baek and Brock nonlinear Granger causality test
applied to the EGARCH(4, 1)-filtered and EGARCH(5, 1)-filtered stock returns in the 1915 to
1946 and 1947 to 1990 sample periods, respectively. The test is used to test the null hypothesis
that volume changes do not nonlinearly Granger cause stock returns using residuals from the
VAR specifications with EGARCH-filtered stock returns and volume changes. Lx = Ly denotes
the number of lags on the residuals series used in the test. In all cases, the tests are applied to
unconditionally standardized series, the lead length, m, is set to unity, and the length scale, e, is
set to 1.5. CS and TVAL, respectively, denote the difference between the two conditional
probabilities in equation (8) and the standardized test statistic in equation (10). Under the null
hypothesis of nonlinear Granger noncausality, the test statistic is asymptotically distributed
N(O, D).

Lx=1Ly cs TVAL
Panel A: January 1915-December 1946 (No. of Observations = 9,526)
1 0.0016 1.581
2 0.0031 2.054*
3 0.0025 1.394
4 0.0030 1.312
5 0.0047 1.779*
6 0.0057 1.855*
7 0.0066 1.974*
8 0.0047 1.277

Panel B: January 1947-December 1990 (No. of Observations = 11,238)

1 0.0010 1.087

2 0.0030 2.198*
3 0.0035 2.066*
4 0.0052 2.564**
5 0.0051 2.144*
6 0.0067 2.5630**
7 0.0054 1.825*
8 0.0027 0.817

*Significance at the 5 percent nominal level for a one-sided test.
**Significance at the 1 percent nominal level for a one-sided test.

returns in both the 1915 to 1946 and 1947 to 1990 periods for many of the
common lag lengths used.?* However, the EGARCH-filtering of stock returns
yields test statistics that are substantially smaller in both magnitude and
statistical significance than those corresponding to the case where adjust-

2 To examine whether the results are sensitive to the order in which the estimation is
conducted, we also apply the nonlinear causality test to the estimated standardized residuals
from EGARCH models that are fitted to the VAR residuals corresponding to the calendar-
adjusted stock returns from equation (14). Using this approach, we find that EGARCH(4,1)
models adequately capture volatility persistence in the VAR residual series for stock returns in
both sample periods. Since the results of the modified Baek and Brock test produced by this
estimation approach are similar to those reported in Table IV, we do not report them here.
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ments for ARCH dependence are not made. Note in Table II that the test
statistics are significant at the 1 percent level for all the common lag lengths
used. In contrast, Table IV shows evidence of nonlinear Granger causality
from volume to stock returns that is statistically weaker in both sample
periods. The substantial difference in the statistical significance of the two
sets of results indicates that the nonlinear causality from calendar-adjusted
volume to stock returns detected by the modified Baek and Brock is in large
part, but not completely, due to simple volatility effects.

The results reported in Table IV should be interpreted subject to the
following caveats. First, the asymptotic distribution of the modified Baek and
Brock test statistic might be affected by the use of estimated EGARCH
residuals. We are unaware of any NPF theorems relating to applications of
the test to estimated EGARCH residuals.?® Second, the use of an EGARCH
model to remove volatility persistence in stock returns might affect underly-
ing structure unrelated to ARCH dependence. As noted by Brock, Hsieh, and
LeBaron (1991), the use of misspecified ARCH models can garble structure
present in a time series. And finally, Hsieh (1991) argues that more general
forms of conditional heteroskedasticity than that associated with the family
of ARCH models may better explain volatility persistence in stock returns.

In sum, we argue that the results in this section can be interpreted as
evidence that volume has significant nonlinear explanatory power for stock
returns over and above that due to simple volatility effects. As such, the
bidirectional nonlinear causal relation between stock returns and volume
detected by the modified Baek and Brock test in Section IV.C cannot be
wholly explained by a latent-variable effect associated with information flow.
It may be worthwhile for future research to focus on what may account for
nonlinear causality from volume to stock returns that is unrelated to volatil-
ity persistence in stock returns.

VI. Summary and Conclusion

This article uses linear and nonlinear Granger causality tests to examine
the dynamic relation between aggregate daily stock prices and trading vol-
ume. We apply the tests to daily Dow Jones stock returns and percentage
changes in NYSE trading volume over the 1915 to 1946 and 1947 to 1990
periods. The modified Baek and Brock test provides evidence of significant
bidirectional nonlinear Granger causality between stock returns and trading

% Brock and Potter (1992) and de Lima (1994) provide NPF results for correlation-integral-
based tests applied to GARCH residuals, although their results do not strictly apply to the
modified Baek and Brock test. A study of the effects of EGARCH parameter estimation error on
the modified Baek and Brock test is beyond the scope of this article. However, Hiemstra and
Jones (1993) find from Monte Carlo simulations that the finite-sample rejection rates of the test
when applied to the estimated standardized residuals of certain independent EGARCH processes
are very close to their corresponding nominal sizes.
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volume in both sample periods. We also examine whether the nonlinear
causality from volume to stock returns detected by the modified Baek and
Brock test could be due to volume serving as a proxy for daily information
flow in the stochastic process generating stock return variance. After control-
ling for simple volatility effects, the modified Baek and Brock test continues
to provide evidence of significant nonlinear Granger causality from trading
volume to stock returns.

Our results contribute to the empirical literature on the stock price-volume
relation by indicating the presence of bidirectional nonlinear Granger causal-
ity between aggregate daily stock prices and trading volume. This finding
may prove useful to future theoretical and empirical research on the stock
market. It suggests that researchers should consider nonlinear theoretical
mechanisms and empirical regularities when devising and evaluating models
of the joint dynamics of stock prices and trading volume.

Although the nonlinear approach to causality testing presented here can
detect nonlinear causal dependence with high power, it provides no guidance
regarding the source of the nonlinear dependence. Such guidance must be left
to theory, which may suggest specific parameterized structural models.
Nonetheless, our results demonstrate the promising nature of the Baek and
Brock approach to causality testing as a specification tool for uncovering
significant nonlinearities in the dynamic interrelations between time series.

Appendix: The Variance of the Modified Baek and Brock Test

To describe the variance of the modified Baek and Brock test and a
consistent estimator for it, we begin by deﬁning the joint probabilities
thl(x, Lx s yt Ly’e) thZ(xt Lu> yt Ly’e) hlc3(xtm+L€cx, e), and
th Sxlx e) Whlch are conditioned on combinations of the realizations %/,
xt T and y Lys as?

S

hloy(755F, 950, €) = Pr(la i — XDl <e, lyfy, — Y2l <e),

L L L
thZ(xt—xLaw yt—yLy’ e) Pr(“xt Lx — s Lx” <e, ”yt Ly — Ys—yLy|| < e)’
hlcs(a 5%, e) = Pr(llafihs — Xkl <e), (A1)

hlo(xf* ., e) = Pr(|lalx,  — XL, | <e).

% As previously noted, we follow the standard convention of denoting random variables in the
upper case and their realizations in the lower case These joint probabilities relate to the
probability that arbitrarily selected triplets (X™, XL*, YL, ,) defined in equation (5) are close
to the realized triplets (%7, 1%, ¥2%, ).



Granger Causality in the Stock Price-Volume Relation 1661

Using equation (A1) and the delta method (Serfling (1980, pp. 122-125)),
under the assumption that the underlying series are strictly stationary,
weakly dependent, and satisfy the mixing conditions of Denker and Keller
(1983), an expression for the variance of the Baek and Brock test in equation
(10) is given by

o%(m, Lx, Ly, e) =d3d’, (A2)

where

d=1[d],i=1,.. 4
=[1/C2(Lx, Ly, e), —C1(m + Lx, Ly, e) /C22(Lx, Ly, e),
—1/C4(Lx, e),C3(m + Lx, e) /C4%(Lx, e)], (A3)
S [3,0,i,j=1,...,4

1, ifk=1
=14 ) w,E(A;, 'Aj,t+k—1)]’ Wr = {2 Ltherwise (Ad)
k>1 ’ ’

A, = thl(xt’”fLﬁx, ¥y, e) - C1(m + Lx, Ly, e),
Ay, = Rloo(%f s ¥, e) — C2(Lx, Ly, e),
Az, =hlgg(xth* e) — C3(m + Lx, e),
Ay, = hlg(xf,, e) — CA(Lx, e), (A5)
and where E in equation (A4) denotes expected value and the Ci(-) terms are
defined in equation (7).

Using the results of Denker and Keller (1983) and Newey and West (1987),
a consistent estimator of the 3, ; elements in equation (A2) is given by

K(n)

5., =4 ¥ wn) Y (A (n)-A;, 4in()
k=1

[2(n—k+1) P

+Ai’t_k+1(n) ~Aj,,(n))

ki

t =max(Lx, Ly) + k,..., T —m + 1,
n=T+1—-m — max(Lx, Ly),
K(n) = (int)n/4,

1, ife=1

2(1 — [(k — 1)/K(n)]), otherwise, (A6)

(,l)k(n) = {
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where
A = | T st o0 158, 50,0 0)
- Cl(m + Lx, Ly, e, n),
AZ,t(n) 1(s§tl(:~x‘t L X, ) I(yt Ly’ys Ly’e))
- C2(Lx, Ly, e, n), (4D
A3,t(n) = ———( Yo I(xmilx pmitLe e)) —C3(m + Lx, e, n),

S#t

" 1
A4,t(n)_ 1(Zl(xt Lx’xs Lx’e)) _04(Lx,e’n),

S#t

t,s=max(Lx, Ly) +1,....,T—m + 1,

and where the Ci(:, n) correlation integrals are defined in equation (9) and
the I(-) indicators are described in Section III.B.2” The Ci(-, n) correlation
integrals provide a consistent estimator of d in equation (A3), namely,

d(n) = [1/C2(Lx, Ly, e, n), —C1(m + Lx, Ly, e, n) /C2%(Lx, Ly, e, n),
—1/C4(Lx, e, n),C3(m + Lx, e, n) /C4%*(Lx, e, n)]. (A8)

A consistent estimator for o 2(m, Lx, Ly, e) in equation (10) can then be
expressed as

6%(m, Lx, Ly, e, n) = d(n)S(n)d(n) . (A9)

The test statistics reported in Tables II and IV use this variance estimator.
See Hiemstra and Jones (1993) for a more detailed discussion of the modified
Baek and Brock test and its finite-sample size and power properties.
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