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Bispectral-Based Tests for the Detection of

Gaussianity and Linearity in Time Series
PATRICK L. BROCKETT, MELVIN J. HINICH, and DOUGLAS PATTERSON*

Statistical techniques have been developed that use estimated bispectrum values to test whether a sample of a time series is
consistent with the hypothesis that the observations are generated by a linear process. The magnitude of the test statistics
indicates the amount of divergence between the observations and the linear model hypothesis. It is important to investigate
such a divergence, since the usual linear model coefficients can be shown to be biased in the face of nonlinear time series
structure. The tests presented here can thus be considered diagnostic as well as confirmatory. These tests are applied to a
variety of real series previously modeled with linear models. The results indicate nonlinear models may yield better results,
because many of the series analyzed appear to have considerable nonlinear lagged interactions.

KEY WORDS: Polyspectra; Statistical test of models; Time series structure.

1. INTRODUCTION

The application of linear time series analysis to real data
has increased tremendously in the past 15 years. Applied
time series analysis is now a standard feature of under-
graduate and graduate curricula in the physical sciences,
life sciences, social sciences, engineering, and business ed-
ucation. This phenomenon is a product of three related
events: (a) a realization that many scientific problems are
amenable to time series analysis, (b) the prodigious re-
search effort directed at linear time series analysis, and
(c) the rapid growth in the number of time-based, ma-
chine-readable data sets and the availability of linear time
series methods on standard statistical software packages.

Nevertheless, it must be emphasized that there is no
particular reason why empirical time series should conform
to linear time series models, or even be well approximated
by a linear model. If the correct model for the time series
is nonlinear, then the coefficient fit when using a linear
model could be biased, with the degree of bias depending
on the extent of nonlinearity.

For example, consider the special case of the quadratic
model.

x(t) = D h(n)e(t — n)

n=0

+ > > a(m, n)e(t — n)e(t — n — m),
m=1 n=0
where the &() are unobserved iid zero mean random vari-
ates whose cumulants exist. Assume that {A(¢)} and {a(m,
n)} are square summable sequences so that the spectrum
of x(¢) can be expressed in terms of the absolute values
of the linear and quadratic transfer functions. Setting the
variance of the innovations ¢2 = 1 for simplicity, the rth
covariance term of the x(¢) is A(r) + 2,21 2= a(m, n)
X a(m, n + r). This latter expression shows the con-
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founding between the linear impulse-response terms A(r)
and the quadratic terms in the covariance function of the
observed x(¢). Conventional linear model analysis based
on sample autocorrelations yields misleading results for
such quadratic models.

For diagnostic purposes as well as normative purposes,
it is important to discern the extent of nonlinearity in the
series and determine whether or not this nonlinearity is
significant. If the nonlinearity is significant the process of
nonlinear time series modeling must be addressed. Tong
(1983), Subba Rao and Gabr (1984), Maravall (1983), and
Petruccelli and Davies (1986) showed that when nonlin-
earity is present, prediction can be improved by using
nonlinear models. Because of the broad expanse of non-
linear models (everything not linear), the process of non-
linear time series modeling is advancing on several fronts.
For example, Subba Rao and Gabr (1984) developed and
fit bilinear models to nonlinear time series, and Priestley
(1981) discussed other nonlinear models.

Given the nature of confounding linear and quadratic
coefficients in the estimation of time series models, it is
important to test for significant nonlinearity in the ob-
served time series. Thus the purpose of this article is not
to develop new nonlinear models, but to present statistical
techniques for determining which time series are actually
linear processes and which time series are not amenable
to linear time series modeling. We then apply these time
series tests to a variety of real time series previously mod-
eled with linear time series methods.

The stationary autoregressive (AR) and the stationary
autoregressive moving average (ARMA) models, which
are widely used in time series analysis, are finite-order
representations of the general causal linear model. Even
if the data appear to have a trend during the observa-
tion period, linear-filtering techniques such as differencing
(Box and Jenkins 1970, sec. 4.1) and trend regression
(Priestley 1981, sec. 7.7) can often be used to transform
the data into a seemingly stationary sequence.

The unobserved innovation (input) processes in AR and
ARMA models are usually assumed to be white noise;
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that is, the innovations &(¢) are homoscedastic serially un-
correlated random variables (with zero mean). The sta-
tistical properties of the parameter estimators for these
models are much simpler if the innovations are purely
random, that is, the ¢(¢) are independent random vari-
ables. In many applications the &(¢) are assumed to be
jointly Gaussian, so there is no difference between the
white-noise assumption and the purely random one. When
the innovations are non-Gaussian, the higher-order de-
pendence among the innovations affects parameter esti-
mators of models estimated from a sample of the x(¢)’s.

Finite-parameter AR and ARMA models can be rep-
resented as a one-sided moving average of purely random
noise. Priestley (1981, sec. 3.5.7) called this representation
the general linear time series model. The observation of
the process {X(¢)} at the time ¢ can be expressed as the
one-sided moving average

X(@) = X h(s)e(t — s), (1.1)
s=0
where {&(¢)} is a purely random noise process.

Standard analysis of stationary time series data proceeds
by estimating the parameters for a relatively low-order
linear model using the sample autocovariance (or auto-
correlation) function. Some investigators also estimate the
spectrum from the data to aid in model identification. The
assumption that the unobserved input process {e(¢)} is white
is sufficient for identifying the linear structure, because
such a task can be done from sample autocovariances.

On the other hand, if the observed process is the output
of a nonlinear operation on an input process, then the
sample autocovariances are insufficient for identifying the
structure of the nonlinear filter. For example, suppose that

X(2) = 17¢()e(t — 16) + 17¢(t)e(t — 23)
+ 17e(t)e(t — 27) + 17e(t)e(t — 30)
+ 17e(t)e(t — 36) + 17¢(t)e(t — 39)
+ 3le(t)e(t — 95) + 3le(t — 9e(r — 13) + &(2),

where {¢(¢)} is a purely random process; that is, the &(¢)
are independent zero mean variates. Then it is easy to
check that the covariance E[x(¢)x(t + m)] = 0 for all m
# 0. Thus {X(¢)} is a stationary white-noise process with
a nonlinear structure that yields dependences over many
time points. A plot of the aforementioned time series, with
the &(¢) series having iid mean 0 normal distributions with
variance g2 = .0003, is presented in Figure 1. It was de-
signed to approximate a certain stock-price time series
with g2 = .00058. Even though the series is stationary,
the time-path behavior when modeled in a linear time
series fashion might lead an analyst to conclude erro-
neously that the series was nonstationary, with time-vary-
ing variance. In fact, if one divided the 2,000-point record
from Figure 1 into 20 subintervals, calculated the variance
for each subinterval, and applied standard statistical meth-
ods in a pro forma manner, then one would statistically
reject the hypothesis of equal variances. The value of Bart-
lett’s test for equal variances (df = 19) is 310.2, indicating
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Figure 1. Nonlinear Stationary Time Series That Could Be Mistaken
for a Nonstationary Series With a Time-Varying Variance if Modeled
Linearly.

great departure from the equal-variance hypothesis (a 1%
level of significance value for this test statistic is 36.2). In
addition, if one examined the individual variances pairwise
by using an F ratio, one would find that 101 of the 190
possible pairs show significance at the 1% level, and 121
of the 190 at the 5% level, again seemingly indicating a
significant time-varying variance. Thus nonlinear station-
ary structure can be mistaken for nonstationarity when
forced into a linear format.

Nonlinear structure has been detected in a variety of
scientific time series data records using bispectral analysis
(a term coined by Tukey 1959). Hasselman, Munk, and
MacDonald (1963) analyzed nonlinear interaction of ocean
waves in shallow water. MacDonald (1963) presented re-
sults on nonlinear interactions in atmospheric pressure data.
Sato, Sasaki, and Nakamura (1977) used the bispectrum
to analyze acoustic gear noise. The first application of the
bispectrum to economic time series is credited to Godfrey
(1965). Huber, Kleiner, and Gasser (1971) analyzed brain-
wave data for nonlinear interactions. The most thorough
and statistically sophisticated application of the bispectrum
to the analysis of physical data was presented in three
papers by Lii, Rosenblatt, and Van Atta 1976, Van Atta
1979, and Helland, Lii, and Rosenblatt 1979. These papers
use estimated bispectra to study nonlinear spectral transfer
of energy in turbulence. Nonlinear energy transfers in-
plasmas were investigated through bispectral techniques
by Kim and Powers (1978).

The bispectrum is the third-order cumulant spectrum.
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Hinich and Clay (1968) provided some intuitive under-
standing of the bispectrum in terms of cross-frequency
phase coherence. Rosenblatt (1983) gave a review of cu-
mulant spectra and the asymptotic properties of their es-
timators. Subba Rao (1983) gave some practical consid-
erations for bispectral estimation and discussed the
relationship between the bispectrum and a certain class of
nonlinear models called ““bilinear” models.

Although the relationship between the structure of a
nonlinear filter and the bispectrum of the filter output has
been understood for at least 25 years, statistical and com-
putational problems have severely limited progress. Com-
puter software for bispectral analysis are not part of stan-
dard statistical software packages. The published papers
on bispectral analysis do not give bispectral estimation
routines. Subba Rao (1983) does not go into sufficient
detail in his review of bispectral estimation to enable most
readers even to organize a computational flowchart. A
FORTRAN program is available from Patterson (1983),
however, and we use it in this article. The monograph by
Subba Rao and Gabr (1984) also contains a listing in FOR-
TRAN for doing bispectral analysis (although they used
mathematical subroutines from England).

Most applications do not involve a theoretically based
model that indicates how well a linear time series model
will approximate the data, so this must be determined from
the data. Moreover, an easily applied computer-based
method for detecting nonlinearity is important for the de-
velopment of nonlinear analysis of time series data. When
physical models indicate that nonlinear models should be
used to analyze data, as is the case for turbulence in ocean
waves or plasmas, then bispectral analysis is needed.

Another problem that has inhibited the application of
bispectral analysis is the lack of statistical tests for signif-
icance for bispectral estimates. Even more important has
been the absence of test statistics for detecting nonlinearity
in time series data. Recently several tests for nonlinearity
have been proposed, however, both in the frequency do-
main and the time domain. In the frequency domain, Subba
Rao and Gabr (1980) were the first to implement Brillin-
ger’s (1965) method for measuring the departure of a pro-
cess from linearity (and Gaussianity) by using an estimate
of the bispectrum of the observed time series. Their tests
do not use the asymptotic sampling properties of the bi-
spectrum that were developed by Rosenblatt and Van Ness
(1965), Shaman (1965), and Brillinger and Rosenblatt (1967
a,b), nor did they give test statistics for the significance
of individual bispectral estimates. Hinich (1982) presented
a streamlined and practical bispectral procedure for testing
whether time series data are consistent with a linearity (and
also a Gaussianity) hypothesis. The Hinich method is in-
corporated in the Patterson computer program, along with
chi-squared statistics for testing the significance of the in-
dividual bispectral estimates. Ashley, Patterson, and Hin-
ich (1986) showed that the Hinich tests have considerable
power for detecting quadratic moving average and bilinear
models for sample sizes as “small” as 256. In the time
domain, several tests were proposed, including those of
Keenan (1985), Petruccelli and Davies (1986), Granger
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and Newbold (1976), Maravall (1983), McLeod and Li
(1983), Chan and Tong (1986), and Robinson (1983). These
tests were compared and reviewed by Petruccelli and Da-
vies (1986), Davies and Petruccelli (1985), and Chan and
Tong (1986).

Unfortunately, linear models are often applied in a pro
forma manner. Of course, if there are not enough data to
measure the magnitude of a nonlinear structure in the
process, then a linear model is the only reasonable ap-
proach. If there are enough data to test linearity in the
residuals of the linear fit, then the investigator can decide
whether to incorporate nonlinearity, based on appropriate
test statistics. A global test statistic for linearity, such as
the Hinich or Subba Rao tests, can detect the presence of
measurable nonlinearity, just as the Durbin—~Watson sta-
tistics help detect measurable serial correlation in a linear
time series model.

Section 2 presents a sketch of the theory and methods
for testing for linearity using a sample polyspectrum. Sec-
tion 3 indicates how the sample bispectrum or the sample
third-order cumulant has been used in various time series
of real data to determine linearity and Gaussianity of the
series.

2. STATISTICAL TESTS FOR LINEARITY AND
GAUSSIANITY OF TIME SERIES

Subba Rao and Gabr (1980) and Hinich (1982) gave
statistical tests for globally determining whether an ob-
served stationary time series {X(n)} is linear. It is possible
that {X(n)} is linear without being Gaussian, but all of the
stationary Gaussian time series are linear. Both articles
also included time series tests for joint Gaussianity, based
on the sample bispectrum of the time series. The Hinich
test is nonparametric and robust. Accordingly, our tests
use the Hinich test.

Let {X(n)} be a stationary time series and assume, with-
out loss of generality, that E[X(n)] = 0. The spectrum of
{X(n)}is the Fourier transform of the autocovariance func-
tion Cx(n) = E[X(t + n)X(?)],

S(f) = 2 Cx(n)exp{—2nifn}.

Many papers use the spectrum S(f) as a way to examine
the correlation structure of X(n). [See Granger and Mor-
genstern (1963) for many applications of spectral analysis
techniques to finance.] In particular, X(n) is serially un-
correlated (white noise) if S(f) is constant.

The bispectrum of {X(n)} is defined as the (two-dimen-
sional) Fourier transform of the third-moment function

B(f1, f2) = 2 2 Cxx(n, m)exp{—2nif,n — 2nif,m},

where Cyx(n, m) = E[X(t + n)X(t + m)X(?)]. A rig-
orous introduction to the bispectrum and its symmetries
and properties was given by Brillinger and Rosenblatt (1967
a,b). For our purposes, however, the bispectrum is im-
portant because it allows a statistical test for linearity (and
also Gaussianity) of a time series, and for the significance
of the individual bispectral estimates.
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Suppose that X(n) is a linear time series; that is, it has
the form of Equation (1.1). Then it can be shown that the
spectrum of {X(n)} is of the form

S(f) = aZ|A(f)P, 2.1)
and the bispectrum of {X(n)} is of the form
B(f1, f2) = A(f)A(f)A*(fi + fus,  (2.2)

where y; = E[¢%(t)], and A(f) is the transform of the
coefficient series

©

> a(n)exp(—2nifn),

n=0

A(f) =

where A* denotes the complex conjugate of A.
From Equations (2.1) and (2.2), it follows that

|B(f1, f2)P 4
S(F)S(F)S(f1 + f) b (2.3)

is constant over all frequency pairs (f;, f,) if {X(n)} is
linear. If we define the class J to be the collection of all
linear processes with innovation variables &(¢) possessing

us = 0, then the ratio (2.3) is 0 for any time series X(¢)
€ 3. The class J contains the class 9 of all linear processes
X(¢) with innovation variables &(¢) symmetrically distrib-
uted, which in turn contains the class 9t of all Gaussian
time series.

The relationship in Equation (2.3) is the basis of the
Hinich tests. Since the bispectrum is a spatially periodic
function whose values in the plane are completely deter-
mined via symmetry relations by the principal domain {(f;,
£2) 1 0< f1 <3, fo <f1,2f, + fo <1}, Hinich constructs
an estimate B of the bispectrum B(f;, f,) and S of the
spectrum S(f). He then estimates the ratio in Equatlon
(2.3) at different frequency pairs (f;, f,) in the princi-
pal domain by |B(f,, f)F/S(F)S(F)S(f1 + f.). If these
ratios differ too greatly over different frequency pairs, he
rejects the constancy of the ratio, and hence the linearity
of the time series {X(n)}. If the estimates differ too greatly
from 0, he rejects the hypothesis that the time series model
belongs to class 9. In particular, Gaussianity is rejected if
the ratio in (2.3) differs too greatly from 0. The constant
u3/at is the square of Fisher’s skewness measure for the
€ series.

The test statistic Hinich derives for testing linearity is
based on the inner quartile range of the estimated ratio
over the set of pertinent frequency pairs. If the ratio in
(2.3) is constant, then the inner quartile range is small; if
it is not constant, then the inner quartile range is larger.
The test statistic for linearity is asymptotically normal, so
significance is readily determined from standard normal
tables. See Hinich (1982) for the precise formulas and
proofs concerning this test for linearity.

The test for the time series belonging to class ¢ (and in
particular a test for Gaussianity) involves testing whether
the estimated ratio in (2.3) deviates only randomly from
0. Hinich (1982) derived an asymptotically normal test
statistic based on the estimated ratio in (2.3) in this situ-
ation as well.
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It should be emphasized that the time series under study
can be serially uncorrelated and still fail to be either linear
or Gaussian. For economic data generated by a form of
idealized market structure known as an ‘‘efficient market,”
such a result might be expected, since such series appear
to be white-noise series.

In Section 3 we show the results of applying the Hinich
tests to several different data sets.

3. EXAMINATION OF LINEARITY AND
GAUSSIANITY FOR REAL TIME SERIES

In this section we present a summary of the results of
analyzing several different real data sets using the preced-
ing statistical tests. The Hinich tests yield standard normal
variates for the test statistic if the hypothesized time series
model is indeed true. A one-tailed 1% level of significance
for this statistic is 2.326.

To provide a benchmark for comparison, the first series
examined was a sequence of values generated by a ran-
dom-number generator that simulates Gaussian white noise.
The series was divided into 100 records, each containing
1,024 samples. Each record was tested for linearity and
Gaussianity. The averaged asymptotically standard nor-
mal test statistic values for the 100 records are z = —3.3
for the Gaussianity test and z = —3.4 for the linearity
test. Since the test statistics are one-sided, only large pos-
itive values are significant; hence this series can easily be
accepted as linear and Gaussian. The normalized bispec-
trum for each record was averaged over all records (see
Fig. 2). The time unit is set equal to 1 second so that the
bandwidth is 512 hertz. Except for small random pertur-
bations, the graph appears flat (as it should).

34 Underwater Acoustical Sonar Time Series

Optimal detection of signals in stochastic noise has been
developed in relatively few cases. Most investigators as-
sume that the signal or the noise (or both) are Gaussian
processes. Even when non-Gaussianity is allowed, the pro-
cess is often assumed to be linear, or a simple martingale
derived from a Gaussian process (e.g., via simple sto-
chastic differential equations). Examples of this include
the results presented by Brockett (1984a,b) and Baker and

%0

Figure 2. Normalized Bispectral Plot of Gaussian White Noise.
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Gaultierotti (1984). In many situations, such as sonar, ra-
dar, or satellite transmission, the Gaussianity assumption
may not hold (e.g., see Girodan and Haber 1972; Kennedy
1969; Middleton 1967a,b, 1972a,b; Trunk and George 1970;
VanTrees 1971). It is thus of some interest to determine
if signals and/or noise are Gaussian processes in the ocean
environment. If they are non-Gaussian, we wish to deter-
mine if they can be modeled as non-Gaussian linear pro-
cesses (e.g., autoregressive, moving average, or simple
stochastic integrals). This is useful for determining which
type of signal detector to implement for best performance.
In some environments, man-made noise (e.g., merchant-
shipping noises) or environmental noises (e.g., biological
noises or ice-cracking noises) raise questions about the
linearity or Gaussianity of the ambient noise field. The
issue of linearity and Gaussianity of underwater acoustical
ambient noise series was examined by Brockett, Hinich,
and Wilson (1987). Their results shed some new and in-
teresting light on the traditional assumption of Gaussianity
of uncontaminated ambient noise fields. If the series are
both nonlinear and non-Gaussian, then new nonlinear
models must be developed.

The acoustical series examined in this article involves
ambient noise contaminated with a biologically generated
noise (snapping shrimp). Previous examination of this se-
ries determined that the marginal distributions were non-
Gaussian (Wilson and Powell 1984); this fact is corrobo-
rated by the Hinich test statistic values calculated in Table
1. Nevertheless, more information is available using our
bispectral tests. Not only is the observed time series shown
to be non-Gaussian, it is nonlinear as well.

3.2 Common-Stock Price Series

Academic interest in securities markets tends to focus
on the relationship of these markets to the ideal markets
of economic theory, which asserts that competition in spec-
ulative markets reduces the expected economic gain to 0.
This theory has led to mathematical models of security-
price behavior that are often based on the assumption that
the stochastic process of prices should have independent
increments. As a consequence, empirical research in this
field has concentrated on identifying the statistical process
that generates security prices and ascertaining whether this
process can be used to forecast prices. The consensus of
published empirical research is that a geometric random
walk describes prices fairly well, although some anomalies
have been reported. We now apply the previously de-
scribed time series tests to realizations of daily log-price
relatives [i.e., In(p/p,-;)] for certain common stocks.
These results challenge the belief that daily rates of return
can be viewed as independent random variables or even
as linearly smoothed independent random variables. [The

Table 1. Underwater Acoustical Sonar Series

Gaussianity test
statistic (z)

Linearity test

Series statistic ()

Biological noise (snapping shrimp) 89.7 87.6
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rate of return, r, = (p, — p;-1)/p.-1, is approximately equal
to the log of the stock-price relative In(p,/p,—,) for small
r.]

There is still considerable controversy about the prob-
ability model responsible for the generation of returns. At
the risk of oversimplification, the explanations can be di-
vided into two groups. In the first group, returns are gen-
erated by a stationary, non-Gaussian distribution, such as
a member of the stable Paretian family. [Mandelbrot (1963,
1967) and Fama (1965) offered evidence supporting the
stable Paretian model; Press (1967) argued for a homo-
geneous Poisson jump process superimposed on a Gaus-
sian process; and Blattberg and Gonedes (1974) suggested
Student’s ¢ distribution.] In the second group, returns are
generated by a Gaussian model with nonstationary param-
eters. [Clark (1973) considered a normal distribution with
a lognormal distribution for the variance parameter,
whereas Hsu (1972) and Hsu, Miller, and Wichern (1974)
presented evidence inconsistent with a stable Paretian
model, and suggested a normal process with random jumps
in the variance occurring at discrete points in time.] Table
2 summarizes the results of applying the bispectral tests
to 10 different common-stock series. These results rein-
force the results of Hinich and Patterson (1985) and sup-
port a third alternative: Daily returns are realizations of
a nonlinear random process. Although stock-return time
series closely resemble white noise, this evidence suggests
amuch higher degree of dependence in daily stock returns.
In fact, the time-path behavior of nonlinear processes is
such that the Hsu (1972) and Hsu, Miller, and Wichern
(1974) results can be consistent with a variety of nonlinear
processes (see Fig. 1). As can be seen from Table 2, the
series of stock-price relatives is decidedly non-Gaussian
and nonlinear.

A more detailed examination of the common-stock non-
linearities involves determining the extent to which the
different stocks exhibit similar structural nonlinearities.
Thus for each stock series we examined the individual
frequency pairs that deviate significantly from the linearity
hypothesis. The 1% level of significance for the x> distri-
bution with 2 df is approximately 10, and hence we assess
the similarity of nonlinear structure by extracting for each
stock those frequency pairs (f;, f,) whose normalized bi-

Table 2. Summary of Gaussianity and Linearity Tests For Stocks

Gaussianity test Linearity test

Firm statistic (z) statistic (z)
American Airlines 4.21 4.35
Alberto Culver Company 12.08 6.51
Columbia Broadcasting 4.71 4.09
Campbell Soup 13.39 5.48
El Paso Natural Gas 30.19 5.53
Swift & Company 22.81 7.83
Federated Department Stores 4.81 4.26
Northern Natural Gas 8.62 6.97
Indianapolis Power and Light 8.09 7.02
Merrill Lynch Pierce Fenner 6.54 1.85

NOTE: For all of the runs, in Hinich's (1982) notation the bispectral smoothing width was
chosen as M = 20, and the width of the smoothing triangle for spectral estimation was chosen
as A = 251.
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spectral value exceeds 10. The concordance across stocks
is exhibited by dividing the frequency axes into subinter-
vals, and for each subinterval counting the number of stocks
with a x? value exceeding 10. Figure 3 displays a bifre-
quency plot of the significant pairs for the 10 stocks. As
can be seen, the stocks exhibit similarity in the location
of their significant nonlinear frequency interactions, and
hence the nonlinear time series structures found in Table
2 have some commonality across stocks. This evidence
gives credence to the hypothesis that similar market-struc-
ture mechanisms (e.g., programmed institutional buying
and selling) cause the discovered nonlinear time series
behavior of common-stock returns.

3.3 The Spot and Forward Foreign
Exchange-Rate Series

There have been many articles examining the spot-price
series, the forward-price series, and the relationship be-
tween the spot- and forward-price series for foreign ex-
change rates. Some authors attempt to specify formally
the form of a market equilibrium by postulating a partic-
ular linear (often regression) relationship between the spot
price and the forward price. The residual error terms, or
sometimes the forecast errors, are assumed to be iid nor-
mal variates (white Gaussian noise), or perhaps serially
correlated linear processes; hypothesis tests about the val-
ues of certain parameters in the model are used to infer
market efficiency, exchange-rate bias, risk premiums for
trading, or other characteristics of interest. Linear models

X
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Figure 3. Bispectrum Resuilts for 10 Stocks. The plot shows the num-
ber of stocks with a significant bispectrum for each frequency pair. For
each data set, M = 20, N = 249, and there are 1,000 observations.
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with normally distributed errors are used for statistical
convenience. It does not follow from economic principles
that appropriate models for exchange rates must be linear
processes with Gaussian white-noise residual errors.

From the perspective of the exchange-rate series them-
selves, many articles support the random-walk hypothesis
for foreign exchange rates. Among these papers are those
by Giddy and Dufey (1975), Callen, Kwan, and Yip (1985),
Mussa (1979), Fama (1983), Hodrick and Srivastava (1983),
and Korajcyk (1983). These researchers did not have ac-
cess to newly developed statistical tests for linearity of time
series, so in using the well-developed theory based on
linear Gaussian processes they lacked the ability to check
their data for compatibility with this assumption. In this
section we analyze foreign exchange rates and find that
the linear models previously postulated (and in particular
the random-walk hypothesis) do not fit the data. Let S(¢)
denote the spot exchange price at time ¢; F(s, t — s) is
the corresponding forward price at time ¢ — s looking
forward to predict the spot price s periods later. We use
30-day forward prices; let a period be 30 days. In addition
to the examination of the original-price time series, there
have been other contending models involving rates (log
price) rather than the prices themselves. Thus we are led
by the literature on foreign exchange rates to examine
additionally the time series In S(¢) and In F(s, t — s). Of
course, modeling a linear (random walk) relationship for
rates is equivalent to a log-linear (geometric random walk)
relationship for prices, and the geometric random walk is
a model often used in finance research.

In applying the preceding statistical tests to the analysis
of the forward and spot time series for foreign exchange
rates, we examined both the original price quotes and the
log of the price (the rate). For analysis we chose the U.S.
dollar to Japanese yen exchange rate, since this is osten-
sibly one of the most closely watched and tightly arbitraged
currency exchanges. (If linearity and/or Gaussianity is to
be found in foreign exchange rates, this is a likely place
to find it.) We examined two time periods, from January
1, 1981, to mid-1982 and from December 12, 1981, to mid-
1983. We took daily quotes for rates from The Wall Street
Journal, using the 30-day forward rate F(30, ¢) and the
corresponding spot rate S(30 + ¢). When data points are
missing (e.g., trading holidays and weekends) the daily
values are imputed with linear interpolation on the existing
data.

Table 3 shows the results of the analysis applied to the
spot, log-spot, forward, and log-forward time series. The
Hinich tests yield standard normal variates for the test
statistic if the hypothesized time series model is indeed a
linear and/or Gaussian series. As can be seen immedi-
ately, the spot, forward, log-spot, and log-forward time
series are nonlinear and do not belong to class 9 (and hence
are also non-Gaussian). Since most of the current models
used in foreign exchange-rate studies are all incompatible
with nonlinear time series, the conclusions previously drawn
by these authors must be reexamined in light of this new
statistical evidence.
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Table 3. Results of Test for Foreign Exchange-Rate
Time Series Linearity and Gaussianity

Original Gaussianity test  Linearity test
series Test period statistic (z) statistic (z)
S(t) 1/2/81-mid-'82 104.39 232.75
12/31/81-mid-'83 20.73 17.67
F(30, t) 1/2/81-mid-'82 119.56 350.21
12/31/81-mid-'83 28.07 25.42
In S(t) 1/2/81-mid-'82 25.78 9.98
12/31/81-mid-'83 6.69 2.70
In F(30, t) 1/2/81-mid-'82 164.67 948.82
12/31/81-mid-'83 3.91 .80

4. SUMMARY AND CONCLUSIONS

Linear models are usually applied in a pro forma man-
ner. If there are not enough data to measure the magnitude
of a nonlinear structure, then application of a linear model
is the only reasonable approach. If there are enough data
to test linearity in the residuals of the linear fit, then the
investigator can decide whether to try to incorporate non-
linearity based on appropriate test statistics. A global test
for linearity such as the Hinich or Subba Rao tests can
detect the presence of measurable nonlinearity, just as the
Durbin—Watson statistics help detect measurable serial
correlation in a linear time series model, and residual plots
help detect non-Gaussianity in iid stochastic models. In
this article we have presented the Hinich tests for linearity
and nonskewness (in particular Gaussianity) of time series
and applied these results to obtain new information about
both real time series that had previously been modeled
linearly and also issues currently important in other dis-
ciplines. In some series the linearity model was found to
be an acceptable time series model, and in other important
series the tests found significant nonlinearities.

[Received November 1985. Revised July 1987.]
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