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Abstract 

Interest has been growing in testing for nonlinearity or chaos in economic data, but 
much controversy has arisen about the available results. This paper explores the reasons 
for these empirical dilhculties. WC designed and ran a single-blind controlled com~tition 
among five highly regarded tests for nonlinearity or chaos with ten simulated data series. 
The data generating mechanisms include linear processes, chaotic recursions, and non- 
chaotic stochastic processes; and both large and small samples were included in the 
experiment. The data series were produced in a single blind manner by the com~tition 
manager and sent by e-mail, without identifying information, to the experiment partici- 
pants. Each such participant is an acknowledged expert in one of the tests and 
a possible vested interest in producing the best possible results with that one test. The 
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results of this competition provide much surprising information about the power func- 
tions of some of the best regarded tests for nonlinearity or noisy chaos. ‘(’ 1997 Elscvier 
Science S.A. 
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1. Introduction 

In this paper, we reveal the results of a single-blind controlled competition, in 
which we compare the power of five highly regarded tests for nonlinearity or 
chaos against various alternatives. The data used in this competition was 
simulated data, produced from five diterent generating models and two different 
sample sizes with each of those models. Hence there were ten samples involved 
in the complete competition. One model, and hence two of the data sets, was 
purely deterministic (and chaotic). The other four models, and hence eight of the 
data sets, were stochastic processes, in which the randomness was produced by 
Monte Carlo methods. One of the stochastic processes was linear, while the 
other three were nonlinear, but not chaotic. Although the same five generating 
models were used to produce both sample sizes, the participants in the experi- 
ment were not aware of that fact. Hence the participants had no reason to 
believe that fewer than 10 generating models were used to produce the simulated 
data. 

The data were generated at Washington University in St. Louis and sent by 
electronic mail to the participants in the experiment. Those participants were 
provided with no information regarding the nature of the simulated data. Each 
participant used one test to analyze each of the data series. Throughout the 
competition, William Barnett and Mark Jensen at Washington University 
served as the competition managers by generating the data. The competition 
managers were the only participants having any knowledge of the nature of the 
data. They did not reveal the generating models to the other participants until 
the competition was complete and all results from all participants had been 
received. 

Only one of the tests used in this competition (the BDS test) was run at 
Washington University, and that test is one which is available in a widely used 
computer program written by W.D. Dechert. We acquired the computer pro- 
gram from William Brock and report the results acquired with that program. 
The simu!ated data are available to anyone who might wish to replicate the 
reported results with the BDS test. The other five tests are more complicated to 
run and possibly could have been prejudiced in some ways, if the generating 
model were known to the person running the test. Hence each of those tests was 
run by a competition participant who was supplied with no prior information 
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about the generating models. In addition, each of those participants has estab- 
lished expertise in the test that he ran and a possible vested interest in producing 
the best possible results with the particular test that he ran. In three of those 
cases, the participant was among the originators of the test, and in the remaining 
case the participant has produced and used a computer program that is espe- 
cially well suited to conducting that test. 

All five of the tests used in this competition are purported to be useful with 
noisy data of moderate sample size. The two sample sizes used in this competi- 
tion were intended to include a sample of small size relative to the capabilities 
of the tests and a sample of large size. The computational cost of running some 
of these tests with the large sample was very high. With one of the tests, months 
of execution time on a workstation were needed to complete the test with each of 
the five large sample data sets. These computational costs limited to five the 
number of generating models that reasonably could be used to produce the 
simulated data in the competition, at least in the large sample case. 

In recent years there has been growing interest in testing for both chaotic and 
nonchaotic nonlinearity in economic data, but much disagreement and contro- 
versy have arisen about the available results. For example, Barnett and Chen 
(1986, 1988a, b) claimed a successful detection of chaos. That conclusion was 
further confirmed with the same data by DeCoster and Mitchell (1991a, 1994), 
who also contributed relevant theory in DeCoster and Mitchell (1991b, 1992). 
However, the finding was subsequently disputed by Ramsey et al. (1990) and 
Ramsey and Rothman (1994) who also raise questions regarding virtually all of 
the other published tests of chaos. Various replies have been published, includ- 
ing those of Bartlett and Hinich (1992.1993) and that of DeCoster and Mitchell 
(1994). Further results relevant to those controversies recently were provided by 
Serletis (199.5). in short, there ;: little agreement about the existence of chaos or 
even of nonlinearity in economic data, and some economists continue to insist 
that linearity remains a good assumption for all economic time series, despite 
the fact that economic theory provides little support for the assumption of 
linearity. This paper explores the reasons for these empirical difficulties. 

Results may be difficult to find that are consistent across variations in sample 
size. test method, and aggregation. That possibility was the subject of Barnett 
et al. (1995), who used five of the most widely used tests for nonlinearity or chaos 
with various monetary aggregate data series of various samp!e sizes and ac- 
quired results that differed across tests and over sample sizes, as well as over the 
statistical index number formulas used to aggregate over the same component 
data. These conclusions applied to the tests for nonchaotic nonlinearity as well 
as to the tests for chaos. 

It is possible that none of these tests completely dominates the other, since 
some tests may have higher power against certain alternatives than other tests. 
This competition was designed for the purpose of exploring the relative powers 
of the five tests used by Barnett et al. (1995) against various alternatives and 



to investigate the various possible explanations for the existence of so 
much controversy regarding the available tests for chaotic and nonchaotic 
nonlinearity. 

2. Data generation 

The sample sizes generated consisted of a ‘small sample’ of size 380 and 
a ‘large sample’ of size 2000. The observations were produced with each of the 
two sample sizes from each of the following live models. 

Model I is the fully deterministic, chaotic Feigenbaum recursion of the form: 

2’1 = 3.575 -- ,(I - !‘t - *), 

where the initial condition was set it JO = 0.7 

Model II: 
Model II is a GARCH process of the following form: 

J, = ll:“u,. 

where II, is defined by 

il, = I + O.l$ , + 0.8/z, - , , 

wtth ho = 1 and y. = 0. 

Model III is a nonlinear moving average (NLMAf process of the following 
form: 

r’, = u, + 0.8u, - Ill,-- 2. 

Model IV is an ARCH process of the following form: 

!‘, = (1 + o.sJ+- I)‘%,, 

with the value of the initial observation set at y. = 0. 

Model V is an ARMA model of the form: 

y,=0.8y,-1 +0.15.L2 +I(, +0.314,- I, 

with ~~ = 1 and .rl = 0.7. 



With the four stochastic models. the white noise disturbances, u,, are sampled 
independently from a standard normal distribution. Those white noise distur- 
bances were generated using the fast acceptance-region algorithm of Kinderman 
and Ramage (1976). with the initial seed value set by the clock of the computer at 
the time the program was run.’ Of the five generating models, only Model V is 
linear. only Model i is chaotic. and only Model i is noise free. The simulated 
data is available online in the Working Paper Archive maintained at Washing- 
ton University.’ 

in evaluating the results with the tests included in this competition, we need 
to know what hypotheses are satistied by design in each of the five cases 
defined above. The hypotheses that are relevant to the tests used in this 
competition arc: linear process, linear process in the mean rciative to an 
information set. Gaussian process, chaotic, and third order nonlinear depen- 
dent process. Those terms are defined in Section 3.2 below. Model V is the 
only linear process and the only Gaussian process, although models II and 
IV are linear in the mean.3 Only Model I is chaotic. Models IL IV, and V 
are linear in the mean. Models 1 and 111 exhibit third order nonlinear de- 
pendence.’ 

3. Backgroun$ 

We use five inference methods to test for stochastic nonlinearity or determin- 
istic chaos with the simulated noisy data: the Hinicb bispectsum test, the BBS 
test, the Lyapunov exponent estimator of Nychka et al. (1992). White’s test, and 
Kaplan’s test. We chose those tests as a result of their high repute among tests 
for nonlinearity and chaos. 

’ Stricrly spaking. computer gcneratcd noise is deterministic. but is high dimensional. Hence the 
tests or nonlinearity and chaos should bc viewed as tests for tbc existence of a low-dimensional 

oonliwar or chaotic signal helow the high-dimensional chacys. in the language of chaotic dynamics. 
tests tar chaos seek to sepamte intrinsic from extrinsic probahihty, where the distinction is irt terms 

of the dimension of the determinism or each. 

“The location of the simulated data in that archive is ewp-data!951OOOI. A direct link to that 
location in tht archive is provided in paragraph Y at the following web location: http:/:wuecon. 

wual.cdq c barncrt:Papers.htmi. In addition. code l& the competing tests is avaifablc online, and 

links to the location of the code for each test an bc found in that Same paragraph 8 on the web. 

‘Treating prior observations as the information set and conditioning upon that information set. 

each oi those two proccsscs has zero conditional mean. It is also the ciISe that both ofthose models 
arc Gl;uGan in the mean. since their distributions. conditionally upon the past observations, are 
Gaussian. But WC do not include tests for Gaussianity in the mean in this competition. 

’ Models II and IV also would cxhihit third order nonlinear dependence, if the innovations were 
not Gaussiitn. 



3.1. The mts 

In this competition, we use tests derived for use with noisy data. The Hinich 
bispectral test is a test in the frequency domain of flatness of the bispectrum. The 
sampling properties of the test statistic are known. and the approach is based 
upon conventional time series inference methodology. The test was run by 
Hinich in Austin, Texas, without knowledge of the models that generated the 
data. The BDS test is a test for whiteness, which can be used to test for residual 
nonlinear structure, after linear structure has been removed through prior 
prewhitening. The test was run by Mark Jensen at Washington University. 
Although he was aware of the generating models, he used the BDS test program 
that has been supplied widely on floppy disk by the originators of the BDS test 
and was programmed by W.D. Dechert. We acquired the program from William 
Brock. The NEGM (Nychka, Ellner, Gallant, and McCaffrey) test is a non- 
parametric test for positivity of the maximum Lyapunov exponent.5 The 
NEGM test was run by Gallant in North Carolina without knowlcdgc of the 
models that generated the data. White’s test is a test for nonlinearity, and was 
run by Jochen Jungeilges without knowledge of the models that generated the 
data. He used his own program, which implements White’s test. Kaplan’s test 
can be used to test either for nonlinearity or for more focused special cases of 
nonlinearity. In this competition that test was used as a test for general 
nonlinearity. Kaplan’s test was run by Kaplan in Quebec without knowledge of 
the models that generated the data. 

By using conventional stochastic process methods for testing for nonlinear 
dynamics, we largely are limited to tests for general nonlinearity, which is 
necessary but not sufficient for chaos. There are three particularly well known 
tests currently in use for testing for nonlinearity: the BDS (Brock et al. (1996)) 
test, White’s neural network test, and the Hinich bispectrum test.” 

The BDS test provides an important advance in testing for stochastic depend- 
ence, and hence the BDS test is a significant new contribution to the field of 
statistics. But the BDS test does not currently provide a direct test either for 
nonlinearity or for chaos, since the sampling distribution of the test statistic is 
not known, eitherin finite samples or asymptotically, under the null hypothesis 

’ Gencay and Ilechcrt (1992) rcccntly have proposed ;I test that is similar in some rcspccts to the 
NEGM test. As a result of that similarity, we did not helievc that ;I comparison hctwcen those two 
tests was a Rely place to look for a robustness prohlcm. In addition, we believe that a comparison 

among such relntcd tests would require a much larger number of replications than we had ;lvailahle 
with the dota used in the current study. From thisclossof tests. WC the&ore decided to run only the 
NEGM test. 

‘As a result of space constraints. our descriptions of the tests are necessarily hricf. For u more 

detailed discussion of those !csts, SW Barnett ct al. (19960) and Narnctt ct al. (l996b). 



of nonlinearity, linearity, chaos, or the lack of chaos. The asymptotic distribu- 
tion is known under the null of independence. ence the hypotheses of non 
earity and chaos are nested within the altern ve hypothesis, which inclu 
both nonwhite linear and nonwhite nonlinear processes. 

Nevertheless, it is possible to use the BDS test to test any parametric 
stcchastic process against the remaining alternatives, if the paraaetric process 
null has been removed from the data by prefiltering. For example, if all linear 
possibilities have been removed by fitting an ARIMA model, the 
be used to test the residuals for remaining nonlinear dependence. 

Similarly, if all nonchaotic possibilities could be removed by fi 
possible nonchaotic model, the BDS test could be used to test the residuals for 
remaining chaotic dependence. But filtering out all possible nonchaotic possibil- 
ities with certainty seems to be beyond the state of the art. Hence it is not clear 
how the BDS test can be used to produce a convincing inference regarding noisy 
chaos. For a formal definition of noisy chaos, see Nychka et al. (1992). 

Filtering out all linear possibilities with certainty is difficult at best, but 
nevertheless prefiltering by ARlMA fit is often viewed as a reputable means of 
linear prewhitening, and hence we use the BDS test to test for re Nina 
nonlinear dependence in the residuals of an ARIMA process fitted the 
Box-Jenkins approach.7 There have been a number of other recent attempts to 
apply the BDS test to nonlinearity testing of filtered dats. For one sue 
interesting example, see Scheinkman and LeBaron (1989). Despite our reserva- 
tions regarding the usefulness of the BDS test in testing for chaos, we do believe 
that the BDS test produces a viable test of linearity against the omnibus 
alternative of nonlinearity, when the data is prefiltered by ARIMA fit. We use 
the BDS test for that purpose. 

The Hinich bispectrum approach provides a direct test for ao~iinearity as 
weli as a direct test for Gaussianity, since Hinich’s approach produces a test 
statistic having known asymptotic sampling distribution under the null of 
linearity, as well as another test statistic having known asymptotic sampling 
distribution under the null of Gaussianity. However, the alternative hypo 
is not as broad as that for the BDS test, as defined in Brock et al. (1996).” 
the bispectrum test, the alternative hypothesis is all nonlinear processes 
having nonflat bispectrum. However, there are some nonlinear pr 
playing nonflat polyspectra only at the trispectrum or higher order 

‘We used the conditional maximum likelihood routine contained in the RATS computer 
program package. 

“Two widely used implcmentntions of that test exist: Dechert’s program and LcBaron’s ~r~~~r~~rn. 
We used Dechert’s program. Roth programs are available online. and links to them can be found in 
paragraph 8 of the following web page: http:liwuecon.wustl.cdu/ - bnrnett~~u~rs.htm~. 



bispectrum test has zero power against some forms of nonlinearity. In such 
cases, the nonlinearity often can be detected by subsequently running the 
trispectrum test of Dalle Molle and Hinich (1991, 1995) or of Walden and 
Williams (1993). The sample size requirements of the trispectrum test are 
formidable. The BDS test, on the other hand, has high power against a vast class 
of nonlinehr alternatives. 

In the next section, we describe the Hinich bispectrum approach, which is 
related to the Subba Rao and Gabr (1980) approach. It should be observed that 
Hinich (1996) has a related newer test, which is an analog to the bispectrum test, 
but in the rime domain. Although that newer test may have power against 
a broader alternative than the frequency domain bispectrum test, Hinich’s newer 
test is not yet as widely known as his popular bispectrum test. As a result, we 
have not included Hinich’s newer test in this competition. 

White’s test uses neural net methods to test for nonlinearity. A connection 
exists between the White test, which we use as a candidate for a test of 
nonlinearity, and the NEGM test for chaos, since the NEGM test uses a neural 
net as a data model configured as a predictor before testing for chaos with the 
resulting fitted neural net. Since chaos is a stronger hypothesis than nonlin- 
earity. the connection between the two tests could be useful in sequential testing. 
In particular, if nonlinearity is rejected with the White test, then there is 
diminished reason to proceed further with the NEGM test for chaos, since chaos 
is a strictly nested special case of nonlinearity. 

While the BDS, White, and Hinich tests currently are among the best known 
tests available for testing nonlinearity in noisy data, we believe that there 
currently is only one well established candidate for a test for chaotic signal in 
small samples of noisy data. That is the NEGM test.“ We describe the NEGM 
test in a later section below. 

A new test that examines the evidence for the continuity of dynamical maps 
has recently been proposed by Kaplan (1993). At present, Kaplan’s test has not 
been subjected to the extensive Monte Carlo comparisons that are available for 
the NEGM test. The Kaplan test compares a test statistic computed directly 
from the data with the test statistic produced from surrogate data. In our 
application of his approach, the surrogate data are produced from linear 
processes having the same histogram and an almost identical autocorrelation 
function as the actual data. The null hypothesis is linearity of the dynamics 
found in the data. owever, depending on the manner in which the surrogate 
data is produced, the method appears relevant to investigating more sharply 

“7%~ Gencay nntl Dcchcrt (1992) method mentioned above is among the other promising 
possibilities. hut that test as wcli as the others have not hcen suhjectcd to the degree of cxperimcntn- 
tion that currently is avdablc for the NECM test with noisy data. 



focused forms of complex dynamics. We describe the test brie 
below. For more details, see Kaplan (1993). 

Our discussions of each test are rather brief, since those tests are descri 
greater detail in Barnett et al. (1995, 1996a, b). An exceptio 
which is used in this competition in a somewhat different man 
applications. Those differences are described in detail in t 

3.2. Dt$initions 

If (s(t)f- is a zero mean third-order stationary time series, then the mean 
11.~ = E[.u(r)] = 0. the second-order autocovariance ~.~.&i) = E[s(r + m).u(r) 
and the third-order autocovariances czsx(.s, I’) = E[s(t +- r)s(t + s)Y(~)] are in- 
dependent of t.“’ If cs&i) = 0 for all nonzero 111, the series is white noise. 
define a pure (also called ‘strict’ sense) white noise series as a white noise pr 
in which s(u,) . . . . ..Y(H~) are independent random variables for all values of 
II ,. . . . , IZ,~. All pure white noise series are white. All white noise series are not 
pure white noise. However, Gaussian white noise series are necessarily pure 
white noise series. 

In addition to stationarity, whiteness, and pure whiteness. linearity is another 
often assumed property of a time series. The conventional definition of a line 
stochastic process is a linear filter of indcpenderlt and idellticaliy distribute 
inputs. An ARIMA process is a finite-order linear filter, while a first degree 
Volterra expansion (with zero higher degree Volterra kcrnals) is in~nite dimen- 
sional and sparls the space of linear Filters.’ ’ In some def~niti~~~ls of linearity, the 
innovations arc assumed to be white noise martingale dilferences. since the 
linear predictor is the best predictor in that case. owever, we c~~nf~~rrn to t 
more conventional definition requiring independe and identically distribute 
inputs. 

“‘Set Hinich I1996) for a test of the maintaind hypothesis of third-o&r stationary. 

” In the litertturc on chitos. the search for chaos is in re;liitv a scar& for ‘low’-dimensional chaos, ‘ 
since knowing that data has been produced detcrministically from lti~~l-dir~~nsi~ln~l chaos is not 
useful. Similarly the distinction between a high-order Iincur filter and ;I lI(~nlin~~tr process is of little 
uw, since the ;dGlity to scp;nxtc the two can disappear in the limit as ;i linear moving average filter 
becomes inlinite order. Hence in reality. any test of the null of lincxrit~ must in reality bc inter~ret~~~ 

to be :I test of ‘low’-order linear tilter. In this competition. the simulated linear data is ~r~~iu~ 
a low-order ARM.4 process. In later research. it cnuld bc interesting to genaxte data 

incrcasin~:l~ iu~it-or2ar MA prcxxsscs to find out how high the order ofan MA prwx must ~~~~~ .., 
before some of the tats of linearity would reject linearity. ffowever. it #ould be dil~i~nlt to arpuc in 
practice that such B rejection would bc al ‘error’, since few statisticians would prefer to ~~t~rn~t~ 
a high-order MA nroccss to ;I sparsely parameterizcd nonlinear prtxxs cspcially if the order ~~1~ 
‘true’ MA procc3s th;ti gencratcd the data cxccais the sample size. See ickel and ~~hlt~~nr~ 4 1~~~). 



A related property of a process is ‘linearity in the mean’ relative to an 
information set. Such a process has a conditional mean function that is a linear 
funclion of the elements of the information set. For a formal definition of 
linearity in the mean, see Lee et al. (1993. Section 1). The information set usually 
contains lagged observations on the process. A process that is not linear in the 
mean is said to exhibit ‘neglected nonlinearity’. A process that is linear is also 
linear in the mean, but the converse need not be true. Similarly a process is 
Gaussian in the mean relative to an information set, if the distribution cf the 
process conditionally upon the information set is a Gaussian process. 

A further special case of nonlinearity is third-order nonlinear dependence, 
which we shall define as a frequency domain concept. We define a process to 
exhibit third-order nonlinear dependence, if the skewness function in the fre- 
quency domain is not flat as a function of frequency pairs. A formal definition of 
the skewness function is provided below in Eq. (4.2). This form of nonlinearity is 
called third-order. since the skewness function is a normalization of the Fourier 
transform of the third-order autocovariances. That Fourier transform is called 
the hi<,-ectrum, and is the third-order polyspectrum.” 

Many researchers implicitly assume the errors of their models are Gaussian, 
and test for pure white noise by using the covariance function c.~.&)I), but ignore 
the information regarding possible nonlinear relationships which arc found in 
the third-order moments c~~.~.~(.s, I’). The above discussion suggests the need to 
test for both nonlinearity and Gaussianity, in additicrn to testing in the usual 
manners for whiteness. In addition, unconditional properties riced to be distin- 
guished from those that arc ‘in the mean’ and those that are third order. 

4. The Hinich bis 

Iiinich (1982) argues that the bispectrum in the frequency domain is easier to 
interpret than the multiplicity of third-order moments (c.~.&, s): s Q I’, 
I’= 0.1,2, . . . ,f in the time domain. For frequencies ,1; and ,1; in the principal 
domain 

s-2 = I( .1;..12): 0 c.1; < OS,./2 <.f;. 21; +.f c i 1. 

the bispectrum. B,,,( .1;,./& is defined by 

B,,,( ,f,..li) = i i csss(r, s)exp[ - i2n(,1;r +.Irs)]. 
,=-- , s= , 

(4.1) 

I2 As delined in the &nominator nf Eq. t&Z). the normalization is in tcrnts or ;I noncnus;ll 
prewhitcning. I lcncc stochastic proccsscs arc compared for third-order nonlinearity akcr normaliz- 
ation by a lincnr adjustmail that Ilattens the power spectrum (the second-order polyspcctruml 



The bispectrum is the double Fourier transformation of the third-order 
moments function and is the third-order polys~cctrum. The regular power 
spectrum is the second-order polyspectrum and is a function of only one 
frequency. 

The skewness function f ( ,f;..Iz) is defined in terms of the bispectrum as 
follows: 

mftJ2) = IR.s,,(f;,J;)/“/S,,(.ft) ss.s(.fz) &.s(fl +.a. 
where S,,( ,f’) is the (ordinary power) spectrum of s(t) at frequency I: Since t 
bispectrum is complex valued, the absolute value (vertical) lines in Eq. (4.2) 
designate modulus. Rrillinger (1965) proves that the skewness function I‘( ,f, 
is constant over all frequencies ( ,{,,.fZ)~ Q if {s(t); is linear; while r( J;, .f;) is 
at zero over all frequencies if .(x(t)] is Gaussian. Linearity and Gaussianity can 
be tested using a sample estimator of the skewness function f( .f;,fz). 
observe that those flatness conditions are necessary but not sufficient for gen 
linearity and Gaussianity, respectively. On the other hand, flatness of 
skewness function is necessary and sufficient for third-order nonlinear de 
ence. as defined in Section 3.2. 

The Hinich (1982) ‘linearity test’ tests the null hypothesis that the skew- 
ness function is flat, and hence is a test of lack of third-order nonlinear 
dependence. For details of the test. see inich (1982). ~linich and Patterson 
(1985,1989), and Ashley et al. (1986). In particular, the final transformed test 
statistic is distributed as a standard normal random variate under the null 
hypotheses of flat skewness function. When the null is Gaussianity, a related test 
statistic is denoted by H and is a standard normal random variate under the 
null.‘” When the null is absence of third-order nonlinear dependence, the test 
statistic is denoted by Z. In both cases. the distribution of the standard normal is 
used to produce a one sided test, in which the null is rejected if the test statistic is 
large. ’ a 

‘“Strictly spcoking the test can reject Guussianity, hut cannot acccp~ it. since violation of 
Gaussianity may WI appeur at the hispectrum level and may appear only at the level of higher-order 
polyspectra. 

‘JAsblev et al. (1986, p. 174) presented an equivalence theorem which proves that the Ninich 
hispectral linearity test statistic is invariant to linear filtering of the data, when the parameters of the 

linear litter sre known. An important implication of the theorem is that if s(r) is found to be 
nonlinear, then the residuals of a linear model of the form F(I) =,/‘(r(r)) will also be nonlinear. since 
the nonlinearity in S(I) will pass through any linear filter,,\. The above paper further reported tables 
on the power of the tlinicb linearity test for detecting violations of the linearity and Ciaussianity 
hypotheses for u number of sample sizes. The table indicates substantial power for both tests. even 

when the sample size is as small as 2%. 



The details of the RDS test (Rrock et al.. 1996) are well known in the literature. 
The test uses the correlation function (also called the correlation integral) as the 
test statistic. This choice is in contrast to the Grassberger--Procaccia test, which 
uses the correlation dimension. The correlation function is needed in deriving 
the correlation dimension. but the two are not the same.‘” 

While correlation dimension is potentially very useful in testing for chaos. the 
sampling properties of the Grassberger--Procaccia correlation dimension are 
anknown. The BDS test uses the correlation function (not the correlation 
dimension) as the test statistic. The asymptotic distribution of the correlation 
function is known under the null hypothesis of pure whiteness. As a result, the 
BDS test can be used to produce a formal statistical test of whiteness against 
general dependence. owever. the sampling distribution of the RDS test statistic 
is not known under the nulls ofchaos. nonlinearity. or linearity We are left with 
the uncomfortable choice between the correlation dimension, wtL*:h produces 
a direct test for chaos. but only when no stochastic shocks exist \:ithin the 
model. or the correlation function, which does have known sampling pr >pcrties 
when there are stochastic shocks within the model, but only under a different 
null hypothesis (i.e., pure whiteness). 

Nevertheless. the BDS test can be used to produce indirect evidence about 
nonlinearity. In particular. an ARIMA process can be fitted to the data in an 
attempt to remove linear structure. The BDS test then can be used to determine 
whether there is evidence of remaining dependence in the data. If all linear 
deperidence has already been removed, then any remaining dependence must be 
nonlinear. “’ We use the Box-Jenkins approach to fit an ARIMA (Lj, k) model to 

“The corrclntion dimension’s wiut’ has ;I direct cnnncction with the Hausdorlfdimcnsion of the 
atkxkx. Hcncc the correlation dimension. in principle. has :I direct connection with chaos. In 
parficular. low fractional H~itlsdorRdimcnsion is the result sought by those looking for useful chaos. 

The dotcrminism in high-dimcnsionai chxx wnnot bc modclcd without large numhcrs of variahks. 
and in the limit, inlinitc-dimensional chaos is noise. 

“’ in principle. them arc sonic ditlicultics wi:h this ;tpproach. The I3ox Jenkins cstimatc of the 

AKIMA process may not succeed in rcmovlng all forms of linear dcpcndencc. In addition. the 
sampling distribution of the BDS test statistic is affcctcd hy the nonzcro variances of the coetiicicnt 
estimators in the AKIMA process. Although c‘xact analytical results we not avaihthlc on the elkts 
of these prohlcms on the test statistic. 3 Iurge and growing body of Monte Carlo results has cast 
much light on implications of thcsc mattcrs for Ihe use of the test. In particular. the power orthc test 

depends t~pon the settins of the embedding dimension. the metric hound. nnd the time delay within 
the test statistic. and the Monte Carlo results provide useful information on the settings that 
maxim& power. See, c.p.. Brock ct al. (1‘9911 and Hsieh and LeNaron (1991). In addition. Hsieh and 
Let&won (1991) have found that the elkct of the nonxro varhnccs of the coellicicnt estimators in the 
AKlMA process is small in models for low order ARMA’s for samples of 500 or more with modest 

settings of the cmkddinp dimension. Furthcrmorc. by bootstrapping 131X5 under the null, thcsc 



in setti 
S test st~itistic asym 

of pure ~hitet~ess. 
est statistic is large. y con~~e~tio~ with ;I % statistic, ‘large’ 
an 2 or perhaps 3.‘” 
wo free variables, the embedding djrne~s~o~ m and the metric 

bound i:. which can be set at various levels to check for robustn 
choose the values of ;: and IH can be a comp~jc~Ition in using t 
adopt the approach used by advocates of the test. In p~lrtic~l~lr, 
the standard deviation of the data.“’ At our chosen setting for C. we produce 

S test statistic for all settings of embedding dimension from 2 to 8, in 
hope that the same inference will be produced at each of those embedding 
dimensions. ~~)rt~~i~~lte~y in our large sample cases, the inference was robust to 
the setting ofln within the 3 to 8 range.” 

(footnote IO conlinucdf. 
problems can bc mitigated somcwhal. This bootstrapping Gin he done using IxBaron’s SOflWilr~ 

written in C-source code that wilt run in a UNIX cavironment. That code is avaifabfe at the web 
location probided in footnote 8 ahovc. One further can do convergence eqxrimcnts of bootstrap for 
BDS along the fines of LcRaron’s experiments on page I753 in Brock et al. (fY92). 

” I lerc i is the or&r of the AR (i) autoregrcssivu part. k is the order of the MA(k) moving average 
part, and ,I is the number of timcs that the data is tfifferenced bebre fitting the moving average. 

“Strictly speaking. the dclinition of ‘large’ should depend upon sample size. with rejection 
requiring higher vafucs of the test statistic for Iarger sample sizes. In our experiments. clear rejections 
occurred with extrcmcfy high values of the test statistic. and clear acceptances occurred with very 
low vafucs of the test statistic. As a result, wc viewed conclusions with the BDS test IO be amhiguaus. 
when the test statistic was close to tfle conventional critical values of the test, or when tAe inference 

dcpcndcd upon embedding dimension. 

“‘In .tddition. tflcrc is a fret parameter in the correlation function, and !hat free parameter mtlst L 
bc set at one fisetf vah~c. That paramctcr is ttrc time delay used in embedding the univariate 
ohscrvations into a multivariate phase space. In this case a linitc choice fclr that parameter must fx 
made in tither tho Grassfxxger ~f’r<>caccia test or the ND5 test. In the BDS test. the convention is to 

set the time delay e<fuaf to one. so that tn succcssivc observations are stacked, without skimping any 
intervening ohscrvations. in producing the emheddcd phase space vectors. 

“‘Through Monte Carlo studies. Hsich and LcRaron (1988) found that the power and size of the 
test is maximized when d: is selected IO be bctwcen I/^3 and I ..5 times our choice. I lence our choice is 
in the center of that region. WC further investigated variations of the setting throughout that range. 
Our inferences were nut changed at either the upper or lower bound of the region. Lower settings for 

I:, including the square of tfic standard deviation, produced results cvidrncing dl~minati~~n ofthc test 
by noise in the data. III particular. the test statistic &came a strong Function of em 

dimension and varied fxtwecn very positive and very negative values as 01 was inercascd at fixed c. 

2’ Hsich and LcRaron (1991) flave found that type f error is large with the BDS test. when the 
sample size is no* acfequately large. since the nonzero standard error of the ARIMA coeficient 
estimators biases the BDS test. By their criterion, our small sample size of 3X0 observations is barely 



A method of testing for chaos is to compute the dominant Lyapunov expo- 
nent. Testing for a positive value for that exponent for a bounded system is 
equivalent to testing for the sensitivity to initial conditions property of chaos. 

ence, testing for positivity of that exponent produces a direct test for chaos. 
timating that exponent fall into two classes: the Jacobian 
!lner et al. (1991)) and the direct method. In the past, such 

pphed deterministically. In physics experiments with very 
large sample sizes and no stochastic shocks internal to the system, noise in the 
data could be tittered out (see, e.g., Smith (1992)) and the Lyapunov exponent 
computed by one of the two approaches. Recently an estimator became avail- 
able which is ~~pp~icab~e with more modest sample sizes and with systems 
c~~~ta~~inE internal stochastic shocks. The approach is presented and explore 
with simn~ated data and biological data by Nychka et al. (1992). The ~ipproac 
proceeds as follows. 

Consider the nonline~~r autoregressive model of the form 

for 1 d t d N. where 1, is the time delay parameter, ri is the length of the 
autoregression. and (s,) are real valued.” Here ,I’ is a smooth. unknown 
function, and (e,: is a sequence of independent random variables with zero mean 
and unkno~v~ constant variance. While (6.1) itself is an unlikely data generating 
model. Takens’ theorem ( uelle, 1985) for dynamical systems 
stales that in this class of nonlinear autoregressions there exists at least one 
model that can track any deterministic chaotic solution on an attractor with 

(footnote 21 continued). 
adequate. Hence. to avoid rcjccting B true null hypothesis. wc should refrain from rc.jecting the null 

unless the test statistic is very large. As mentioned above. our cxperimcnt produced unusually 
extrcmc values of the test statistic in many casts. As R result, our clear rejections corresponded to 
extremely low tail :trcas (P-vatucs). and our clear acccptonccs corresponded to extremely high tail 

areas. We viewed us ambiguous the casts that did not correspond with such dccisivc tail arcas. 
Rrock. Hsieh. and LeBaron have found that the asymptotic properties ofthc RDS test deteriorate. 

when the embedding dimension increases to more than 3 at sample sizes comparnhle to ottrs. 
Although we report results with embedding dimensions varying from 2 ttr 8, the results with 
crn~ddir?~ dimensions of 2 or 3 should he given the most serious consideration. Rut again, we 
acquired infercnces that were robust to variation ~)fcn~~ddin~ dimension from 2 to 8 in the large 

srample cases. so that the issue rcparding dctcriomting asymptotic propcrtics with large emhcdding 
di~lens~o~s did not arise. 

“The proccdurc that follows is phase space reconstruction in lag coordinates based upon Takens 
Theorem. This pr(~c~iurc is standard in this literature. Regarding its USC and implications. see 
~r~~~~rn~~~d et al. I1992). 



finite dimension, and any such m 
compute the Liapunov exponent oft 
The proof of this Takens represe 
found in Casdagli et c !. ( 199 1). Ny 
either a spline or a neural net. Th 
the fitted function,.fi using the J 

ased upon the findings of Nychka, Ellner, Gallant and 
), Gallant used the neu 
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approach to nonlinear regressio 
num~r of units in the hidden layer of 
coefficient f the neural net, there ar 
in the NE approach: y, L. and d. 

As appropriate values of (1, L, and y are 
nlmend selecting t 
IC criterion (Schwarz, 1978) jointly in 

0 is the vector of other par~~meters of the titted neur 
version of the NEGM approach, the cl 
validation) criterion is ~linimjzed. In this 
than the BlC criterion, is used. The estimate of t 
exponent then is compute from gradient method alo 
For further details of the implimel~tation of the test u 

arnett et al. (1995 1996a b) ” 1. 
st~~~dard error of the Lyapunov explement esti 
display plots that are infornlative about precise 

illustrates the sensitivity ofthe estimate of i to variations in the ini 
used in estimating the toe w-al net and to va 
We shall refer to that p sensitivity plot’. 
illustrates the effect on th jations in (L, cl) an 



the precision of the point estimate of (L, rl). We find the NEGM sensitivity plot 
to be especially useful, and hence we supply only that plot, both for our large 
and small samples, in the cases in which evidence of chaos was found with the 
NEGM test. That plot is an indication of the sensitivity of ?. to variations in 
0 about the least squares estimate at various settings of (L, tl). 

The procedure for producing the NEGM sensitivity plot is the following. For 
each setting of (L, d), where L = 1,2, . . . ,5 and d = 1,2, . . . ,6, the value, of (1 that 
minimizes GCV conditionally upon (L, d) is found. Let cj(L, d) be that value. The 
estimation of 0 proccedcd by first narrowing down the estimates of that vector 
to 20 possibilities, through a nested optimization procedure. The one among the 
20 that minimized least squares then was selected as the optimum estimate. In 
the NEGM sensitivity plot, box plots are displayed indicating the range of 
values of the estimated dominant Lyapunov exponent at each setting of (L, d). 
with y set at Lj(L, d). The range within the box was acquired at each such setting 
of (L, (1, 4) by varying II over the 20 possibilities for 0 attained through the nested 
iteration.‘” 

The scatter within any such box illustrates the numerical stability of recovcr- 
ing a similar estimate of i., when only the starting values of 0 are varied. Moving 
between boxes indicates the sensitivity of the estimate of E. to variations in (L, tl). 

In White’s test, the time series is fitted by a single hidden-layer feed-forward 
neural network, which is used to determine whether any nonlinear structure 
remains in the residuals of an AR process fitted to the same time series. Recent 
simulation studies have produced evidence that White’s test against nonlin- 
earity, based upon that model of the process, has power against a variety of 
nonlinear processes. The null hypothesis for the test is linearity in the mean 
(relative to the information set of lagged observations). All results using White’s 
test were obtained using an implementation of White’s test, pr~~~rilrllmcd and 
applied in this competition by Jochen Junpcilgcs. 

The test procedure applied is essentially due to Halbert White, who proposed 
his neural network test in White (1989a. b). Etl’orts to study the operational 

points withilt the set..Th; shaded box-indicatcs the intcrqtkrtilc rangu(lQR~nFthc data. Tk lower 
limit of that shaded box is the 25th pcrccntilc. and the upper limit is the 75th pxcntile. The (white) 
horkomal line within the box is located at the median. The whiskers that extend l’rrom the top and 
bottom of the shaded box nre the dotted lines capped hy hrxkcrs at each end. The whiskers extend 
to either the cxtrcme valucsof the data or to 1.5 x IQR from thccentcr of the shaded box. whichcvcc 
is Icss. The hcrrilont;ti Wtck) linel; mark deviant points thint Ml outside the limits of the whiskers. 



characteristics of this test against nonlinearity in the mean were un Y 
Lee et al. (1393) and Jungeilges (1996). These studies demonstrate that the test 
has appropriate size as well as power against various ty s of nonlinearity in the 
mean. Details of the algorithm used are given in Jungeilges (1996). 

The rationale for White’s test can be summarized as follows: under 
hypothesis of linearity in the mean, the residuals obtained by applying a lin 
filter to the process should not be correlated with any measurable function of 
history of the process. White’s test uses a fitted neural net to produce 
measurable function of the process’s history and an AR process as the lin 
filter. White’s method then tests the hypothesis that the fitted function does not 
correlate with the residuals of the AR process. The resulting test st 
asymptotic chi squared distribution under the null of linearity in t 
Lee et al. (1993, Section 2) for a presentation of the test statistic’s 
computation method. 

The formal test is conditional upon the choice of a direction, and in White’s 
method the direction in which the test looks for nonlinearity is chosen at 

dom.‘7 See, e.g., White (1989a) and Kuan and White (1991) for details. In 
bite (Y989b), it is pointed out that under certain assumptions the parameters 
the network do not have to be estimated. White argues that a procedure 

inv~tving regression and the extraction of principal components leads to an 
~lsyrnptotic~~~~y equivalent test procedure. See White (1989b), Lee et al. (1993), 
and Jungeilges (1993). 

The order of the AR process is chosen by a conventional selection criterion. 
For each series in this ‘tion, Jungeitges chose the order which minimized 
the Schwarzian &yes rmation Criterion (RIG). This criterion provid 
~lsycn~t~~t~~ally unbiase er estimates. In J es (1996) it is demonstrat 

e order of the AR process vi BIG criterion may improve 
hitc’s test against nonlinear tic data generative process 

rehuive to the power of the version of the test involving alternative select~o~l 
criteria. 

. 1 n test 

We begin our discussion of the Kaplan test by reviewing its origins in the 
chaos hteraturc, ~~lt~~~~l~g~ the test is used in this com~tition as a test of linear 
stochastic process against general non~ine~lr~ty, whether or not noisy or chaotic. 
In the case of chaos, a time series ~1st of the output of a chaotic syste 

cult to distinguish visually from a stochastic process. 



known that plots of the solution paths in phase space (x, + , plotted against 
s, and lagged values of x,) often reveal deterministic structure that was not 
evident in a plot of s, versus r. A test based upon continuity in phase space has 
been proposed by Daniel Kaplan. For a detailed discussion of the implementa- 
tion used in this competition, see Barnett et al. ( 1996).2n 

Briefly he has used the fact that deterministic solution paths, unlike stochastic 
processes, have the following property: points that are ;learby are also nearby 
under their image in phase space. 29 Using this fact, he has produced a test 
statistic, which has a strictly positive lower bound for a stochastic process, but 
not for a deterministic solution path.3” By computing the test statistic from an 
adequately large number of linear processes that plausibly might have produced 
the data, the approach can be used to test for linearity against the alternative ol” 
noisy nonlinear dynamics. The procedure involves producing linear stochastic 
process surrogates for the data and determining whether the surrogates or 
a noisy continuous nonlinear dynamical solution path better describe the data. 
Liricarity is rejected, if the value of the test statistic from the surrogates is never 
small enough relative to the value of the statistic computed from the data. 

More formally stated, the procedure is the following. If we define the vectorx, 
= (s,. A-, -r, St Zr, . . . ,.Y, - ,,,t- , ,J embedded in In-dimensional ‘phase space’. then 
there is a recursive function giving s,, C =, f(x,) with the fixed positive integer 
time delay r’. Here s, + t is called the ‘image’ of the point .u, in phase space. For 
perfectly deterministic @ems with a continuousSL nearby points in nt-dimen- 
sional phase space will have nearby images. For a stochastic system, on the 
other hand, nearby points in phase space may have very different images. 

In terms of the delta-epsilon proofs of continuity familiar from calculus, 
distance in phase space plays the role of S, and distance of the images plays the 
role of i:. For a give], choice of embedding dimension 111, one calculates 
fSi.j = IXi - ~,jl and t:ij = Ixi+ r - Xj +,I, for all pairs of time subscripts (iJ). The 
average of the values of I:ij over those (i,,j) satisfying 6, < I’ is defined to be E(r). 
For a perfectly deterministic system with continuous 1; one expects to have 
E(r) -+ 0 as r + 0. 

Kaplan’s test statistic K is the limit of E(r) as r + 0. For a system that is not 
perfectly deterministic, one way of interpreting the nonzero value of K is as 
a goodness of fit measure from fitting a continuous model of some fixed order to 

“The implementation of his test descrihcd and used in Hamett et A. (1005) dill&s somcwhut from 

that used by Kaplan in this competition. 

“‘That is. ifs, and y, arc close to cuch other and their lagged vitlucs ;IlSO arc close to cnch other, 
then .x, , , ilnd x, + 1 &GO arc CIOSC 10 c~lr other. 

“’ Producing results an statistical sipificance requires multiple Monte Carlo triuls with the 
process. 



an infinite amount of data (so that overfitting was not an issue). If this measure 
of fit is smaller for the data than for surrogate data generated from a model that 
satisfies a stated null hypothesis, then there is evidence that the null hypothesis 
should be rejected. In order to test for linear dynamics, Kaplan generated 20 
linear surrogates, produced to have the same histogram and a similar autocorre- 
lation function as the actual simulated data used in this com~tition. The time 
series were embedded in 1, 2, 3, and 4 dimensional spaces.3’ 

Two methods exist for computing the minimum value of K consistent with t 
surrogates. The simplest method is to compute the minimum value of K from 
the finite number of surrogates, and impute that to the population of surrogates 
consistent with the procedure. A more appealing approach is to compute the 
mean and standard error of the vaiucs of K from the sample of 20 surrogates and 
then subtract a multiple (conventionally 2 or 3) of the standard error from the 
mean to get an estimate of the population minimum. Using a multiple of 2, the 
conclusions reached below from the Kaplan test are the same for either of the 
two methods. In the tabulated results, we provide both the minimum value of 
K from the 20 surrogates and the mean and variance of K from the surrogates. 
Under the assumption of normality of the distribution of K from the population 
of surrogates, conclusions could be reached about statistical significance. But we 
do not provide such an interpretation, since the normality assumption may be 
a poor approximation, and not enough surrogates were generated to produce 
a Monte Carlo inference about statistical inference.j’ 

9. Results 

9.1. Orewiew 

The following is a summary of the successes and failures of each of the tests in 
the competition, with each test judged relative to the null that it is designed to 
test. More detailed discussion follows. 

” Kaplnn’s convention for defining embedding dimension dilTers from that used by BDS. Add 1 .O 

to kapkn’s or NEGM’s embedding dimension IO get the embedding dimension using the BDS 
convention. In Kaplnn’s and NEGM’sconvention. the embcddingdimension is thedimension of the 

spncc in which dij is calculntcd. The proccdurc that Kaplan used to produce the surrogates and to 
;~pproximutc his test statistic K with the actual and surrogate data arc described in Barnett et al. 
(19%). Also see Kaplan (1904). 

“‘The decision on the initial number of surrogates used was made by K&m during the 
competition. After the fxt. it would be possible to run more replications to produce inferences about 
statistical signilicancc. but one of the rules of the competition was that no additional computations 
or modilicationsto conclusions were permitted after thecompetition was closed and the identitiesof 
the generating models rcvcaled. Hence the generation of further surrogates at this point (which in 

fact was offered by Kaplan) is precluded by the rules. 



The Hinich bispectrum test is a test of the null hypothesis of lack of third- 
order nonlinear dependence. With the small sample. the test was correct in three 
out of the five cases an,’ ‘ailed in two of the cases. With the large sample, the test 
was correct in three of the five cases, failed in one case, and was ambiguous in 
one case. The associated Gaussianity test, is a test of a necessary and not 
sufficient condition for Gaussianity and hence can reject but not accept. Judging 
the test on its rejections of Gaussianity, the small sample results produced only 
two rejections, and both were correct rejections. With the small sample, the test 
produced four rejections, and all four were valid rejections. 

The BDS test entered into this competition is a test of the null hypothesis of 
linearity of the process. 33 With the small sample, the test was correct in two 
cases out of five and ambiguous in the other three. With the large sample, the 
test was correct in all five cases. 

The NEGM test is a test of the null hypothesis of chaos. The test was correct 
in all five small sample cases and all five large sample cases. 

White’s test is a test of the null of linearity in the mean. in the small sample 
cases, the test was correct in four out of the five cases, and failed in the remaining 
case. In the large sample cases, White’s test again was correct in four out of the 
five cases, and failed in one case. 

Kaplan’s test is a test of the null hypothesis of linearity of the process.3J The 
test was correct in all five cases both with small samples and large samples. 

9.2. Rmrlts with the Hirlich test 

Tables 1 and 2 provide the resuits of the Hinich test without prewhitening. 
The tests are one sided. so that the hypotheses are rejected if the test statistics are 
‘large’, perhaps exceeding 2 or 3 by conventional standards. R.ecall that the null 
for the Hinich ‘linearity’ test actually is lack of third-order nonlinear dcpend- 
ence, and ARCH and GARCH processes with Gaussian innovations do not 
exhibit third-order nonlinear dependence. Hence in the discussion below and 
the table, the word ‘linearity’ should be understood to mean absence of third- 
order nonlinear dependence. Also recall that the Gaussianity test is a test for 
a necessary but not sufficient condition for Gaussianity, so that strictly speaking 

“This conclusion bllo~s from the fact that the preliltcring of the &II;I was with an cstimatcd 
AKMA process. If :hc lnrgcr class of lincor in the mean proccsscs had been tiltcrcd out of the datu 
bcforc running the test. the test would hnvc had linearity in the mean us its null. 

“‘This conclusion follows from the &I that he used only linear filters among his surrogates. if hc 
had also included linear in the mc:m processes. such as ARCH and GAKCH. his test could have hccn 
used to test the null of linearity in the mean. With Kaplan’s test the null is defined hy the class of 
models used in producing the surrogates. 



Tahlc I 
Hinich bispcctr;d test with sample six = 380 

Process Gwaianity I.inenrity Comments 

H z 

I (Fcig) I.20 - ‘.84 Weakly accept Gaussinnity and stron_ely accept 

linearity 

II (GARCHI 1 .x9 - 1.x.5 Weakly accept Gnuscianity and strongly accept 

linearity 
III INLMA) 
IV (ARCff) 
V (AKMA) 

9.19 
‘.lN) 

- X.10 

0.0 I 
- I.03 
- 9.3s 

Strongly rejccl Gaussianity and accept linearity 
Reject Gaussianity anrf accept linearity 

Strongly accept finc;trity and Gaussianitj 

Note: The linwrity test is more formally a test of lack of third-order nonlinear d~~~~dcn~e. The 
Gaussianity test is ;I test of i* necessary but not sullicient condition liw Gaussumity. and hence the 

word ‘accept’ for this test should he imerprcted to mean ‘not reject.. The data wrc not pr~~hjt~n~d. 
Frnmcsiz = I I. The word strongly ;ICCCpt is used when the tail are;t of the tesl far exceeds 0.10. 

llinich hispcctral test with sample six = 1000 

Process Gnussianity Linearitv Comments 
II % - 

I (Fe& 1x.37 -- 11.15 Strongly rcjcct GitUsSi;I~ity asld stmnfly Uccept 

linearity 

II (GARCH) 
111 INLMAf 

3.7-l 

I3.6-l 

- 0.6 I 

1.x.f 

R+-t Gaussianity and accept linearity 
Strongly rcjcct GaUssianity nud marginally accept 

lincxity 

IV (ARCH) 3X.05 0.41 Strongly reject G;tusci;mity and accept linearity 

V (ARMA) - x.11 - 12.02 Strongly accept linecirity and Gaussiani@ 
- 

Note: The linearity test is more formally a test of lack of third-order nonlinear dcpendencc. The 
Gaussianity ~cst is a test of :I newsary but !IOI sutiicicnt condition for Ciausbianity. and hence the 
word ‘accept’ for this test should lx intcrprcted to mean ‘not reject’. The dam wcrc not prc~h~te~~d. 

I;ramesix = 2 I. 

the test can reject but cannot accept Gaussianity. We nevertheless shall use t 
word accept, since ‘not reject’ is awkward, but with the qualification that accept 
really means not reject in the case of the Hinich Gaussianity test. 

First consider the small silmple results in Table 1. Gaussianity is rejected in 
case III. The Gaussianity test results arc also dramatic in case V. In that case 
‘acceptance’ of Gaussianity is very strong. Regarding the linearity test, again the 
most dramatic case is case V. in which linearity is very strongly accepted. Since 
case V is the linear process. the fact that both Gaussianity and linearity are most 
strongly accepted in that case is a favorable result for the Hinich test. 



Lack of third-order nonlinear dependence is accepted in each of the cases, II, 
111, and IV, but in a less extreme manner than with the linear process, V. That 
conclusion is correct in cases II and IV, but not in case III. The Gaussianity test 
results are especially mixed in those three cases, with a very strong (and correct) 
rejection in case III and a marginal ‘Pcceptancc’ in casts II and IV.35 

The results with case I may seem to be surprising, since case I is the purely 
deterministic and chaotic Feigenbaum map. Despite the deep nonlinearity of 
that generating mechanism, and despite the fact that no noise was introduced 
into that data, the Hinich test accepted linearity and weakly accepted Ciaussian- 
ity, although the acceptances were not as dramatic as with the linear process, 
case V. However, an explanation does exist. The bispectrum test is known to 
have low power against certain forms of chaos that produce irregular and widely 
spaced spikes in the bispcctrum. Such singular spikes can be difficult for the 
Hinich test statistic to detect, although those become evident from visual 
inspection of the bispectrum. See, e.g., Ashley and Patterson (1989, p. 690). Our 
case I data were produced from a chaotic map that Ashley and Patterson have 
found to generate a form of chaos that is difficult for the bispectrum test to 
detect without direct inspection of the bispectrum plot itself. Since we structured 
this competition in the form of a controlled competition, we did not permit the 
use of such informal inspection of plots as a means of generating conclusions. 
We insisted that the bispectrum test results be based solely upon the use of the 
scalar Hinich test statistic. 

Now consider the large sample results in Table 2. Again the clearest result is 
the acceptance of linearity and Gaussianity in case V, which indeed was 
produced from a Gaussian, linear process. In the other cases, the results are 
similar to those with the small sample, but stronger. In particular, the test 
continues not to detect the nonlinearity in the chaotic data, but now very 
strongly rejects Gaussianity. In the nonchaotic nonlinear cases, II-IV, the test 
correctly concludes that ARCH and GARCH do not exhibit third-order nonlin- 
ear dependence, but incorrectly accepts lack of third-order nonlinear depend- 
ence in case III, although only marginally. However, with the larger sample the 
test correctly and strongly rejects Gaussianity with the GARCH data and very 
strongly rejects Gaussianity with the ARCH and nonlinear moving average 
data. 

It appears that a rejection of linearity with the Hinich test would provide very 
dramatic support for the conclusion of nonlinearity, but acceptance of the null 
of linearity with that test provides only weak support for the linearity, since the 
test, as currently constructed, actually tests the broader null of absence of 

As See DolIe Mollc and Iiinich (1991, 1995) and Walden and Williams (1993) regarding the 

trispcctrum test which has high power against those alternatives. 



third-order nonlinear dependence. Hence if ‘linearity~ is acce ted with that test, 
further testing by other means would seem to be in order.3h 

9.3. Resu!ts with the BDS test 

Results with the BDS test are reported in Tables 3 and 4. The data were 
prewhitened by Box-Jenkins estimation of an ARI A model, as a means of 
removing linear dependence. Hence, with the exception of case V, the B 
with the large samples appears to be detecting nonlinearity in all of o 
series. In addition, the rejection of linearity in case I is extreme. This is a very 
favorable result for the BDS test, since case V was the only linear case, and case 
1 is the chaotic Feigenbaum map data. 

The results are similar with the smaller sample in the two extreme cases of 
linearity and chaos, but not as successful in the nonchaotic nonlinear cases. 
particular the test’s results with the small sample are ambiguous in all of t 
nonchaotic nonlinear cases, since the test statistic is too unstable against 
variation of the embedding dimension in those cases to produce an unambigu- 
ous conclusion. However. the rejection of linearity with the chaotic case I data 
remains extremely strong, and the acceptance of linearity with the case 
V ARMA data is fairly clear, although some ambiguity is introduced by the 
result at WI = 6. 

In both the small sample and large sample cases, the evidence of nonlinearity 
is stronger with the ARCH data than with the GARCH data. Although this 
result is somewhat surprising, the Kaplan test produced the same conclusion, as 
discussed below. Perhaps both tests have somewhat higher power against 
ARCH than GARCH. 

These resuits are consistent with the prior findings of high power of the BDS 
test against a vast class of nonlinear alternatives. Evidently the test is triggered 
by any evidence of nonlinearity in the data. If the null is rejected, other tests 
should be used to permit the class of relevant alternatives to be narrowed. If the 
null is accepted, there is little point to continue further, since an acceptance of 
linearity by the BDS test is a strong result. 

Much of the Monte Carlo research that has been published on the BDS test 
(e.g., Hsieh and Le Baron (1991)) has emphasized the pretesting issue and the 
potential dependence of the properties of the test on the prior linear filter. The 
results in Tables 3 and 4 suggest that the past emphasis on those concerns was 
well directed, since the prior linear filter selected in both the large sample and 
small sample linear case (case V) was not correct. Some of the test’s sensitivity to 

“In that regard, an important new related test in the time domain has been proposed by Hin~ch 
(IY96). Rut us discussed above. we have not included that newer test in this competition. 



Table 3 

BDS test Z statistics. Residuals from ARI MA lit to simulated data with 3X0 ohscrvations 
1_1__ 

Process Fitted ARIMA Epsilon Embedding IWS % Decision 

order (i, j. k) dimension Statisric 

II (GARCH) (0.0.0~ 0.0X4 

III (NLMA) (0.0.0) 0.07X 

IV (ARCH) (0.0.0) 0.076 

I (Fcig) (0.0.0) 0. I?2 

V (ARMA) (2.0.0) 0.074 

2 

3 
4 
5 
6 
7 

x 

2 

3 
3 
5 
6 
7 

K 

1 

3 
4 
5 
6 

1 
8 
7 

; 
4 
5 
6 

7 
x 

2 
3 
4 
5 

6 
7 
8 

X2.33 

156.37 
‘70.50 
507.63 

994. I5 
3~32.00 
4286.00 

0.35 

1.6X 
2.56 
3.03 
2.9 1 

- 8.31 
- 4.16 

3.57 
4.76 
4.03 
2.X5 
2.29 

0.39 
0.59 

4.26 
4.49 
3.93 
3.72 

3.3 I 
1.62 

- I.11 

- 0.99 
- 1.34 

0.24 
1.31 

2.50 
I .50 

- 0.7X 

Kcjccl linonrily 
(very strongly) 

Ambiguous 

(weakly rcjcct lincnrity) 

Ambiguous 
(weakly reject linearity) 

Accept linearity 

Nope: The order of the litted ARIMA process was acquired hy Box--Jcnkens methodology. The 
ARIMA fit detected and filtcrcd out linear structure only in Process V. The resulting esiimatcd 
cocllicicnt of the AR(l) term was 1.080~5, and the cstimatcd coctlicicnt of the AR(Z) term was 

- 0. IZOOZ. The I%DS % statistic is asymptotically standard normal under the null of whitcncss, mid 
the test is one sided. with rejection if % is large (perhaps cxcceding 2). 



l l (CiARCtI! (0.0.0) 0.060 

Ill (NLRlA) (0.0.0) 0.053 

IV (ARCH) (0.0.0) 0.032 

V (ARMA) ( I .W) 0.070 

I (Fe& (0.0.0) 0.012 2 
3 
4 
5 
6 
7 
x 

2 
3 
4 
5 
6 
7 
X 

2 
3 
4 
5 
6 
7 
8 

2 
3 
4 
5 
6 
I 
X 

2 
3 
4 
5 
6 
7 
X 

262. IS 
528.82 

IO6S.XO 
13X3.60 
5631.60 

I3,Y04.00 
35.434.00 

3.45 
4.‘JY 
6.66 
7.65 
x.x 1 

IO.02 
Y.47 

x.55 
11.x4 
13.76 
14.81 
16.07 
19.07 
23.82 

16.65 
16.06 
15.73 
15.48 
16.31 
17.52 
17.10 

I.15 
1.51 
!.I0 

0.77 
1.03 

0.14 
0.99 

Reject line~~rily 
(very strongly) 

Reject linearity 

Reject linearity 
(strongly) 

Reject linearity 
(strongly) 

Accept linearity 

Note: The order of 8he litted ARiMA prows was acquired by Boa-~Jenkens methodology. The 
ARIMA lit detected imd filtered out lincur structure only in Process V. The resulting estimated 
coeliicient of the AR(I) term was 0.96’163. The BDS Z statistic is asymptotically standard n~~rrn~~ 
under the null of whitcncss. and the test is one sided. with rejection iCZ is large (perhaps exceeding 2). 



nonlinearity could be a result of remaining linear dynamics in the data. 
ever, the BDS test in this competition did successfully accept linearity in the 
linear cases, despite the fact that the test’s prior linear filter in the linear cases 
was never estimated to bc the correct AR 

In short, the BDS test and the Hinich 
While a rejection of linearity is a dramat 
is not easily triggered, the BDS test’s null is rejected over a vast range of 
alternatives. 

With the NEGM Lyapunov exponent test, the GCV estimates of the para- 
meter triple, (L. (1, cl), are displayed in Table 5. The dominant Lyapunov 
exponent estimates are provided in Table 6. According to this test. only case 
I appears chaotic. The same conclusion was reached with both the large and the 
small sample. This result is very favorable for the NEGM test. since case 1 is the 
only case of chaotic data. Since the test is a test of chaos rather than of general 
nonlinearity, comparisons among the results with cases 11~ IV are not meaning- 
ful, aside from the fact that the test correctly recognized the fact that the 
nonlinearity in that data was not chaotic. Figs. 1 and 2 indicate the sensitivity of 
the Lyapunov exponent estimate to variations in the parameters for case 1. See 
Section 6.3 for details of the construction and interpretation of those plots. 

The NEGM sensitivity plots for the small sample chaotic case, case I, are 
displayed in Fig. I. According to Table 5. the GCV estimate for (t, rl) with the 
small sample Feigenbaum data is (1. 1). Observing the box corresponding to 
(L. d) = (1, 1) in Fig. 1, we see that the entire range of the box is above zero. 

Table 5 
Dmninnnt Liapnnov exponent estimation: Scicction of d&y. number of lugs, and numhcr of hidden 
wits 

Process (1.. cl, ql Triple that minimizes GCV 
380 Ohserwtions 2000 Ohscrvcltions 

I (Feig) (1.1.3 (12.4) 
II (GARCH) (4.3.1) (4.4.‘) 
III (NLMA) (1,231 (1.3.W 

IV (ARCH1 (1.62) ( I h.3) 
V (AKMA) (i.l.1) (1.3.1) 

NOW: Each entry in the table is the GCV selection (minimizing the gencralizcd cross validation 
criterion) of the triple. (t. tl. q), where L is the time dclny parameter. cl is the numher of lags in the 
autoregression, and q is the number of units in the hidden layer of the neural net. The dota were not 

prewhitened. 
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I’roccss Dominant Liapunov Conclusion 
Exponent 

3x0 BOO 380 
obscrvittions observations observations o~~~~tions 

I (Fcig) 0.016X 0.0 130 Accept chaos Accept chaos 
II (GARC’HI - 1.3379 - 0.394 Reject chaos Reject chaos 
III (NLMA) - 0.3716 - 0.198 Reject chaos Reject chaos 
IV IARCH) - 0.9634 - 0.517 Reject chaos Reject chaos 
v (AKMAI - 0.0539 - 0.038 Reject chaos Reject chaos 

Note: Dat:t was not prewhitencd. The Linpunov exponent was computed from the litted time series 
using :I neural net nonpnrnmetric lit. Logarithms are natural logarithms. 
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Yip. I. NEGM sensitivity plot with Feigenbaum small sample: Indicutcssensitivity of the i estimate 

to the initial condition for 0 and to variations In (L. tl). 

Hence the inference of &ass is robust to variations in the parameter vector 
U within the 20 cases selected by the nested iteration. Furthermore, observe t 
the inference of positive Lyapunov exponent is robust to an increase in either the 
time lag, L, or the number of lags, (1, but not to a simultaneous increase in both. 
If (I and L are simultaneously increased by 1, so that (L, d) = (2,3), the sign of the 
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dominant Lyapunov exponent becomes heavily dcpendcnt upon the parameter 
vector (1. While the use of the neural ne! method has some instability (and 
thereby robustness) problems. the stability of that approach is superior to that of 
the other methods that have been considered in this context.J7 We do not supply 
the analogous plot for the large sample Feigenbaum data, since the large and 
small sample plots are similar in that case. 

Fol. comparison, the NEGM sensitivity plots are supplied in Fig. 2 for the 
large sample ARlMA data. According to Table 5, the GCV estimate for (L. d) 
with the small sample case V data is (1,3). Observing the box corresponding to 
(L, cl) = (1.3) in Fig. 2, we see that the entire range of the box is below zero. 
Furthermore, observe that the full range of every box for each setting of(L, tl) in 
that plot is negative. Clearly there is not evidence of chaos in the large sample 
ARIMA data. The small sample ARIMA data produced a similar plot. 

The results with White’s tat, displayed in Table 7, provide clear evidence 
against the hypothesis of Iinearity in the mean of the growth rate data in case I, 

.I’ This fact is well est;a!4ishcd in Nychka et 01. (1992). 



Table 7 

White’s test 

Series Value of test statistic Decision ‘11 5% level ‘ 

T = 380 T-xoo T = 380 T = xoo 

I (big) 299 199K.7 Reject linearity (strongly) Reject linearity (str(~~~ly) 

II (GAKCH) 4.95 121 Accept linearity Accept linearity 
Ill INLMA) 5.3 8.20 Accept linearity Reject linearity 

IV (AKCH) 0.39 0.55 Accept linearity Accept linearity 
V (ARMA) 0.070 7.430 Accept linearity (strorlplyl Rcjcci iincnrity 

Note: The test for lincority is not against general nonlinearity of the process bum against nonlinearity 
in the mean. 

which was the chaotic Feigenbaum data. The strength of that conclusion is 
evident from the fact that the critical value of the test at the 0.05 level is 5.99. 
with rejection for values of the test statistic exceeding that critical value. In that 
case, White’s test strongly rejected linearity in the mean with both the small 
sample size and the large sample. The test correctly accepted hnearity in the 
mean with both the small sample and the large sample of the AR and 
GARCH processes. Although ARCH and GARCH are nonlinear p sses, 
they arc linear in the mean. 

In the case of the nonlinear moving average data, White’s test was able to 
reject linearity with the large sample, but not with the small sample. The 
converse happened with the linear ARMA data. In that case, White’s test 
correctly accepted linearity with the small sample, but then rejected linearity 
with the large sample. The rejection of linearity in the large sample ARMA case 
is a tmzzling failure of the test. 

The direction in which the test looks for nonlinearitics is chosen at ran- 
dom. To obtain a feel for the variability inherent in the test itself, White’s 
test was replicated 50 times on each time series. The results are summa~~ed 
in Table 8. The table focuses on the location as well as the spread of the 
realizations of the test statistic with each data series. The outcome of the 
replication experiment implies substantial robustness to the randomly selected 
direction. In particular, the strong rejection of linearity in the Feigenbaum case 
continues to hold over the entire range of the test statistic in both the small 
sample and large sample case. Similarly the acceptance of linearity in the 
sample ARIMA case holds over the entire range of the test statistic within 
replications. 

The test statistic for series V in Table 7 with the large sample is slightly outside 
the range reported for that generating model with the large sample in Table 8. 
While odd, this result nevertheless does not represent a contradiction, since the 



Table 8 

Selected descriptive statistics for the results of 50 rcpliwtions of White’s test 

Series T Min. Max. Mean Std. dev. 

I (Fcig) 3x0 298.8 299 299 0.023 
2ooo 199x.3 1999 I999 0.145 

II @ARCH) 3x0 4.85 5.04 4.94 0.04 
2000 1.91 1.92 I.41 0. I3 

III INLMA) 380 4.26 5.34 4.77 0.24 

2000 6.34 8.29 7.44 0.40 
IV (ARCH) 380 0.34 2.32 0.78 0.34 

2000 0.26 1.41 0.36 0.17 
V (ARMA) 380 0.004 4.135 0.268 0.299 

2000 0.900 7.38 I 4.219 2.002 

Note: Min, max. and mean refer to the minimum, maximum, and mean of the test statistic over 
the 50 replications, while std. dev. is the standard deviadon of the test statistic over the 50 

rc?! &ms. 

!.!9 
‘\.,Phl” .isI sIaIisIics. results from simulated data with 3X0 obscrvotions 

Process Mean # on Min h’ on SId De;-. of Embtddmg K on Conclusion 
surrogaks wrrogalcs K on dimension simulucd 

sorrog;IIcs dntn 

I (Pcig) 

II (GARC’M) 

III (NLMA) 

IV (ARCH) 

0.121 
0.072 
0.057 
0.049 

0.097 
n.n44 
n.ox 
0.036 

3.4X 3.404 
3.46 3.376 
3.4x 3.367 
3.49 3.316 

1.412 1.3x4 
I.413 1.364 
I.421 1.377 
I.426 I.365 

1.516 I.492 
l.Slrl 1.453 
I.518 I.462 
I.519 I.433 

3.672 3.565 
3.633 3.494 
3.597 3.41 I 

0.0 I 33 
0.0 I9 I 
0.0 136 
0.0098 

n.0363 
0.04x4 
0.0540 
0.0728 

0.0 I 24 
n.mn 
0.0222 
0.0325 

0.0139 
nsm2 
n.0335 
an443 

n.os2.5 
0.07xz 
0.i:‘: 

I 
2 
3 
4 

I 
2 
3 
4 

I 
2 
3 
4 

I 
2 

mn35x RcjccI lincurity 
0.00.165 (s1nmgly) 
0.0356 
0.003 IX 

3.33 
3.26 
3.04 
2.9t 

R~icjccI linwrity 

I.303 RcjecI linc:IriIy 
I.133 
1.141 
1.134 

1.2X1 
1.16.5 
I I60 
I.155 

RcjccI IiIIwriIy 

3.713 
3.739 
3.481 

Accept lincarily 

3.531 3.098 0. I98 I 4 3.442 
.+. 

Nope: K is Ihc Kaplan ICSI sIaIisIic. TwcnIy surrogaws wrc u:. :d, and hcncc 1110 m&m, mhiimum. and sIand;trd 
deviations arc over Ihc 20 surrogalcs. Embedding dimension. )#I. ab dclincd by Kaplan, is m - I. when cmbcdding 
dimension is dclincd as in Ihc DDS or NEGM ICSIS. Hcncc add I.0 to each cmbcddinp dimcn~iw in IIIC table IO 
acquircconsistcncy with Ihcdclinitions used by BDS and NEGM. Timcdclny w;IsdcIcmmincd iIs in Kaplan (1994). 



test results reported in Table 7 are not included among the 50 replications u 
in producing Table 8. 

9.6. Results with Kaplan ‘s test 

The null hypothesis for Kaplan’s test is linearity of the process. The results 
with Kaplan’s test are displayed in Tables 9 and 10. The test was successful in all 
cases, including all generating models and all sample sizes. Based upon the very 
low tail area of the test in the case of the Feigenbaum map, Kaplan’s test ap 
to have very strong power against chaos and hence can bc expected not to 
accept linearity when the data is chaotic. However, the test in its current form 
can either accept of reject linearity, but cannot accept chaos, which is not the 
test’s null hypothesis In that sense the model is similar to the BDS test, althougb 
the success rate of Kaplan’s test in this competition exceeded that of the 
test. 

Knplun lest statistics. results from simulated data with X00 observations 

Process Mean h’ on 
surrognlcs 

Min K on Std Dcv. of Emhcdding P on Conclusion 
surrogates R on dimension simulated 

surrogates dais 

I (Fcigl 

II ((iARCH) 

III (NLMAl 

IV (ARCIll 

V (ARMA) 

0. I63 0.086 o.nzo 
0.13 0.1 IO 0.01 I9 
O.W)6 0.043 0.0166 
0.064 n.n19 n.E? I 

4.003 
3.983 
4.006 
4.047 

I.470 
I.473 
I.457 
1.4% 

I.695 
I.678 
I.681 
I .703 

4.382 
4.542 
4.436 
4 IR! 

3.863 0.073x 
3.690 0. I 300 
3.624 0.1457 
3.701 0. I 748 

I .405 
I.358 
I.354 
I.263 

Cl.0412 
nass9 
0.0639 
0.0869 

I .60X 
I.581 
I.543 
I .4x3 

0.0393 
0.0534 
0.0779 
MIX’)1 

3.708 0.3148 
3.889 0.3972 
3.61 I 0.53x1 
1.623 0.7026 

I 
2 
3 
4 

I 
2 
3 
4 

I 
2 
3 
4 

I 
2 
3 
4 

I 
2 
3 
4 

4 x IO fi Reject linearity 
3x10 h (very strongly) 
4x In-6 
2x10 h 

3.905 
3.661 
3.4x 
32x0 

Reject linearity 
lmitrpinally) 

1.394 Reject linearity 
I.140 
1.135 
I.162 

1.337 Reject linearity 
I.230 
I.173 
I.161 

4.0x9 
3.790 
4.355 
4.885 

Accept linearity 

Note. C is the Koplun tat statistic. Twenty surrogates wcrc used, and hence the mean. minimum. and stan- 
dwd dcviatiwts ;WL over the 20 surrogotcs. knbedding dimension. )R. as defmed by Kaplan. in ,)t - I, when 
embedding dimension is dclincd as in the BDS or NEGM tests. Hence add I .O to ench embedding dimension in the 
tnblc IO acquire consistency with the dclinitions used by BDS and NEGM. Time delay was determined as in 
Koplil” llW4l. 



Observe the somewhat stronger rejection of linearity in the ARCH case than 
in the GARCH case. Perhaps the Kaplan test may have somewhat higher power 
against ARCH than against GARCH. The same result was acquired with the 
BDS test. 

IO. Conclusions 

We find some consistency in our inferences across methods of inference, 
although there are some clear differences among the power functions of the tests. 
It is possible that greater robustness across inference methods might be attained 
at much greater sample size, although the results with the 2000 observation 
sample size probably capture much of the characteristics of the tests with large 
samples. ” None of these tests, which are among the best of the available tests 
for nonlinearity and chaos in noisy data, has the ability to isolate the origins of 
the nonlinearity or chaos to be within the structure of the economy. These tests, 
which do not condition upon any particular economic structure, could detect 
deterministic nonlinear or chaotic ~:~a:her conditions that are transmitted to 
economic variables through a linear economic structure, as emphasized recently 
by Day (1992). 

Two considerations are important in interpreting the diflerences in the results 
among some of these tests. One consideration is the differences in the power 
functions over alternatives, for fixed null. The other considerati:.jn is the differ- 
ences in null hypotheses of each test. The latter consideration produces a degree 
of noncomparability of the tests and the possibility that some of the tests could 
be used jointly. For example, the bispectrum test has no power against those 
forms of nonlinearity that produce flat bispectrum and non-flat higher order 
polyspectra. Hence the ‘linearity’ hypothesis usually viewed as the null of the test 
actually is correctly interpreted as lack of third-order nonlinear dependence. In 
fact the bispectrum test also has low power againat those forms of chaos that 
produce irregular and widely spaced spikes in the bispectrum. Such singular and 
widely spaced spikes can be difXcult for the Hinich test statistic to detect, 
although the spikes become evident from visual inspection of the bispectrum.39 

JH Rclativc to the litcraturc on empirical economics. our large sample is wry large. Ncverthclcss, 
much Iargcr samples arc common in the physical sciences. and in some of our results there is 
evidence that the large sample may not be large enough. For example. White’s test in one case did 

bcttcr with the small sample than with the large sample. It is possible that small sample properties 
are still being seen with the 2000 observation data. and an even larger sample would produce better 
results 

‘“See. e.g . . Ashley rind Patterson (1989. p. 690). The problem in those cwzs is associated with the 
fact that the test is based upon only the 80th quantilc of an empirical distribution function. Using 
more quantilcs. or :I Kolmogonov -Smirnov statistic using all of the quantiles, could raisr power. 



Some of the ‘competing’ tests could be viewed as complementary, rather than 
competing. Using all of them jointly can produce deeper insight into the nature 
of the nonlinearity that may exist in the data.“’ In particular, the 
Kaplan tests are omnibus tests that test linearity against all possible alternatives 
to exact linearity. Those tests seem to be very sensitive to departures from 
linearity, and the values of the test statistic for the BDS test were dramatically 
convincing in the extreme cases of linearity and chaos. The Kaplan test’s 
characteristics appear to be similar to those of the BDS test, although the 
Kaplan test is newer, and its properties have not yet been as extensively 
investigated as those of the BDS test. However, it is noteworthy to observe that 
in our experiments the Kaplan test, unlike the BDS test, got the right answer in 
every case, with both the large and small samples. Hence it would seem that the 
BDS or Kaplan test, or perhaps both tests, could be the first test run to rule out 
the narrowest null of exact linearity. 

If linearity is rejected with the BDS and Kaplan test, it becomes reasonable 
to use more focused tests to try to distinguish among the possible forms of 
nonlinearity. For example, the bispectral test could be used to distinguish 
between third-order nonlinear dependence and other forms of nonlinearity* 
if linearity already has been rejected by the BDS or Kaplan test. White’s 
test has very high power against chaos and can be used to distinguish 
among those nonlinear processes that are nonlinear in the mean (s 
the NLMA) and those that are not (such as ARCH and GARCH). 
before proceeding to the NEGM test, which is focused specifically on chaos as 
the null, White’s test could be run. If linearity is rejected with White’s test, the 
computationally difficult and very focused NEGM test becomes well worth 
running. 

If used jointly in this manner, problems of pretesting arise, including yues- 
tions regarding statistical significance of tests run conditionally upon the results 
of prior tests. Nevertheless, we believe that few alternatives currently exist to 
sequential learning from data in that manner, since many specific forms of 
nonlinear structure are worth investigating, including chaos. Simply rejecting 
linearity is not likely to exhaust the useful information in the data about 
nonlinear structure. 

Finally it should be observed that we have by no means exhausted all possible 
inter,esting cases in our competition. F’or example, the competition would have 
benefited from the inclusion of (1) a higher dimensional case to permit investiga- 
tion of the properties of the order determination algorithm used in some of the 
tests, (2) an even larger sample to permit determination of whether or not the 

“‘WC arc indchted to William Rrock for suggesting this idea to us in a private correspondence 
with William Harnctt. 
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2000 observation case was large enough to support the use of asymptotic 
inference, and (3) the inclusion of a noisy chaotic case. But the computational 
burdens upon the participants in this competition were already pressing the 
limits that could reasonably be expected of those courageous enough to subject 
their tests to this professionally risky competition. 
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