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Abstract

In this article we provide a review of the literature with respect to the e$cient markets
hypothesis and chaos. In doing so, we contrast the martingale behavior of asset prices to
nonlinear chaotic dynamics, discuss some recent techniques used in distinguishing
between probabilistic and deterministic behavior in asset prices, and report some evid-
ence. Moreover, we look at the controversies that have arisen about the available tests
and results, and raise the issue of whether dynamical systems theory is practical in
"nance. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, the e$cient markets hypothesis and the notions connected with it
have provided the basis for a great deal of research in "nancial economics.
A voluminous literature has developed supporting this hypothesis. Brie#y
stated, the hypothesis claims that asset prices are rationally related to economic
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realities and always incorporate all the information available to the market. This
implies the absence of exploitable excess pro"t opportunities. However, despite
the widespread allegiance to the notion of market e$ciency, a number of studies
have suggested that certain asset prices are not rationally related to economic
realities. For example, Summers (1986) argues that market valuations di!er
substantially and persistently from rational valuations and that existing evid-
ence (based on common techniques) does not establish that "nancial markets
are e$cient.

Although most of the empirical tests of the e$cient markets hypothesis are
based on linear models, interest in nonlinear chaotic processes has in the recent
past experienced a tremendous rate of development. There are many reasons for
this interest, one of which being the ability of such processes to generate output
that mimics the output of stochastic systems, thereby o!ering an alternative
explanation for the behavior of asset prices. In fact, the possible existence of
chaos could be exploitable and even invaluable. If, for example, chaos can be
shown to exist in asset prices, the implication would be that pro"table, nonlin-
earity-based trading rules exist (at least in the short run and provided the actual
generating mechanism is known). Prediction, however, over long periods is all
but impossible, due to the sensitive dependence on initial conditions property of
chaos.

In this paper, we survey the recent literature with respect to the e$cient
markets hypothesis and chaos. In doing so, in the next two sections we
brie#y discuss the e$cient markets hypothesis and some of the more recent
testing methodologies. In Section 4, we provide a description of the key
features of the available tests for independence, nonlinearity, and chaos,
focusing explicit attention on each test's ability to detect chaos. In
Section 5, we present a discussion of the empirical evidence on macroeconomic
and (mostly) "nancial data, and in Section 6, we look at the controversies
that have arisen about the available tests and address some important
questions regarding the power of some of these tests. The "nal section
concludes.

2. The martingale hypothesis

Standard asset pricing models typically imply the &martingale model', accord-
ing to which tomorrow's price is expected to be the same as today's price.
Symbolically, a stochastic process x

t
follows a martingale if

E
t
(x

t`1
DX

t
)"x

t
, (1)

where X
t
is the time t information set* assumed to include x

t
. Eq. (1) says that if

x
t
follows a martingale the best forecast of x

t`1
that could be constructed based

on current information X
t
would just equal x

t
.
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Alternatively, the martingale model implies that (x
t`1

!x
t
) is a &fair game'

(a game which is neither in your favor nor your opponent's)1

E
t
[(x

t`1
!x

t
)DX

t
]"0. (2)

Clearly, x
t
is a martingale if and only if (x

t`1
!x

t
) is a fair game. It is for this

reason that fair games are sometimes called &martingale di!erences'.2 The fair
game model (2) says that increments in value (changes in price adjusted for
dividends) are unpredictable, conditional on the information set X

t
. In this sense,

information X
t
is fully re#ected in prices and hence useless in predicting rates of

return. The hypothesis that prices fully re#ect available information has come to
be known as the &e$cient markets hypothesis'.

In fact Fama (1970) de"ned three types of (informational) capital market
e$ciency (not to be confused with allocational or Pareto-e$ciency), each of
which is based on a di!erent notion of exactly what type of information is
understood to be relevant. In particular, markets are weak-form, semistrong-
form, and strong-form e$cient if the information set includes past prices and
returns alone, all public information, and any information public as well as
private, respectively. Clearly, strong-form e$ciency implies semistrong-form
e$ciency, which in turn implies weak-form e$ciency, but the reverse implica-
tions do not follow, since a market easily could be weak-form e$cient but
not semistrong-form e$cient or semistrong-form e$cient but not strong-form
e$cient.

The martingale model given by (1) can be written equivalently as

x
t`1

"x
t
#e

t
,

where e
t
is the martingale di!erence. When written in this form the martingale

looks identical to the &random walk model' * the forerunner of the theory of
e$cient capital markets. The martingale, however, is less restrictive than the
random walk. In particular, the martingale di!erence requires only indepen-
dence of the conditional expectation of price changes from the available in-
formation, as risk neutrality implies, whereas the (more restrictive) random walk
model requires this and also independence involving the higher conditional
moments (i.e., variance, skewness, and kurtosis) of the probability distribution of
price changes.

1A stochastic process z
t
is a fair game if z

t
has the property E

t
(z

t`1
DX

t
)"0.

2The martingale process is a special case of the more general submartingale process. In particular,
x
t
is a &submartingale' if it has the property E

t
(x

t`1
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)5x

t
. In terms of the (x

t`1
!x

t
) process, the

submartingale model implies that E
t
[(x

t`1
!x

t
)DX

t
]50 and embodies the concept of a superfair

game. LeRoy (1989, pp. 1593}1594) also o!ers an example in which E
t
[(x

t`1
!x

t
)DX

t
]40, in which

case x
t
will be a &supermartingale', embodying the concept of a subfair game.
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In fact, Campbell et al. (1997) distinguish between three versions of the
random walk hypothesis* the &independently and identically distributed-re-
turns' version, the &independent-returns' version, and the version of &uncor-
related-returns'* see Campbell et al. (1997) for more details. The martingale
di!erence model, by not requiring probabilistic independence between success-
ive price changes, is entirely consistent with the fact that price changes, although
uncorrelated, tend not to be independent over time but to have clusters of
volatility and tranquility (i.e., dependence in the higher conditional moments)
* a phenomenon originally noted for stock market prices by Mandelbrot (1963)
and Fama (1965).

3. Tests of the martingale hypothesis

The random walk and martingale hypotheses imply a unit root in the level of
the price or logarithm of the price series* notice that a unit root is a necessary
but not su$cient condition for the random walk and martingale models to hold.
Hence, these models can be tested using recent advances in the theory of
integrated regressors. The literature on unit root testing is vast and, in what
follows, we shall only brie#y illustrate some of the issues that have arisen in the
broader search for unit roots in "nancial asset prices.3

Nelson and Plosser (1982), using the augmented Dickey}Fuller (ADF) unit
root testing procedure (see Dickey and Fuller, 1981) test the null hypothesis of
&di!erence-stationarity' against the &trend-stationarity' alternative. In particular,
in the context of "nancial asset prices, one would estimate the following
regression:

*y
t
"a

0
#a

1
y
t~1

#

l

+
j/1

c
j
*y

t~j
#e

t
,

where y denotes the logarithm of the series. The null hypothesis of a single unit
root is rejected if a

1
is negative and signi"cantly di!erent from zero. A trend

variable should not be included, since the presence of a trend in "nancial asset
prices is a clear violation of market e$ciency, whether or not the asset price has
a unit root. The optimal lag length, l, can be chosen using data-dependent
methods, that have desirable statistical properties when applied to unit root
tests. Based on such ADF unit root tests, Nelson and Plosser (1982) argue that
most macroeconomic and "nancial time series have a unit root.

3 It is to be noted that unit root tests have low power against relevent alternatives. Also, as
Granger (1995) points out, nonlinear modelling of nonstationary variables is a new, complicated,
and largely undeveloped area. We therefore ignore this issue in this paper, keeping in mind that this
is an area for future research.
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Perron (1989), however, argues that most time series [and in particular those
used by Nelson and Plosser (1982)] are trend stationary if one allows for
a one-time change in the intercept or in the slope (or both) of the trend function.
The postulate is that certain &big shocks' do not represent a realization of the
underlying data generation mechanism of the series under consideration and
that the null should be tested against the trend-stationary alternative by allow-
ing, under both the null and the alternative hypotheses, for the presence of
a one-time break (at a known point in time) in the intercept or in the slope (or
both) of the trend function.4 Hence, whether the unit root model is rejected or
not depends on how big shocks are treated. If they are treated like any other
shock, then ADF unit root testing procedures are appropriate and the unit root
null hypothesis cannot (in general) be rejected. If, however, they are treated
di!erently, then Perron-type procedures are appropriate and the null hypothesis
of a unit root will most likely be rejected.

Finally, given that integration tests are sensitive to the class of models
considered (and may be misleading because of misspeci"cation), &fractionally'
integrated representations, which nest the unit-root phenomenon in a more
general model, have also been used* see Baillie (1996) for a survey. Fractional
integration is a popular way to parameterize long-memory processes. If such
processes are estimated with the usual autoregressive-moving average model,
without considering fractional orders of integration, the estimated autoregres-
sive process can exhibit spuriously high persistence close to a unit root. Since
"nancial asset prices might depart from their means with long memory, one
could condition the unit root tests on the alternative of a fractional integrated
process, rather than the usual alternative of the series being stationary. In this
case, if we fail to reject an autoregressive unit root, we know it is not a spurious
"nding due to neglect of the relevant alternative of fractional integration and
long memory.

Despite the fact that the random walk and martingale hypotheses are con-
tained in the null hypothesis of a unit root, unit root tests are not predictability
tests. They are designed to reveal whether a series is di!erence stationary or
trend stationary and as such they are tests of the permanent/temporary nature
of shocks. More recently, a series of papers including those by Poterba and
Summers (1988), and Lo and MacKinlay (1988) have argued that the e$cient
markets theory can be tested by comparing the relative variability of returns

4Perron's (1989) assumption that the break point is uncorrelated with the data has been criticized,
on the basis that problems associated with &pre-testing' are applicable to his methodology and that
the structural break should instead be treated as being correlated with the data. More recently,
a number of studies treat the selection of the break point as the outcome of an estimation procedure
and transform Perron's (1989) conditional (on structural change at a known point in time) unit root
test into an unconditional unit root test.
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over di!erent horizons using the variance ratio methodology of Cochrane
(1988). They have shown that asset prices are mean reverting over long invest-
ment horizons* that is, a given price change tends to be reversed over the next
several years by a predictable change in the opposite direction. Similar results
have been obtained by Fama and French (1988), using an alternative but closely
related test based on predictability of multiperiod returns. Of course, mean-
reverting behavior in asset prices is consistent with transitory deviations from
equilibrium which are both large and persistent, and implies positive autocorre-
lation in returns over short horizons and negative autocorrelation over longer
horizons.

Predictability of "nancial asset returns is a broad and very active research
topic and a complete survey of the vast literature is beyond the scope of the
present paper. We shall notice, however, that a general consensus has emerged
that asset returns are predictable. As Campbell et al. (1997, pp. 80) put it
`[r]ecent econometric advances and empirical evidence seem to suggest that
"nancial asset returns are predictable to some degree. Thirty years ago this
would have been tantamount to an outright rejection of market e$ciency.
However, modern "nancial economics teaches us that other, perfectly rational,
factors may account for such predictability. The "ne structure of securities
markets and frictions in the trading process can generate predictability. Time-
varying expected returns due to changing business conditions can generate
predictability. A certain degree of predictability may be necessary to reward
investors for bearing certain dynamic risksa.

4. Tests of nonlinearity and chaos

Most of the empirical tests that we discussed so far are designed to detect
&linear' structure in "nancial data * that is, linear predictability is the focus.
However, as Campbell, et al. (1997, pp. 467) argue &2 many aspects of economic
behavior may not be linear. Experimental evidence and casual introspection
suggest that investors' attitudes towards risk and expected return are nonlinear.
The terms of many "nancial contracts such as options and other derivative
securities are nonlinear. And the strategic interactions among market partici-
pants, the process by which information is incorporated into security prices, and
the dynamics of economy-wide #uctuations are all inherently nonlinear. There-
fore, a natural frontier for "nancial econometrics is the modeling of nonlinear
phenomena'.

It is for such reasons that interest in deterministic nonlinear chaotic processes
has in the recent past experienced a tremendous rate of development. Besides its
obvious intellectual appeal, chaos is interesting because of its ability to generate
output that mimics the output of stochastic systems, thereby o!ering an alterna-
tive explanation for the behavior of asset prices. Clearly then, an important area
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for potentially productive research is to test for chaos and (in the event that it
exists) to identify the nonlinear deterministic system that generates it. In what
follows, we turn to several univariate statistical tests for independence, non-
linearity and chaos, that have been recently motivated by the mathematics of
deterministic nonlinear dynamical systems.

4.1. The correlation dimension test

Grassberger and Procaccia (1983) suggested the &correlation dimension' test
for chaos. To brie#y discuss this test, let us start with the one-dimensional series,
Mx

t
Nn
t/1

, which can be embedded into a series of m-dimensional vectors
X

t
"(x

t
,x

t~1
,2,x

t~m`1
)@ giving the series MX

t
Nn
t/m

. The selected value of m is
called the &embedding dimension' and each X

t
is known as an &m-history' of the

series Mx
t
Nn
t/1

. This converts the series of scalars into a slightly shorter series of
(m-dimensional) vectors with overlapping entries * in particular, from the
sample size n, N"n!m#1 m-histories can be made. Assuming that the true,
but unknown, system which generated Mx

t
Nn
t/1

is 0 -dimensional and provided
that m520#1, then the N m-histories recreate the dynamics of the data
generation process and can be used to analyze the dynamics of the system* see
Takens (1981).

The correlation dimension test is based on the &correlation function' (or
&correlation integral'), C(N,m, e), which for a given embedding dimension m is
given by

C(N,m, e)"
1

N(N!1)
+

mytEsyn

H(e!DDX
t
!X

s
DD),

where e is a su$ciently small number, H(z) is the Heavside function (which maps
positive arguments into 1 and nonpositive arguments into 0), and DD.DD denotes the
distance induced by the selected norm (the &maximum norm' being the type used
most often). In other words, the correlation integral is the number of pairs (t, s)
such that each corresponding component of X

t
and X

s
are near to each other,

nearness being measured in terms of distance being less than e. Intuitively,
C(N,m, e) measures the probability that the distance between any two
m-histories is less than e. If C(N,m, e) is large (which means close to 1) for a very
small e, then the data is very well correlated.

The correlation dimension can be de"ned as

Dm
#
"lim

e?0

logC(N,m, e)
log e

,

that is by the slope of the regression of logC(N,m, e) versus log e for small values
of e, and depends on the embedding dimension, m. As a practical matter one
investigates the estimated value of Dm

#
as m is increased. If as m increases
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Dm
#

continues to rise, then the system is stochastic. If, however, the data are
generated by a deterministic process (consistent with chaotic behavior), then
Dm

#
reaches a "nite saturation limit beyond some relatively small m.5 The correla-

tion dimension can therefore be used to distinguish true stochastic processes
from deterministic chaos (which may be low-dimensional or high-dimensional).

While the correlation dimension measure is therefore potentially very useful
in testing for chaos, the sampling properties of the correlation dimension are,
however, unknown. As Barnett et al. (1995, pp. 306) put it `[i]f the only source of
stochasticity is [observational] noise in the data, and if that noise is slight, then
it is possible to "lter the noise out of the data and use the correlation dimension
test deterministically. However, if the economic structure that generated the
data contains a stochastic disturbance within its equations, the correlation
dimension is stochastic and its derived distribution is important in producing
reliable inferencea.

Moreover, if the correlation dimension is very large as in the case of high-
dimensional chaos, it will be very di$cult to estimate it without an enormous
amount of data. In this regard, Ruelle (1990) argues that a chaotic series can only
be distinguished if it has a correlation dimension well below 2 log

10
N, where

N is the size of the data set, suggesting that with economic time series the
correlation dimension can only distinguish low-dimensional chaos from high-
dimensional stochastic processes* see also Grassberger and Procaccia (1983)
for more details.

4.2. The BDS test

To deal with the problems of using the correlation dimension test, Brock et al.
(1996) devised a new statistical test which is known as the BDS test* see also
Brock et al. (1991). The BDS tests the null hypothesis of whiteness (independent
and identically distributed observations) against an unspeci"ed alternative using
a nonparametric technique.

The BDS test is based on the Grassberger and Procaccia (1983) correlation
integral as the test statistic. In particular, under the null hypothesis of whiteness,
the BDS statistic is

=(N,m, e)"JN
C(N,m, e)!C(N, 1, e)m

p( (N,m, e)

5Since the correlation dimension can be used to characterize both chaos and stochastic dynamics
(i.e., the correlation dimension is a "nite number in the case of chaos and equal to in"nity in the case
of an independent and identically distributed stochastic process), one often "nds in the literature
expressions like &deterministic chaos' (meaning simply chaos) and &stochastic chaos' (meaning
standard stochastic dynamics). This terminology, however, is confusing in contexts other than that
of the correlation dimension analysis and we shall not use it here.
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where p( (N, m, e) is an estimate of the asymptotic standard deviation of
C(N,m, e)!C(N, 1, e)m* the formula for p( (N,m, e) can be found in Brock et al.
(1996). The BDS statistic is asymptotically standard normal under the whiteness
null hypothesis * see Brock et al. (1996) for details.

The intuition behind the BDS statistic is as follows. C(N,m, e) is an estimate of
the probability that the distance between any two m-histories, X

t
and X

s
of the

series Mx
t
N is less than e. If Mx

t
N were independent then for tOs the probability of

this joint event equals the product of the individual probabilities. Moreover, if
Mx

t
N were also identically distributed then all of the m probabilities under the

product sign are the same. The BDS statistic therefore tests the null hypothesis
that C(N,m, e)"C(N, 1, e)m * the null hypothesis of whiteness.6

Since the asymptotic distribution of the BDS test statistic is known under the
null hypothesis of whiteness, the BDS test provides a direct (formal) statistical
test for whiteness against general dependence, which includes both nonwhite
linear and nonwhite nonlinear dependence. Hence, the BDS test does not
provide a direct test for nonlinearity or for chaos, since the sampling distribu-
tion of the test statistic is not known (either in "nite samples or asymptotically)
under the null hypothesis of nonlinearity, linearity, or chaos. It is, however,
possible to use the BDS test to produce indirect evidence about nonlinear
dependence [whether chaotic (i.e., nonlinear deterministic) or stochastic], which
is necessary but not su$cient for chaos* see Barnett et al. (1997) and Barnett
and Hinich (1992) for a discussion of these issues.

4.3. The Hinich bispectrum test

The bispectrum in the frequency domain is easier to interpret than the
multiplicity of third order moments MC

xxx
(r, s): s4r, r"0, 1, 2,2N in the time

domain* see Hinich (1982). For frequencies u
1

and u
2
in the principal domain

given by

X"M(u
1
,u

2
): 0(u

1
(0.5, u

2
(u

1
, 2u

1
#u

2
(1N,

the bispectrum, B
xxx

(u
1
,u

2
), is de"ned by

B
xxx

(u
1
,u

2
)"

=
+

r/~=

=
+

s/~=

C
xxx

(r, s)exp[!i2n(u
1
r#u

2
s)].

The bispectrum is the double Fourier transformation of the third-order
moments function and is the third-order polyspectrum. The regular power
spectrum is the second-order polyspectrum and is a function of only one
frequency.

6Note that whiteness implies that C(N,m, e)"C(N, 1, e)m but the converse is not true.
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The skewness function C(u
1
, u

2
) is de"ned in terms of the bispectrum as

follows:

C2(u
1
, u

2
)"

DB
xxx

(u
1
,u

2
)D2

S
xx

(u
1
)S

xx
(u

2
)S

xx
(u

1
#u

2
)
, (3)

where S
xx

(u) is the (ordinary power) spectrum of x(t) at frequency u. Since the
bispectrum is complex valued, the absolute value (vertical lines) in Equation (3)
designates modulus. Brillinger (1965) proves that the skewness function
C(u

1
, u

2
) is constant over all frequencies (u

1
, u

2
)3X if Mx(t)N is linear; while

C(u
1
, u

2
) is #at at zero over all frequencies if Mx(t)N is Gaussian. Linearity and

Gaussianity can be tested using a sample estimator of the skewness function. But
observe that those #atness conditions are necessary but not su$cient for general
linearity and Gaussianity, respectively. On the other hand, #atness of the
skewness function is necessary and su$cient for third order nonlinear depend-
ence. The Hinich (1982) &linearity test' tests the null hypothesis that the skewness
function is #at, and hence is a test of lack of third order nonlinear dependence.
For details of the test, see Hinich (1982).

4.4. The NEGM test

As it was argued earlier, the distinctive feature of chaotic systems is sensitive
dependence on initial conditions * that is, exponential divergence of trajecto-
ries with similar initial conditions. The most important tool for diagnosing the
presence of sensitive dependence on initial conditions (and thereby of chaoticity)
is provided by the dominant Lyapunov exponent, j. This exponent measures
average exponential divergence or convergence between trajectories that di!er
only in having an &in"nitesimally small' di!erence in their initial conditions and
remains well de"ned for noisy systems. A bounded system with a positive
Lyapunov exponent is one operational de"nition of chaotic behavior.

One early method for calculating the dominant Lyapunov exponent is that
proposed by Wolf, Swift, Swinney, and Vastano (1985). This method, however,
requires long data series and is sensitive to dynamic noise, so in#ated estimates
of the dominant Lyapunov exponent are obtained. Recently, Nychka et al.
(1992) have proposed a regression method, involving the use of neural network
models, to test for positivity of the dominant Lyapunov exponent. The Nychka
et al. (1992), hereafter NEGM, Lyapunov exponent estimator is a regression (or
Jacobian) method, unlike the Wolf et al. (1985) direct method which (as Brock
and Sayers, 1988 have found) requires long data series and is sensitive to
dynamic noise.

Assume that the data Mx
t
N are real valued and are generated by a nonlinear

autoregressive model of the form

x
t
"f (x

t~L
,x

t~2L
,2,x

t~mL
)#e

t
(4)
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for 14t4N, where ¸ is the time-delay parameter and m is the length of the
autoregression. Here f is a smooth unknown function, and Me

t
N is a sequence of

independent random variables with zero mean and unknown constant variance.
The Nychka et al. (1992) approach to estimation of the maximum Lyapunov
exponent involves producing a state-space representation of (4)

X
t
"F(X

t~L
)#E

t
, F : RmPRm,

where X
t
"(x

t
, x

t~L
,2,x

t~mL`L
)@, F(X

t~L
)" ( f (x

t~L
,2,x

t~mL
),x

t~L
,2,

x
t~mL`L

)@, and E
t
"(e

t
, 0,2,0)@, and using a Jacobian-based method to estimate

j through the intermediate step of estimating the individual Jacobian matrices

J
t
"

LF(X
t
)

LX@
.

After using several nonparametric methods, McCa!rey et al. (1992) recom-
mend using either thin plate splines or neural nets to estimate J

t
. Estimation

based on neural nets involves the use of a neural net with q units in the hidden
layer

f (X
t~L

, h)"b
0
#

q
+
j/1

b
j
tAc0j#

m
+
i/1

c
ij
x
t~iLB,

where t is a known (hidden) nonlinear &activation function' [usually the logistic
distribution function t(u)"1/(1#exp(!u))]. The parameter vector h is then
"t to the data by nonlinear least squares. That is, one computes the estimate
hK to minimize the sum of squares S(h)"+N

t/1
[x

t
!f (X

t~1
, h)]2, and uses

FK (X
t
)"( f (x

t~L
,2,x

t~mL
, hK ),x

t~L
,2,x

t~mL`L
)@ to approximate F(X

t
).

As appropriate values of ¸, m, and q, are unknown, Nychka et al. (1992)
recommend selecting that value of the triple (¸,m, q) that minimizes the
Bayesian Information Criterion (BIC) * see Schwartz (1978). As shown by
Gallant and White (1992), we can use JK

t
"RFK (X

t
)/RX@ as a nonparametric

estimator of J
t
when (¸, m, q) are selected to minimize BIC. The estimate of the

dominant Lyapunov exponent then is

jK "
1

2N
log Dv(

1
(N)D,

where v(
1
(N) is the largest eigenvalue of the matrix ¹K @

N
¹K

N
and where

¹K
N
"JK

N
JK
N~1

,2, JK
1
.

Another very promising approach to the estimation of Lyapunov exponents
(that is similar in some respects to the Nychka et al., 1992, approach) has also
been recently proposed by Gencay and Dechert (1992). This involves estimating
all Lyapunov exponents of an unknown dynamical system. The estimation is
carried out, as in Nychka et al. (1992), by a multivariate feedforward network
estimation technique * see Gencay and Dechert (1992) for more details.
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4.5. The White test

In White's (1989) test, the time series is "tted by a single hidden-layer
feed-forward neural network, which is used to determine whether any non-
linear structure remains in the residuals of an autoregressive (AR) process
"tted to the same time series. The null hypothesis for the test is &linearity
in the mean' relative to an information set. A process that is linear in the
mean has a conditional mean function that is a linear function of the elements
of the information set, which usually contains lagged observations on the
process.7

The rationale for White's test can be summarized as follows: under the
null hypothesis of linearity in the mean, the residuals obtained by applying
a linear "lter to the process should not be correlated with any measurable
function of the history of the process. White's test uses a "tted neural net to
produce the measurable function of the process's history and an AR process as
the linear "lter. White's method then tests the hypothesis that the "tted function
does not correlate with the residuals of the AR process. The resulting test
statistic has an asymptotic s2 distribution under the null of linearity in the
mean.8

4.6. The Kaplan test

Kaplan (1994) used the fact that solution paths in phase space reveal deter-
ministic structure that is not evident in a plot of x

t
versus t, to produce a test

statistic which has a strictly positive lower bound for a stochastic process, but
not for a deterministic solution path. By computing the test statistic from an
adequately large number of linear processes that plausibly might have produced
the data, the approach can be used to test for linearity against the alternative of
noisy nonlinear dynamics. The procedure involves producing linear stochastic
process surrogates for the data and determining whether the surrogates or
a noisy continuous nonlinear dynamical solution path better describe the data.
Linearity is rejected, if the value of the test statistic from the surrogates is
never small enough relative to the value of the statistic computed from the data
* see Kaplan (1994) or Barnett et al. (1997) for more details about this
procedure.

7For a formal de"nition of linearity in the mean, see Lee et al. (1993, Section 1). Note that
a process that is not linear in the mean is said to exhibit &neglected nonlinearity'. Also, a process that
is linear is also linear in the mean, but the converse need not be true.

8See Lee et al. (1993, Section 2) for a presentation of the test statistic's formula and computation
method.
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5. Evidence on nonlinearity and chaos

A number of researchers have recently focused on testing for nonlinearity in
general and chaos in particular in macroeconomic time series. There are many
reasons for this interest. Chaos, for example, represents a radical change of
perspective on business cycles. Business cycles receive an endogenous explanation
and are traced back to the strong nonlinear deterministic structure that can
pervade the economic system. This is di!erent from the (currently dominant)
exogenous approach to economic #uctuations, based on the assumption that
economic equilibria are determinate and intrinsically stable, so that in the absence
of continuing exogenous shocks the economy tends towards a steady state, but
because of stochastic shocks a stationary pattern of #uctuations is observed.9

There is a broad consensus of support for the proposition that the (macroeco-
nomic) data generating processes are characterized by a pattern of nonlinear
dependence, but there is no consensus at all on whether there is chaos in
macroeconomic time series. For example, Brock and Sayers (1988), Frank and
Stengos (1988), and Frank et al. (1988) "nd no evidence of chaos in U.S.,
Canadian, and international, respectively, macroeconomic time series. On the
other hand, Barnett and Chen (1988), claimed successful detection of chaos in
the (demand-side) U.S. Divisia monetary aggregates. Their conclusion was
further con"rmed by DeCoster and Mitchell (1991,1994). This published claim
of successful detection of chaos has generated considerable controversy, as in
Ramsey et al. (1990) and Ramsey and Rothman (1994), who raised questions
regarding virtually all published tests of chaos. Further results relevant to this
controversy have recently been provided by Serletis (1995).

Although the analysis of macroeconomic time series has not yet led to
particularly encouraging results (mainly due to the small samples and high noise
levels for most macroeconomic series), as can be seen from Table 1, there is also
a substantial literature testing for nonlinear dynamics on "nancial data.10 This
literature has led to results which are as a whole more interesting and more
reliable than those of macroeconomic series, probably due to the much larger
number of data available and their superior quality (measurement in most cases
is more precise, at least when we do not have to make recourse to broad
aggregation). As regards the main conclusions of this literature, there is clear
evidence of nonlinear dependence and some evidence of chaos.

9Chaos could also help unify di!erent approaches to structural macroeconomics. As Grandmont
(1985) has shown, for di!erent parameter values even the most classical of economic models can
produce stable solutions (characterizing classical economics) or more complex solutions, such as
cycles or even chaos (characterizing much of Keynesian economics)

10For other unpublished work on testing nonlinearity and chaos on "nancial data, see
Abhyankar et al. (1997, Table 1).
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For example, Scheinkman and LeBaron (1989) studied United States weekly
returns on the Center for Research in Security Prices (CRSP) value-weighted
index, employing the BDS statistic, and found rather strong evidence of non-
linearity and some evidence of chaos.11 Some very similar results have been
obtained by Frank and Stengos (1989), investigating daily prices (from the
mid-1970s to the mid-1980s) for gold and silver, using the correlation dimension
and the Kolmogorov entropy. Their estimate of the correlation dimension was
between 6 and 7 for the original series and much greater and non-converging for
the reshu%ed data.

More recently, Serletis and Gogas (1997) test for chaos in seven East Euro-
pean black market exchange rates, using the Koedijk and Kool (1992) monthly
data (from January 1955 through May 1990). In doing so, they use three
inference methods, the BDS test, the NEGM test, as well as the Lyapunov
exponent estimator of Gencay and Dechert (1992). They "nd some consistency
in inference across methods, and conclude, based on the NEGM test, that there
is evidence consistent with a chaotic nonlinear generation process in two out of
the seven series* the Russian ruble and East German mark. Altogether, these
and similar results seem to suggest that "nancial series provide a more promis-
ing "eld of research for the methods in question.

A notable feature of the literature just summarized is that most researchers, in
order to "nd su$cient observations to implement the tests, use data periods
measured in years. The longer the data period, however, the less plausible is the
assumption that the underlying data generation process has remained station-
ary, thereby making the results di$cult to interpret. In fact, di!erent conclusions
have been reached by researchers using high-frequency data over short periods.
For example, Abhyankar et al. (1995) examine the behavior of the U.K. Finan-
cial Times Stock Exchange 100 (FTSE 100) index, over the "rst six months of
1993 (using 1-, 5-, 15-, 30-, and 60-min returns). Using the Hinich (1982)
bispectral linearity test, the BDS test, and the NEGM test, they "nd evidence of
nonlinearity, but no evidence of chaos.

More recently, Abhyankar et al. (1997) test for nonlinear dependence and
chaos in real-time returns on the world's four most important stock-market
indices * the FTSE 100, the Standard & Poor 500 (S&P 500) index, the

11 In order to verify the presence of a nonlinear structure in the data, they also suggested
employing the so-called &shu%ing diagnostic'. This procedure involves studying the residuals
obtained by adapting an autoregressive model to a series and then reshu%ing these residuals. If the
residuals are totally random (i.e., if the series under scrutiny is not characterized by chaos), the
dimension of the residuals and that of the shu%ed residuals should be approximately equal. On
the contrary, if the residuals are chaotic and have some structure, then the reshu%ing must reduce
or eliminate the structure and consequently increase the correlation dimension. The correlation
dimension of their reshu%ed residuals always appeared to be much greater than that of the original
residuals, which was interpreted as being consistent with chaos.
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Deutscher Aktienindex (DAX), and the Nikkei 225 Stock Average. Using the
BDS and the NEGM tests, and 15-s, 1-min and 5-min returns (from September
1 to November 30, 1991), they reject the hypothesis of independence in favor of
a nonlinear structure for all data series, but "nd no evidence of low-dimensional
chaotic processes.

Of course, there is other work, using high-frequency data over short periods,
that "nds order in the apparent chaos of "nancial markets. For example,
Ghashghaie et al. (1996) analyze all worldwide 1,472,241 bid-ask quotes on U.S.
dollar}German mark exchange rates between October 1, 1992 and September
30, 1993. They apply physical principles and provide a mathematical explana-
tion of how one trading pattern led into and then in#uenced another. As the
authors conclude, `2 we have reason to believe that the qualitative picture of
turbulence that has developed during the past 70 yrs will help our understanding
of the apparently remote "eld of "nancial marketsa.

6. Controversies

Clearly, there is little agreement about the existence of chaos or even of
nonlinearity in (economic and) "nancial data, and some economists continue to
insist that linearity remains a good assumption for such data, despite the fact
that theory provides very little support for that assumption. It should be noted,
however, that the available tests search for evidence of nonlinearity or chaos in
data without restricting the boundary of the system that could have produced
that nonlinearity or chaos. Hence these tests should reject linearity, even if the
structure of the economy is linear, but the economy is subject to shocks from
a surrounding nonlinear or chaotic physical environment, as through nonlinear
climatological or weather dynamics. Under such circumstances, linearity would
seem an unlikely inference.12

Since the available tests are not structural and hence have no ability to
identify the source of detected chaos, the alternative hypothesis of the available
tests is that no natural deterministic explanation exists for the observed eco-
nomic #uctuations anywhere in the universe. In other words, the alternative
hypothesis is that economic #uctuations are produced by supernatural shocks
or by inherent randomness in the sense of quantum physics. Considering the
implausibility of the alternative hypothesis, one would think that "ndings of
chaos in such nonparametric tests would produce little controversy, while any
claims to the contrary would be subjected to careful examination. Yet, in fact the
opposite seems to be the case.

12 In other words, not only is there no reason in economic theory to expect linearity within the
structure of the economy, but there is even less reason to expect to "nd linearity in nature, which
produces shocks to the system.
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We argued earlier that the controversies might stem from the high noise level
that exists in most aggregated economic time series and the relatively low
sample sizes that are available with economic data. However, it also appears
that the controversies are produced by the nature of the tests themselves, rather
than by the nature of the hypothesis, since linearity is a very strong null
hypothesis, and hence should be easy to reject with any test and any economic
or "nancial time series on which an adequate sample size is available. In
particular, there may be very little robustness of such tests across variations in
sample size, test method, and data aggregation method * see Barnett et al.
(1995) on this issue.

It is also possible that none of the tests for chaos and nonlinear dynamics that
we have discussed completely dominates the others, since some tests may have
higher power against certain alternatives than other tests, without any of the
tests necessarily having higher power against all alternatives. If this is the case,
each of the tests may have its own comparative advantages, and there may even
be a gain from using more than one of the tests in a sequence designed to narrow
down the alternatives.

To explore this possibility, Barnett with the assistance of Jensen designed and
ran a single blind controlled experiment, in which they produced simulated data
from various processes having linear, nonlinear chaotic, or nonlinear noncha-
otic signal. They transmitted each simulated data set by email to experts in
running each of the statistical tests that were entered into the competition. The
emailed data included no identi"cation of the generating process, so those
individuals who ran the tests had no way of knowing the nature of the data
generating process, other than the sample size, and there were two sample sizes:
a &small sample' size of 380 and a &large sample' size of 2000 observations.

In fact "ve generating models were used to produce samples of the small and
large size. The models were a fully deterministic, chaotic Feigenbaum recursion
(Model I), a generalized autoregressive conditional heteroskedasticity
(GARCH) process (Model II), a nonlinear moving average process (Model III),
an autoregressive conditional heteroskedasticity (ARCH) process (Model IV),
and an autoregressive moving average (ARMA) process (Model V). Details of
the parameter settings and noise generation method can be found in Barnett
et al. (1996). The tests entered into this competition were Hinich's bispectrum
test, the BDS test, White's test, Kaplan's test, and the NEGM test of chaos.

The results of the competition are available in Barnett et al. (1997) and are
summarized in Table 2. They provide the most systematic available comparison
of tests of nonlinearity and indeed do suggest di!ering powers of each test
against certain alternative hypotheses. In comparing the results of the tests,
however, one factor seemed to be especially important: subtle di!erences existed
in the de"nition of the null hypothesis, with some of the tests being tests of the
null of linearity, de"ned in three di!erent manners in the derivation of the test's
properties, and one test being a test of the null of chaos. Hence there were four
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Table 2
Results of a single-blind controlled competition among tests for nonlinearity and chaos

Small sample! Large sample

Test Null hypothesis Successes Failures Successes Failures

Hinich Lack of third-order 3 2 3 plus
ambiguous

1 plus
ambiguous

nonlinear dependence in 1 case in 1 case
BDS Linear process 2 Ambiguous 5 0

in 3 cases
NEGM Chaos 5 0 5 0
White Linearity in mean 4 1 4 1
Kaplan Linear process 5 0 5 0

!Source: Barnett et al. (1997, Tables 1}4, 6}7, and 9}10). A test is a success when it accepts the null
hypothesis when it is true and rejects it when it is false.

null hypotheses that had to be considered to be able to compare each test's
power relative to each test's own de"nition of the null.

Since the tests do not all have the same null hypothesis, di!erences among
them are not due solely to di!erences in power against alternatives. Hence one
could consider using some of them sequentially in an attempt to narrow down
the inference on the nature of the process. For example, the Hinich test and the
White test could be used initially to "nd out whether the process lacks third
order nonlinear dependence and is linear in the mean. If either test rejects its
null, one could try to narrow down the nature of the nonlinearity further by
running the NEGM test to see if there is evidence of chaos. Alternatively, if the
Hinich and White tests both lead to acceptance of the null, one could run the
BDS or Kaplan test to see if the process appears to be fully linear. If the data
leads to rejection of full linearity but acceptance of linearity in the mean, then
the data may exhibit stochastic volatility of the ARCH or GARCH type.

In short, the available tests provide useful information, and such comparisons
of other tests could help further to narrow down alternatives. But ultimately we
are left with the problem of isolating the nature of detected nonlinearity or chaos
to be within the structure of the economy. This "nal challenge remains unsolved,
especially in the case of chaos.

7. Conclusion

Recently there has been considerable criticism of the existing research on
chaos, as for example in Granger's (1994) review of Benhabib's (1992) book. The
presence of dynamic noise (i.e., noise added in each iteration step) makes it
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di$cult and perhaps impossible to distinguish between (noisy) high-dimensional
chaos and pure randomness. The estimates of the fractal dimension, the correla-
tion integral, and Lyapunov exponents of an underlying unknown dynamical
system are sensitive to dynamic noise, and the problem grows as the dimension
of the chaos increases. The question of the &impossibility' of distinguishing
between high-dimensional chaos and randomness has recently attracted some
attention, as for example in Radunskaya (1994), Bickel and BuK hlmann (1996),
and Takens (1997). Analogously, Bickel and BuK hlmann (1996) argue that distin-
guishing between linearity and nonlinearity of a stochastic process may become
impossible as the order of the linear "lter increases. In a time series framework, it
is prudent to limit such tests to the use of low-order linear "lters as approxima-
tions to nonlinear processes when testing for general nonlinearity, and tests for
low-dimensional chaos, when chaotic nonlinearity is of interest * see also
Barnett et al. (1997, footnote 11).

However, in the "eld of economics, it is especially unwise to take a strong
opinion (either pro or con) in that area of research. Contrary to popular opinion
within the profession, there have been no published tests of chaos &within the
structure of the economic system', and there is very little chance that any such
tests will be available in this "eld for a very long time. Such tests are simply
beyond the state of the art. Existing tests cannot tell whether the source of
detected chaos comes from within the structure of the economy, or from chaotic
external shocks, as from the weather. Thus, we do not have the slightest idea of
whether or not asset prices exhibit chaotic nonlinear dynamics produced from
the nonlinear structure of the economy (and hence we are not justi"ed in
excluding the possibility). Until the di$cult problems of testing for chaos &within
the structure of the economic system' are solved, the best that we can do is to test
for chaos in economic time series data, without being able to isolate its source.
But even that objective has proven to be di$cult. While there have been many
published tests for chaotic nonlinear dynamics, little agreement exists among
economists about the correct conclusions.
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