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Abstract

Interest has been growing in testing for nonlincarity or chaos in cconomic data, but
much controversy has arisen about the available results. This paper explores the reasons
for these empirical difficulties. We designed and ran a single-blind controlled competition
among five highly regarded tests for nonlinearity or chaos with ten simulated data series.
The data generating mechanisms include linear processes, chaotic recursions, and non-
chaotic stochastic processes; and both large and small samples were included in the
experiment. The data series were produced in a single blind manner by the competition
manager and sent by e-mail, without identifying information, to the experiment partici-
pants. Each such participant is an acknowledged expert in onc of the tests and has
a possible vested interest in producing the best possible results with that one test. The
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results of this competition provide much surprising information about the power func-
tions of some of the best regarded tests for nonlinearity or noisy chaos. 1. 1997 Elsevier
Science S.A.
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1. Introduction

In this paper, we reveal the results of a single-blind controlled competition, in
which we compare the power of five highly regarded tests for nonlinearity or
chaos against various alternatives. The data used in this competition was
simulated data, produced from five dif erent generating models and two different
sample sizes with each of those models. Hence there were ten samples involved
in the complete competition. One model, and hence two of the data sets, was
purely deterministic (and chaotic). The other four models, and hence eight of the
data sets, were stochastic processes, in which the randomness was produced by
Monte Carlo methods. One of the stochastic processes was linear, while the
other three were nonlinear, but not chaotic. Although the same five generating
models were used to produce both sample sizes, the participants in the experi-
ment were not aware of that fact. Hence the participants had no reason to
believe that fewer than 10 generating models were used to produce the simulated
data.

The data were generated at Washington University in St. Louis and sent by
electronic mail to the participants in the experiment. Those participants were
provided with no information regarding the nature of the simulated data. Each
participant used one test to analyze each of the data series. Throughout the
competition, William Barnett and Mark Jensen at Washington University
served as the competition managers by generating the data. The competition
managers were the only participants having any knowledge of the nature of the
data. They did not reveal the generating models to the other participants until
the competition was complete and all resuits from all participants had been
received.

Only one of the tests used in this competition (the BDS test) was run at
Washington University, and that test is one which is available in a widely used
computer program written by W.D. Dechert. We acquired the computer pro-
gram from William Brock and report the results acquired with that program.
The simu'ated data are available to anyone who might wish to replicate the
reported results with the BDS test. The other five tests are more complicated to
run and possibly could have been prejudiced in some ways, if the generating
model were known to the person running the test. Hence each of those tests was
run by a competition participant who was supplied with no prior information
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about the generating models. In addition, each of those participants has estab-
lished expertise in the test that he ran and a possible vested interest in producing
the best possible results with the particular test that he ran. In three of those
cases, the participant was among the originators of the test, and in the remaining
case the participant has produced and used a computer program that is espe-
cially well suited to conducting that test.

All five of the tests used in this competition are purported to be useful with
noisy data of moderate sampie size. The two sample sizes used in this competi-
tion were intended to include a sample of small size relative to the capabilities
of the tests and a sample of large size. The computational cost of running some
of these tests with the large sample was very high. With one of the tests, months
of execution time on a workstation were needed to complete the test with each of
the five large sample data sets. These computational costs limited to five the
number of generating models that reasonably could be used to produce the
simulated data in the competition, at least in the large sample case.

In recent ycars there has been growing interest in testing for both chaotic and
nonchaotic nonlinearity in economic data, but much disagreement and contro-
versy have arisen about the available results. For example, Barnett and Chen
(1986, 1988a, b) claimed a successful detection of chaos. That conclusion was
further confirmed with the same data by DeCoster and Mitchell (1991a, 1994),
who also contributed relevant theory in DeCoster and Mitchell (1991b, 1992).
However, the finding was subsequently disputed by Ramsey et al. (1990) and
Ramsey and Rothman (1994), who also raise questions regarding virtually all of
the other published tests of chaos. Various replies have been published, includ-
ing those of Barnett and Hinich (1992, 1993) and that of DeCoster and Mitchell
(1994). Further results relevant to those controversies recently were provided by
Serletis (1995). in short, there .- little agreement about the existence of chaos or
even of nonlinearity in econamic data, and some economists continue to insist
that linearity remains a good assumption for all economic time series, despite
the fact that economic theory provides little support for the assumption of
linearity. This paper explores the reasons for these empirical difficulties.

Results may be difficult to find that are consistent across variations in sample
size, test method, and aggregation. That possibility was the subject of Barnett
et al. (1995), who used five of the most widely used tests for nonlinearity or chaos
with various monetary aggregate data series of various sample sizes and ac-
quired results that differed across tests and over sample sizes, as well as over the
statistical index number formulas used to aggregate over the same component
data. These conclusions applied to the tests for nonchaotic nonlinearity as well
as to the tests for chaos.

It is possible that none of these tests completely dominates the other, since
some tests may have higher power against certain alternatives than other tests.
This competition was designed for the purpose of exploring the relative powers
of the five tests used by Barnett et al. (1995) against various alternatives and
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to investigate the various possible explanations for the existence of so
much controversy regarding the available tests for chaotic and nonchaotic
nonlinearity.

2. Data generation

The sample sizes generated consisted of a *small sample’ of size 380 and
a ‘large sample’ of size 2000. The observations were produced with each of the
two sample sizes from each of the following five models.

MK/Idz)ldf:.l I is the fuily deterministic, chaotic Feigenbaum recursion of the form:
Yo =357y -9(1 — o),

where the initial conrdition was set 1t yp = 0.7.

Model 11

Model Il is a GARCH process of the following form:

ye = ht"u,,

where h, is defined by
hh=1+01y%, +08h_,,

with hy = 1 and yo =0.

Model 11

Model Il is a nonlinear moving average {(NLMA} process of the following
form:

Yo = + 08w - 11 2.
Model 1V:
Modetl 1V is an ARCH process of the following form:
yo=A{1 + 0.5y )" u,
with the value of the initial observation set at yo = 0.
Model V:
Model V is an ARMA model of the form:
yi=08y-1 +015y -2+ u + 030,
with yo =1 and y; =0.7.
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With the four stochastic models, the white noise disturbances, u,, are sampled
independently from a standard normal distribution. Those white noise distur-
bances were generated using the fast acceptance-region algorithm of Kinderman
and Ramage (1976). with the initial seed valuc set by the clock of the computer at
the time the program was run.! Of the five generating models, only Model V is
linear, only Model I is chaotic, and oniy Model 1 is noise free. The simulated
data is available online in the Working Paper Archive maintained at Washing-
ton University.*

In evaluating the results with the tests included in this competition, we need
to know what hypotheses are satisfied by design in each of the five cases
defined above. The hypotheses that are relevant to the tests used in this
competition arc: linear process, linear process in the mean relative to an
information set, Gaussian process, chaotic, and third order nonlinear depen-
dent process. Those terms are defined in Section 3.2 below. Model V is the
only linear process and the only Gaussian process, although models II and
IV are linear in the mean.? Only Model | is chaotic. Models I, 1V, and V
are linear in the mean. Models 1 and III exhibit third order nonlinear de-
pendence.?

3. Background

We use five inference methods to test for stochastic nonlinearity or determin-
istic chaos with the simulated noisy data: the Hinich bispectrum test, the BDS
test, the Lyapunov exponent estimator of Nychka et al. (1992), White's test, and
Kaplan’s test. We chose those tests as a resuit of their high repute among tests
for nonlinearity and chaos.

! Strictly speaking. computer gencrated noise is deterministic, but is high dimensional. Hence the
tests of nonlinearity and chaos shouid be viewed as tests for the existenge of a jow-dimensional
aonlinear or chaotic signal below the high-dimensional chaos. In the language of ¢haotic dynamics,
tests for chaos scek to separate intrinsic from extrinsic probability, where the distinction is in terms
of the dimension of the determinism of each.

*The location of the simulated data in that archive is ewp-data/9510001. A direct link to that
location in the archive is provided in paragraph 8 at the following web location: http://wuecon.
wustledw; ~ barncit/Papers.html In addition, vode for the competing tests is avaifable online, and
links to the location of the code for each test van be found in that same paragraph 8 on the web.

J Treating prior observations as the information sct and conditioning upon that information set,
cach of those two processes has zero conditional mean. It is also the case that both of these models
arc Gaussian in the mean, since their distributions. conditionally upon the past observations, are
Gaussian. But we do not include tests for Gaassianity in the mean in this competition.

+ Models I and IV also would exhibit third order nonlincar dependence, if the innovations were
not Gaussian.
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3.1, The tests

In this competition, we use tests derived for use with noisy data. The Hinich
bispectral test is a test in the frequency domain of flatness of the bispectrum. The
sampling properties of the test statistic are known, and the approach is based
upon conventional time series inference methodology. The test was run by
Hinich in Austin, Texas, without knowledge of the models that generated the
data. The BDS test is a test for whiteness, which can be used to test for residual
nonlinear structure, after linear structure has been removed through prior
prewhitening. The test was run by Mark Jensen at Washington University.
Although he was aware of the generating models, he used the BDS test program
that has been supplied widely on floppy disk by the originators of the BDS test
and was programmed by W.D. Dechert. We acquired the program from William
Brock. The NEGM (Nychka, Ellner, Gallant, and McCaflrey) test is a non-
parametric test for positivity of the maximum Lyapunov exponent.’> The
NEGM test was run by Gallant in North Carolina without knowledge of the
models that generated the data. White's test is a test for nonlinearity, and was
run by Jochen Jungeilges without knowledge of the models that generated the
data. He used his own program, which implements White's test. Kaplan’s test
can be used to test either for nonlirearity or for more focused special cases of
nonlinearity. In this competition that test was used as a test for general
nonlinearity. Kaplan's test was run by Kaplan in Quebec without knowledge of
the models that generated the data.

By using conventional stochastic process methods for testing for nonlinear
dynamics, we largely are limited to tests for general nonlinearity, which is
necessary but not sufficient for chaos. There are three particularly well known
tests currently in use for testing for nonlinearity: the BDS (Brock et al. (1996))
test, White's neural network test, and the Hinich bispectrum test.®

The BDS test provides an important advance in testing for stochastic depend-
ence, and hence the BDS test is a significant new contribution to the field of
statistics. But the BDS test does not currently provide a direct test either for
nonlinearity or for chaos, since the sampling distribution of the test statistic is
not known, eitherin finite samples or asymptotically, under the null hypothesis

* Gencay and Dechert (1992) recently have proposed a test that is similar in some respects to the
NEGM test. As a result of that similarity, we did not believe that a comparison between those two
tests was a tikely place to leok for a robustness problem. In addition, we believe that a comparison
among such related tests would require a much larger number of replications than we had available
with the data used in the current study. From this class of tests, we therefore decided to run only the
NEGM test.

® As a result of space constraints, our descriptions of the tests are necessarily brief. For a more
detailed discussion of those tests, see Barnett et al. (1996a) and Barnett et al. (1996b).
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of nonlinearity, linearity, chaos, or the lack of chaos. The asymptotic distribu-
tion is known under the null of independence. Hence the hypotheses of nonlin-
earity and chaos are nested within the alternative hypothesis, which includes
both nonwhite linear and nonwhite nonlinear processes.

Nevertheless, it is possible to use the BDS test to test any parametric
stechastic process against the remaining alternatives, if the parametric process
null has been removed from the data by prefiltering. For example, if all linear
possibilities have been removed by fitting an ARIMA model, the BDS test can
be used to test the residuals for remaining nonlinear dependence.

Similarly, if all nonchaotic possibilitics could be removed by fitting the best
possible nonchaotic model, the BDS test could be used to test the residuals for
remaining chaotic dependence. But filtering out all possible nonchaotic possibil-
ities with certainty seems to be beyond the state of the art. Hence it is not clear
how the BDS test can be used to produce a convincing inference regarding noisy
chaos. For a formal definition of noisy chaos, see Nychka et al. (1992).

Filtering out all linear possibilitics with certainty is difficult at best, but
nevertheless prefiltering by ARIMA fit is often viewed as a reputable means of
linear prewhitening, and hence we use the BDS test to test for remaining
nonlinear dependence in the residuals of an ARIMA process fitted by the
Box--Jenkins approach.” There have been a number of other recent attempts to
apply the BDS test to nonlinearity testing of filtered data. For one such
interesting example, see Scheinkman and LeBaron (1989). Despite our reserva-
tions regarding the usefulness of the BDS test in testing for chaos, we do believe
that the BDS test produces a viable test of linearity against the omnibus
alternative of nonlinearity, when the data is prefiltered by ARIMA fit. We use
the BDS test for that purpose.

The Hinich bispectrum approach provides a direct test for nonlinearity as
well as a direct test for Gaussianity, since Hinich’s approach produces a test
statistic having known asymptotic sampling distribution under the null of
linearity, as well as another test statistic having known asymptotic sampling
distribution under the null of Gaussianity. However, the alternative hypothesis
is not as broad as that for the BDS test, as defined in Brock et al. (1996).* With
the bispectrum test, the alternative hypothesis is all nonlinear processes
having nonflat bispectrum. However, there are some nonlinear processes dis-
playing nonflat polyspectra only at the trispectrum or higher order. Hence, the

"We used the conditional maximum likelihood routine contained in the RATS computer
program package.

% Two widely used implementations of that test exist: Dechert’s program and LeBaron’s program.
We used Dechert’s program. Both programs are available online, and links to them can be found in
paragraph 8 of the following web page: hitp://wuecon.wustl.edu/ ~ barnett/Papers.himl.
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bispectrum test has zero power against some forms of nonlinearity. In such
cases, the nonlinearity often can be detected by subsequently running the
trispectrum test of Dalle Molle and Hinich (1991, 1995) or of Walden and
Williams (1993). The sample size requirements of the trispectrum test are
formiduble. The BDS test, on the other hand, has high power against a vast class
of nonlinear alternatives.

In the next section, we describe the Hinich bispectrum approach, which is
related to the Subba Rao and Gabr (1980) approach. It should be observed that
Hinich (1996) has a related newer test, which is an analog to the bispectrum test,
but in the time domain. Although that newer test may have power against
a broader alternative than the frequency domain bispectrum test, Hinich’s newer
test is not yet as widely known as his popular bispectrum test. As a result, we
have not included Hinich’s newer test in this competition.

White’s test uses neural net methods to test for nonlinearity. A connection
exists between the White test, which we use as a candidate for a test of
nonlinearity, and the NEGM test for chaos, since the NEGM test uses a neural
net as a data model configured as a predictor before testing for chaos with the
resulting fitted neural net. Since chaos is a stronger hypothesis than nonlin-
earity. the connection between the two tests could be useful in sequential testing.
In particular, if nonlinearity is rejected with the White test, then there is
diminished reason to proceed further with the NEGM test for chaos, since chaos
is a strictly nested special case of nonlinearity.

While the BDS, White, and Hinich tests currently are among the best known
tests available for testing nonlinearity in noisy data, we believe that there
currently is only onc well established candidate for a test for chaotic signal in
small samples of noisy data. That is the NEGM test.” We describe the NEGM
test in a later section below.,

A new test that examines the evidence for the continuity of dynamical maps
has recently been proposed by Kaplan (1993). At present, Kaplan's test has not
been subjected to the extensive Monte Carlo comparisons that are available for
the NEGM test. The Kaplan test compares a test statistic computed directly
from the data with the test statistic produced from surrogate data. In our
application of his approach, the surrogate data are produced from linear
processes having the same histogram and an almost identical autocorrelation
function as the actual data. The null hypothesis is linearity of the dynamics
found in the data. However, depending on the manner in which the surrogate
data is produced, the method appears relevant to investigating more sharply

“The Geneay and Dechert (1992) method mentioned above is among the other promising
possibilitics, but that test as well as the others have not been subjected to the degree of experimenta-
tion that currently is available for the NEGM test with noisy data.
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focused forms of complex dynamics. We describe the test briefly in a later section
below. For more details, see Kaplan (1993).

Our discussions of each test are rather brief, since those tests are described in
greater detail in Barnett et al. (1993, 1996a, b). An exception is the Kaplan test,
which is used in this competition in a somewhat different manner than earlier
applications. Those differences are described in detail in this paper.

3.2. Definitions

If {x(1)} is a zero mean third-order stationary time series, then the mean
it. = E[x(1)] = 0, the second-order autocovariance ¢, (m) = E[x(t + m)x(1)],
and the third-order autocovariances ¢,...(s. 1) = E[x(t + r)x{t + s)x(t)] are in-
dependent of 1.'? If ¢ (m) = O for all nonzero m, the series is white noise. We
define a pure (also called ‘strict” sense) white noise series as a white noise process
in which x{(i,), ... .x(ny} are independent random variables for all values of
4, ..., iy. All pure white noise series are white. All white noise series are not
pure white noise. However, Gaussian white noise series are necessarily pure
white noise series.

In addition to stationarity, whiteness, and pure whiteness. linearity is another
often assumed property of a time series. The conventional definition of a linear
stochastic process is a linear filter of independent and identically distributed
inputs. An ARIMA process is a finite-order linear filter, while a first degree
Volterra expansion (with zero higher degree Volterra kernals) is infinite dimen-
sional and spans the space of linear filters.!! In some definitions of linearity, the
innovations are assumed to be white noisc martingale differences, since the
linear predictor is the best predictor in that case. However, we conform to the
more conventional definition requiring independent and identically distributed
inputs.

19 Gee Hinich (1996) for a test of the maintained hypothesis of third-order stationary.

' I the literature on chaos, the search for chuos is in reality a search for low™-dimensional chaos,
since knowing that data has been produced deterministically from high-dimensional chaos is not
uscful. Similarly the distinction between a high-order lincar filter and a nonlinear process is of hittle
use, since the ability to separate the two can disappear in the limit as a linear moving average filter
becomes infinite order. Hence in reality, any test of the null of linearity must in reality be interpreted
to be a test of ‘low™-order linear filter. In this competition, the simulated linear data is produced by
a low-order ARMA process. In later research, it could be interesting to gencrate duta from
increasingly high-order MA processes to find out how high the order of an MA process mast become
before some of the tests of linearity would reject linearity, However, it would be diflicult to argue in
practice that such a rejection would be an “error’, since few statisticians would prefer to estimate
a high-order MA process to a sparsely parameterized nonlinear process, especially if the order of the
‘true” MA process thai generated the data exceeds the sample sive. See Bickel and Bithlmann (1996).
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A related property of a process is ‘linearity in the mean’ relative to an
information set. Such a process has a conditional mean function that is a linear
function of the elements of the information sct. For a formal definition of
linearity in the mean, see Lee et al. (1993, Section 1). The information set usually
contains lagged observations on the process. A process that is not linear in the
mean is said to exhibit ‘neglected nonlinearity’. A process that is linear is also
linear in the mean, but the converse need not be true. Similarly a process is
Gaussian in the mean relative to an information set, if the distribution of the
process conditionally upon the information set is a Gaussian process.

A further special case of nonlinearity is third-order nonlinear dependence,
which we shall define as a frequency domain concept. We define a process to
exhibit third-order nonlinear dependence, if the skewness function in the fre-
quency domain is not flat as a function of frequency pairs. A formal definition of
the skewness function is provided below in Eq. (4.2). This form of nonlinearity is
called third-order, since the skewness function is a normalization of the Fourier
transform of the third-order autocovariances. That Fourier transform is called
the big; ectrum, and is the third-order polyspectrum.'?

Many researchers implicitly assume the errors of their models are Gaussian,
and test for pure white noise by using the covariance function ¢,(m), but ignore
the information regarding possible nonlinear relationships which are found in
the third-order moments c¢,..(s, #). The above discussion suggests the need to
test for both nonlinearity and Gaussianity, in additicn to testing in the usual
manners for whiteness. In addition, unconditional properties nced to be distin-
guished from those that are ‘in the mean’ and those that are third order.

4. The Hinich bispectral approach

Hinich (1982) argues that the bispectrum in the frequency domain is easier to
interpret than the multiplicity of third-order moments {c  (r,s): s<r,
r=0,1,2, ....} in the time domain. For frequencies f; and f, in the principal
domain

Q={[1.0<fi <05 L<h. 2 +f< 1],
the bispectrum, B, ..( fi, f2), is defined by
Bxxx( Il-/?.) = Z Z ('.\'.\'.\‘(r- 5) Cxp[ - lzn( .I‘l r +/25)] (4 l)

L A

2 As defined in the denominator of Eq. (4.2). the normalization is in terms of a noncausal
prewhitening. Hence stochastic processes are compared for third-order nonlinearity after normaliz-
ation by a linear adjustment that flattens the power spectrum (the second-order polyspectrum).
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The bispectrum is the double Fourier transformation of the third-order
moments function and is the third-order polyspectrum. The regular power
spectrum is the second-order polyspectrum and is a function of only one
frequency.

The skewness function I'( fi,/>) is defined in terms of the bispectrum as
follows:

rz(/x,fz) = |B\xx(/19,2)lz/st.x(fl) Stt(fz) S\'v(ll +12)~ (4'2)

where S.( [} is the (ordinary power) spectrum of x(¢) at frequency /. Since the
bispectrum is complex valued, the absolute value (vertical) lines in Eq. (4.2)
designate modulus. Brillinger (1965) proves that the skewness function I'( {1, f3)
is constant over all frequencies ( f}, f2)€ Qif {x(1)] is linear; while I'( fi. f>) is flat
at zero over all frequencies if {x(¢)} is Gaussian. Linearity and Gaussianity can
be tested using a sample estimator of the skewness function I'( fi.fs). But
observe that those flatness conditions are necessary but not sufficient for general
linearity and Gaussianity, respectively. On the other hand, flatness of the
skewness function is necessary and sufficient for third-order nonlinear depend-
ence, as defined in Section 3.2.

The Hinich (1982) “linearity test” tests the null hypothesis that the skew-
ness function is flat, and hence is a test of lack of third-order nonlinear
dependence. For details of the test. see Hinich (1982). Hinich and Patterson
(1985,1989), and Ashley et al. (1986). In particular, the fina! transformed test
statistic is distributed as a standard normal random variate under the null
hypotheses of flat skewness function. When the null is Gaussianity, a related test
statistic is denoted by H and is a standard normal random variate under the
null.'* When the null is absence of third-order nonlinear dependence, the test
statistic is denoted by Z. In both cases. the distribution of the standard normal is
used to produce a one sided test, in which the null is rejected if the test statistic is
large.'*

A Strictly speaking the test can reject Gaussianity, but cannot accept it, since violation of
Gaussianity may not appear at the bispectrum level and may appear only at the level of higher-order
polyspectra.

'+ Ashley et al. (1986, p. 174) presented an cquivalence theorem which proves that the Hinich
bispectral linearity test statistic is invariant to linear filtering of the data, when the parameters of the
linear filter are known. An important implication of the theorem is that if x(?) is found to be
nonlincar, then the residuals of a lincar model of the form (1) = f(x(t) will also be nonfinear, since
the nonlincarity in x(1} will pass through any lincar filter, £ The above paper further reported tables
on the power of the Hinich linearity test for detecting violations of the linearity and Gaussianity
hypotheses for a number of sample sizes. The table indicates substantial power for both tests, even
when the sample size is as small as 256.
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5. The BDS test

The details of the BDS test (Brock et al., 1996) are well known in the literature.
The test uses the correlation function (also called the correlation integral) as the
test statistic. This choice is in contrast to the Grassberger--Procaccia test, which
uses the correlation dimension. The correlation function is needed in deriving
the correlation dimension, but the two are not the same.!®

While correlation dimension is potentially very useful in testing for chaos, the
sampling properties of the Grassberger-Procaccia correlation dimension are
unknown. The BDS test uses the correlation function (not the correlation
dimension) as the test statistic. The asymptotic distribution cf the correlation
function is known under the null hypothesis of pure whiteness. As a result, the
BDS test can be used to produce a formal statistical test of whitencss against
general dependence. However. the sampling distribution of the BDS test statistic
is not known under the nulls of chaos, nonlinecarity, or lincarity We are left with
the uncomfortable choice between the correlation dimension, wii~h produces
a direct test for chaos, but only when no stochastic shocks exist veithin the
model, or the correlation function, which does have known sampling properties
when there are stochastic shocks within the model, but only under a different
null hypothesis (i.c., pure whiteness).

Nevertheless, the BDS test can be used to produce indirect evidence about
nonlincarity. In particular, an ARIMA process can be fitted to the data in an
attemipt to remove linear structure. The BDS test then can be used to determine
whether there is evidence of remaining dependence in the data. If all linear
dependence has already been removed, then any remaining dependence must be
nonlinear.'® We use the Box-Jenkins approach to fit an ARIMA (i, j, k) model to

'S The correlation dimension’s value has a direct connection with the HausdorfT dimension of the
attractor. Hence the correlation dimension, in principle. has a direct connection with chaos. In
particular. low fractional Hausdorff dimension is the result sought by those looking for useful chaos.
The determinism in high-dimensional chaos cannot be modeled without large numbers of variables,
and in the limit, infinite-dimensional chaos is noise.

'*In principle. there are some difficultics with this approach. The Box-Jenkins cstimate of the

ARIMA process may not succeed in removing all forms of lincar dependence. In addition, the
sampling distribution of the BDS test statistic is affected by the nonzero variances of the coetlicient
estimators in the ARIMA process. Although exact analytical results are not available on the effects
of these problems on the test statistic. a large and growing body of Monte Carlo results has cast
much light on implications of these matters for the use of the test. In particular. the power of the test
depends upon the setting of the embedding dimension. the metric bound. and the time delay within
the test statistic. and the Monte Carlo results provide useful information on the settings that
maximize power. See, c.g.. Brock et al. (1991) and Hsich and LeBaron (1991). In addition, Hsieh and
LeBaron (1991) have found that the effect of the nonzero variances of the coeflicient estimators in the
ARIMA process is small in models for low order ARMAs for samples of 300 or more with modest
settings of the embedding dimension. Furthermore, by bootstrapping BDS under the null, these
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the data.!” Irrevery case, the Box-Jenkins approach resulted in setting j = 0 (so
the fit was ARMA). The BDS test statistic asymptotically becomes a standard
normal Z statistic, under the null of pure whiteness. The null of pure whiteness is
rejected, if the test statistic is large. By convention with a Z statistic, ‘large’
means larger than 2 or perhaps 3.1®

The test has two free variables, the embedding dimension m and the metric
bound . which can be set at various levels to check for robustness.’” The need to
choose the values of ¢ and m can be a complication in using the BDS test. We
adopt the approach used by advocates of the test. In particular, we set ¢ equal to
the standard deviation of the data.”® At our chosen setting for ¢, we produce the
BDS test statistic for all settings of embedding dimension from 2 to §, in the
hope that the same inference will be produced at each of those embedding
dimensions. Fortunately in our large sample cases, the inference was robust to
the setting of m within the 2 to 8 range.”!

{footnote 16 continued).

problems can be mitigated somewhat. This bootstrapping can be done using LeBaron's software
written in C-source code that will run in a UNIX eavironment. That code is available at the web
location provided in footnote § above. One further can do convergence experiments of bootstrap for
BDS along the Jines of LeBaron's cxperiments on page 1754 in Brock et al. {1992).

Y7 Here i is the order of the AR (i) autoregressive part, k is the order of the MA(k) moving average
part, and j is the number of times that the duta is differenced before fitting the moving average.

8 Strictly speaking. the definition of ‘large’ should depend upon sample size. with rejection
requiring higher values of the test statistic for larger sample sizes. In our experiments, clear rejections
occurred with extremely high values of the test statistic, and clear acceptances occurred with very
low values of the test statistic. As a result, we viewed conclusions with the BDS test to be ambiguous,
when the test statistic was close to the conventional critical values of the test, or when the inference
depended upon embedding dimension.

' In addition, there is a free parameter in the correlation function, and :hat free parameter must
be set at one fixed value. That parameter is the time delay used in embedding the univariate
observations into & multivariate phase space. In this case, a finite choice for that parameter must be
made in cither the Grassberger- Procaccia test or the BDS test. In the BDS test, the convention is to
set the time delay equal to one, so that m successive observations are stacked, without skipping any
intervening obscrvations, in producing the embedded phase space vectors.

2 Through Monte Carlo studies, Hsich and LeBaron (1988) found that the power and size of the
test is maximized when ¢ is selected to be between 1/2 and 1.5 times our choice. Hence our choice is
in the center of that region. We further investigated variations of the setting throughout that range.
Qur inferences were not changed at either the upper or lower bound of the region. Lower settings for
& including the square of the standard deviation, produced results evidencing domination of the test
by noise in the data. In particular, the test statistic became a strong function of embedding
dimension and varied between very positive and very negative values as i was increased at fixed &,

2! Hsich and LeBaron (1991) have found that type I error is large with the BDS test, when the
sample size is no? adequately large. since the nonzero standard error of the ARIMA coefficient
estimators biases the BDS test. By their criterion, our small sample size of 380 observations is barely
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6. The Lyapunov exponent test

A method of testing for chaos is to compute the dominant Lyapunov expo-
nent. Testing for a positive vaiue for that exponent for a bounded system is
equivalent to testing for the sensitivity to initial conditions property of chaos.
Hence, testing for positivity of that exponent produces a direct test for chaos.

Algorithms for estimating that exponent fall into two classes: the Jacobian
method (sce, ¢.g., Ellner et al. (1991)) and the direct method. In the past, such
computations were applied deterministically. In physics experiments with very
large sample sizes and no stochastic shocks internal to the system, noise in the
data could be filtered out (see, e.g.. Smith (1992)} and the Lyapunov exponent
computed by onc of the two approaches. Recently an estimator became avail-
able which is applicable with more modest sampie sizes and with systems
containing internal stochastic shocks. The approach is presented and explored
with simulated data and biological data by Nychka et al. (1992). The approach
proceeds as follows.

Consider the nonlinear autoregressive model of the form

X ::f(-\-x Ly Nge 2L ee s "‘:1~dl,) + ¢ (6])

for 1 €1 < N, where L is the time delay psrameter, d is the length of the
autoregression, and [x,} are real valued.?? Here f is a smooth, unknown
function, and !¢} is a sequence of independent random variables with zero mean
and unknown constant variance. While (6.1) itself is an unlikely data generating
model, Takens’ theorem (Eckmann and Ruelle, 1985) for dynamical systems
states that in this class of nonlinear autoregressions there exists at least one
model that can track any deterministic chaotic solution on an attractor with

{footnote 21 continued).
adequate. Hence, to avoid rejecting a true null hypothesis, we should refrain from rejecting the nuil
unless the test statistic is very large. As mentioned above, our experiment produced unusually
extreme values of the test statistic in many cases. As a result, our clear rejections corresponded to
extremely low tail arcas (P-values), and our clear acceptances corresponded to extremely high tail
areas. We viewed as ambiguous the cases that did not correspond with such decisive tail areas.

Brock. Hsieh. and LeBaron have found that the asymptotic properties of the BDS test deteriorate.
when the embedding dimension increases to more than 3 at sample sizes comparable to ours.
Although we report results with embedding dimensions varying from 2 to 8, the results with
embedding dimensions of 2 or 3 should be given the most serious consideration. But again, we
acquired inferences that were robust to variation of embedding dimension from 2 to § in the large
sample cases, so that the issue regarding deteriorating asymptotic properties with large embedding
dimensions did not arise.

* The procedure that follows is phase space reconstruction in lag coordinates based upon Takens
Theorem. This procedure is standard in this literature. Regarding its use and implications, sce
Broombhead et al. (1992).
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finite dimension, and any such model having that property can be used to
compute the Liapunov exponent of the unknown true data generating process.
The proof of this Takens representation result in the stochastic case can be
found in Casdagli et =\ (1991). Nychka et al. (1992) fit f nonparametrically using
cither a spline or a neural net. They then compute the Liaponuv exponent from
the fitted function, f, using the Jacobian approach.

Based upon the findings of Nychka, Eliner, Gallant and McCaflrey (hereafter
NEGM), Gallant used the neural net approach. As in their study, he used the
feed-forward single hidden layer networks with a single output. The neural net
approach to nonlinear regression has a selection parameter. ¢, which equals the
number of units in the hidden layer of the neural net. Hence, in addition to the
coeflicients 0 of the neural net, there are three paramcters that must be selected
in the NEGM approach: ¢, L. and d.

As appropriate values of d, L, and ¢ are unknown, they must be estimated.
Nychka et al. (1992) recommend selecting that value of the triple {d, L, g} that
minimizes the Bayesian BIC criterion (Schwarz, 1978) jointly in(d, L, g, ), where
0 is the vector of other parameters of the fitted neural net.*? In the more recent
version of the NEGM approach, the closely related GCV (generalized cross
validation)criterion is minimized. In this competition, the GCV criterion, rather
than the BIC criterion, is used. The estimate of the dominant Lyapunov
exponent then is compute from gradient method along the fitted neural net.**
For further details of the implimentation of the test used in this competition, see
Barnett et al. (1995, 1996a, b).?* X

Although the standard error of the Lyapunov exponent estimate 4 is not
known, NEGM display plots that are informative about precision. One plot
illustrates the sensitivity of the estimate of / to variations in the initial conditions
used in estimating the coefficients, 0, of the neural net and to variations in (L, d).
We shall refer to that plot as the ‘NEGM sensitivity plot’. The other plot
illustrates the effect on the estimate of 2 of variations in (L, d) and also indicates

231t should be observed that throughout, we use BIC to stand for ‘Baycsian information
criterion’, and not to Akaiki’s nonBayesian ‘information criterion B, which in some other papers is
called BIC to distinguish it from Akaiki's "information criterion A”.

2 For more details regarding the neural net fit. see McCaflrey et al. (1992). For proof of the
conststeney of the nonparametric function estimator by neural net, sce Gallant and White (1988,
1991).

2% In principle. it should be possible to produce a standard error for the Lyapunov exponent point
estimate, perhaps by bootstrapping. But when noisc is large, the properties of such a bootstrapped
standard ervor are not known, and there has not yet been any published research on the computa-
tion of a standard crror for the Nychka, Ellner, Gallant, and McCaffrey Lyapunov exponent
estimate. Hence we report only the point estimates of the dominant Lyapunov exponents, as
computed by Gallant in this competition.
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the precision of the point estimate of (L, d). We find the NEGM sensitivity plot
to be especially useful, and hence we supply only that plot, both for our large
and small samples, in the cases in which evidence of chaos was found with the
NEGM test. That plot is an indication of the sensitivity of 4 to variations in
0 about the least squares estimate at various settings of (L, d).

The procedure for producing the NEGM sensitivity plot is the following. For
eachsetting of (L, d), where L = 1,2, ... ,5andd = 1,2, ... , 6, the valuv of g that
minimizes GCV conditionally upon (L, d) is found. Let (L, d) be that value. The
estimation of ) procceded by first narrowing down the estimates of that vector
to 20 possibilities, through a nested optimization procedure. The one among the
20 that minimized least squares then was selected as the optimum estimate. In
the NEGM sensitivity plot, box plots are displayed indicating the range of
values of the estimated dominant Lyapunov exponent at each setting of (L, d).
with ¢ set at (L, d). The range within the box was acquired at each such setting
of (L, d, g) by varying 8 over the 20 possibilities for 0 attained through the nested
iteration.®

The scatter within any such box illustrates the numerical stability of recover-
ing a similar estimate of 4, when only the starting values of 0 are varied. Moving
between boxes indicates the sensitivity of the estimate of 4 to variations in (L, d).

7. The White test

In White's test, the time series is fitted by a single hidden-layer feed-forward
neural network, which is used to determine whether anyv nonlinear structure
remains in the residuals of an AR process fitted to the same time serics. Recent
simulation studies have produced evidence that White's test against nonlin-
carity, based upon that model of the process, has power against a variety of
nonlinear processes. The null hypothesis for the test is linearity in the mean
(relative to the information set of lagged observations). All results using White's
test were obtained using an implementation of White's test, programmed and
applied in this competition by Jochen Jungeilges.

The test procedure applied is essentially due to Halbert White, who proposed
his neural network test in White (1989a, b). Efforts to study the operational

2* A box plot is a graphical display of the center and spread of a set of peints and the deviant
points within the set. The shaded box indicates the interquartile range (1QR} of the data, The lower
limit of that shaded box is the 25th percentile, and the upper limit is the 75th percentile. The (white)
horizontal line within the box is located at the median, The whiskers that extend from the tep and
bottom of the shaded box are the dotied lirics capped by brackets at cach end. The whiskers extend
to either the extreme values of the data or to 1.5 < IQR from the center of the shaded box, whichever
is fess. The horizontal (black) lines mark deviant points that fall outside the limits of the whiskers.
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characteristics of this test against nonlinearity in the mean were undertaken by
Lee et al. (1993) and Jungeilges (1996). These studies demonstrate that the test
has appropriate size as well as power against various types of nonlinearity in the
mean. Details of the algorithm used are given in Jungeilges (1996).

The rationale for White’s test can be summarized as follows: under the
hypothesis of linearity in the mean, the residuals obtained by applying a linear
filter to the process should not be correlated with any measurable function of the
history of the process. White's test uses a fitted neural net to produce the
measurable function of the process’s history and an AR process as the linear
filter. White’s method then tests the hypothesis that the fitted function does not
correlate with the residuals of the AR process. The resulting test statistic has an
asymptotic chi squared distribution under the null of linearity in the mean. See
Lee et al. (1993, Section 2) for a presentation of the test statistic’s formula and
computation method.

The formal test is conditional upon the choice of a direction, and in White’s
method the direction in which the test looks for nonlinearity is chosen at
random.”” See, e.g., White (1989a) and Kuan and White (1991) for details. In
White (1989b), it is pointed out that under certain assumptions the parameters
of the network do not have to be estimated. White argues that a procedure
involving regression and the extraction of principal components leads to an
asympiotically equivalent test procedure. See White (1989b), Lee et al. (1993),
and Jungetlges (1993).

The order of the AR process is chosen by a conventional selection criterion.
For each series in this competition, Jungeilges chose the order which minimized
the Schwarzian Bayesian Information Criterion (BIC). This criterion provides
asymptotically unbiased order estimates. In Jungeilges (1996), it is demonstrated
that choesing the order of the AR process via the BIC criterion may improve
the power of White's test against nonlinear chaotic data generating process
relative to the power of the version of the test involving alternative selection
criteria.

8. The Kaplan test

We begin our discussion of the Kaplan test by reviewing its origins in the
chaos literature, although the test is used in this competition as a test of linear
stachastic process against general nonlinearity, whether or not woisy or chaotic.
In the case of chaos, a time serics plot of the output of a chaetic system may be
very difficult to distinguish visually from a stochastic process. However., it is well

2" For a related procedure. see Bicrens (1990),
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known that plots of the solution paths in phase space (x,., plotted against
X, and lagged valucs of x,) often reveal deierministic structure that was not
evident in a plot of x, versus . A test based upon continuity in phase space has
been proposed by Daniel Kaplan. For a detailed discussion of the implementa-
tion used in this competition, see Barnett et al. (1996).%%

Bricfly he has used the fact that deterministic solution paths, unlike stochastic
processes, have the following property: points that are nearby are also nearby
under their image in phase space.?’ Using this fact, he has produced a test
statistic, which has a strictly positive lower bound for a stochastic process, but
not for a deterministic solution path.*® By computing the test statistic from an
adequately large number of lincar processes that plausibly might have produced
the data, the approach can be used to test for linearity against the alternative of
noisy nonlinear dynamics. The procedure involves producing linear stochastic
process surrogates for the data and determining whether the surrogates or
a noisy continuous nonlinear dynamical solution path better describe the data.
Lincarity is rcjected, if the value of the test statistic from the surrogates is never
small enough relative to the value of the statistic computed from the data.

More formally stated, the procedure is the following. If we define the vector x,
= (Xpa Xy o5 Np 200 -+ s Xp—(m~ 1)) €mbedded in m-dimensional ‘phase space’, then
there is a recursive function giving x,.. = f (x,) with the fixed positive integer
time delay . Here x, . is called the ‘image’ of the point x, in phase space. For
perfectly deterministic systems with a continuous f, nearby points in m-dimen-
sional phase space will have nearby images. For a stochastic system, on the
other hand, nearby points in phase space may have very different images.

In terms of the delta-epsilon proofs of continuity familiar from calculus,
distance in phase space plays the role of 8, and distance of the images plays the
role of &« For a given choice of cmbedding dimension m, one calculates
0 = |x; — x;] and &; = |x;5 . — xj+.), for all pairs of time subscripts (i, j). The
average of the values of ¢;; over those (i, j) satisfying d;; < r is defined to be E(r).
For a perfectly deterministic system with continuous f. one expects to have
E(r)—0asr—0.

Kaplan’s test statistic K is the limit of E(r) as 1 — 0. For a system that is not
perfectly deterministic, one way of interpreting the nonzero value of K is as
a goodness of fit measure from fitting a continuous model of some fixed order to

2% The implementation of his test described and used in Barnett ct al. (1995) differs somewhat from
that used by Kaplan in this competition.

29 That is, if x; and y, are closc to cach other and their lagged valucs also are closc to cach other,
then x, .y and v, ¢ also are close to cach other.

3 Praducing results on statistical significance requires multiple Monte Carlo trials with the
process.
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an infinite amount of data (so that overfitting was not an issue). If this measure
of fit is smaller for the data than for surrogate data generated from a model that
satisfies a stated null hypothesis, then there is evidence that the nulil hypothesis
should be rejected. In order to test for linear dynamics, Kaplan generated 20
lincar surrogates, produced to have the same histogram and a similar autocorre-
lation function as the actual simuiated data used in this competition. The time
series were embedded in 1, 2, 3, and 4 dimensional spaces.*!

Two methods exist for computing the minimum value of K consistent with the
surrogates. The simplest method is to compute the minimum value of K from
the finite number of surrogates, and impute that to the population of surrogates
consistent with the procedure. A more appealing approach is to compute the
mean and standard error of the values of K from the sample of 20 surrogates and
then subtract a multiple (conventionally 2 or 3) of the standard error from the
mean to get an estimate of the population minimum. Using a multiple of 2, the
conclusions reached below from the Kaplan test are the same for either of the
two methods. In the tabulated results, we provide both the minimum value of
K from the 20 surrogates and the mean and variance of K from the surrogates.
Under the assumption of normality of the distribution of K from the population
of surrogates, conclusions could be reached about statistical significance. But we
do not provide such an interpretation, since the normality assumption may be
a poor approximation, and not enough surrogates were generated to produce
a Monte Carlo inference about statistical inference.??

9, Resuits
9.1. Overview

The following is a summary of the successes and failures of each of the tests in
the competition, with each test judged relative to the null that it is designed to
test. More detailed discussion follows.

3 Kaplan's convention for defining embedding dimension differs from that used by BDS. Add 1.0
to Kaplan's or NEGM’s embedding dimension to get the embedding dimension using the BDS
convention. In Kaplan's and NEGM’s convention, the embedding dimension is the dimension of the
space in which o;; is caleulated. The procedure that Kaplan used to produce the surrogates and to
approximate his test statistic K with the actual and surrogate data are described in Barnett et al.
{1996). Also see Kaplan (1994).

32 The decision on the initial number of surrogates used was made by Kaplan during the
competition. After the fact. it would be possible to run more replications to produce inferences about
statistical significance, but one of the rules of the competition was that no additional computations
or madifications to conclusions were permitted after the competition was closed and the identities of
the generating models revealed. Hence the generation of further surrogates at this point (which in
fact was offered by Kaplan) is precluded by the rules.
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The Hinich bispectrum test is a test of the null hypothesis of lack of third-
order nonlinear dependence. With the small sample, the test was correct in three
out of the five cases an-! failed in two of the cases. With the large sample, the test
was correct in three ¢! the five cases, failed in one case, and was ambiguous in
onc casc. The associated Gaussianity test, is a test of a necessary and not
sufficient condition {or Gaussianity and hence can reject but not accept. Judging
the test on its rejections of Gaussianity, the small sample results produced only
two rejections, and both were correct rejections, With the small sample, the test
produced four rejections, and all four were valid rejections.

The BDS test entered into this competition is a test of the null hypothesis of
linearity of the process.’® With the small sample, the test was correct in two
cases out of five and ambiguous in the other three. With the large sample, the
test was correct in all five cases.

The NEGM test is a test of the null hypothesis of chaos. The test was correct
in all five small sample cases and all five large sample cases.

White’s test is a test of the null of linearity in the mean. In the small sample
cases, the test was correct in four out of the five cases, and failed in the remaining
case. In the large sample cases, White's test again was correct in four out of the
five cases, and failed in one case.

Kaplan's test is a test of the null hypothesis of linearity of the process.>* The
test was correct in all five cases both with smail samples and large samples.

9.2. Results with the Hinich test

Tables 1 and 2 provide the resuits of the Hinich test without prewhitening.
The tests are one sided, so that the hypotheses are rejected if the test statistics are
‘large’, perhaps exceeding 2 or 3 by conventional standards. Recall that the null
for the Hinich ‘lincarity’ test actually is lack of third-order nonlincar depend-
ence, and ARCH and GARCH processes with Gaussian innovations do not
exhibit third-order nonlinear dependence. Hence in the discussion below and
the table, the word “linearity’ should be understood to mean absence of third-
order nonlinear dependence. Also recall that the Gaussianity test is a test for
a necessary but not sufficient condition for Gaussianity, so that strictly speaking

33 This conclusion follows from the fact that the prefiltering of the data was with an estimated
ARMA process. If the larger class of lincar in the mean processes had been filtered out of the data
before running the test, the test would have had lincarity in the mean as its null.

*#This conclusion follows from the fact that he used only linear filters among his surrogates. If he
had also included linear in the mean processes. such as ARCH and GARCH, his test could have been
used to test the null of lincarity in the mean. With Kaplan's test the null is defined by the class of
models used in producing the surrogates.
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Table 1
Hinich bispectral test with sample size = 380

Process Gaussianity Linearity  Comments
H Z

I (Feig) 1.20 — 284 Weakly accept Gaussianity and strongly accept
lincarity

I {GARCH) 1.89 - 1.83 Weakly accept Gaussianity and strongly accept
linearity

11 (INLMA) 9.79 0.01 Strongly reject Gaussianity and accept linearity

IV (ARCH) 200 —1.03 Reject Gaussianity and accept linearity

V (ARMA) - 8.10 —935 Strongly accept hinearity and Gaussianity

Note: The lincarity test is more formally a test of lack of third-order nonlinear dependence. The
Gaussianity test is a test of a necessary but not suflicient condition for Gaussianity, and hence the
word “accept’ for this test should be interpreted to mean “not reject’. The data were not prewhitened.
Framesize = 11. The word strongly accept is used when the tail arca of the test far exceeds 0.10.

Table 2
Hinich bispectral test with sample size = 2000

Process Gaussianity Linearity Comments
H Z

I (Feig) 18.37 ~12.15 Strongly reject Gaussianity and strongly accept
linearity

I (GARCH) 3.74 — 0.6} Reje~t Gaussianity and accept lincarity

HI(NLMA) 13.64 1.84 Strongly reject Gaussianity and marginally accept
linearity

IV (ARCH) 38.05 0.41 Strongly reject Gaussianity and accept linearity

V(ARMA) - 8.17 - 1203 Strongly accept linearity and Gaussianity

Note: The lincarity test is more formally a test of lack of third-order nonlincar dependence. The
Gaussianity test is a test of a necessary but not sufficient condition for Gaussianity, and hence the
word “accept’ for this test should be interpreted to mein “not reject’. The data were not prewhitened.
Framesize = 21,

the test can reject but cannot accept Gaussianity. We nevertheless shall use the
word acceplt, since ‘not reject’ is awkward, but with the qualification that accept
really means not reject in the case of the Hinich Gaussianity test.

First consider the small sample results in Table 1. Gaussianity is rejected in
case HI. The Gaussianity test results are also dramatic in case V. In that case
‘acceptance’ of Gaussianity is very strong. Regarding the linearity test, again the
most dramatic case is case V, in which linearity is very strongly accepted. Since
case V is the linear process, the fact that both Gaussianity and linearity are most
strongly accepted in that case is a favorable result for the Hinich test.
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Lack of third-order nonlinear dependence is accepted in each of the cases, II,
111, and IV, but in a less extreme manner than with the linear process, V. That
conclusion is correct in cases II and IV, but not in case III. The Gaussianity test
results are especially mixed in those three cases, with a very strong (and correct)
rejection in case III and a marginal ‘acceptance’ in cases Il and 1V .33

The results with case I may seem to be surprising, since case I is the purely
deterministic and chaotic Feigenbaum map. Despite the deep nonlinearity of
that generating mechanism, and despite the fact that no noise was introduced
into that data, the Hinich test accepted linearity and weakly accepted Gaussian-
ity, although the acceptances were not as dramatic as with the linear process,
case V. However, an explanation does exist. The bispectrum test is known to
have low power against certain forms of chaos that produce irregular and widely
spaced spikes in the bispectrum. Such singular spikes can be difficult for the
Hinich test statistic to detect, although those become evident from visual
inspection of the bispectrum. See, e.g., Ashley and Patterson (1989, p. 690). Our
case I data were produced {rom a chaotic map that Ashley and Patterson have
found to generate a form of chaos that is difficult for the bispectrum test to
detect without direct inspection of the bispectrum plot itself. Since we structured
this competition in the form of a controlled competition, we did not permit the
use of such informal inspection of plots as a means of generating conclusions.
We insisted that the bispectrum test results be based solely upon the use of the
scalar Hinich test statistic.

Now consider the large sample results in Table 2. Again the clearest result is
the acceptance of linearity and Gaussianity in case V, which indeed was
produced from a Gaussian, linear process. In the other cases, the results are
similar to those with the small sample, but stronger. In particular, the test
continues not to detect the nonlinearity in the chaotic data, but now very
strongly rejects Gaussianity. In the nonchaotic nonlinear cases, I1-1V, the test
correctly concludes that ARCH and GARCH do not exhibit third-order nonlin-
ear dependence, but incorrectly accepts lack of third-order nonlinear depend-
ence in case I1I, although only marginally. However, with the larger sample the
test correctly and strongly rejects Gaussianity with the GARCH data and very
strongly rejects Gaussianity with the ARCH and nonlinear moving average
data.

It appears that a rejection of linearity with the Hinich test would provide very
dramatic support for the conclusion of nonlinearity, but acceptance of the null
of linearity with that test provides only weak support for the linearity, since the
test, as currently constructed, actually tests the broader null of absence of

358ce Dalle Molle and tlinich (1991, 1995) and Walden and Williams (1993) regarding the
trispectrum test which has high power against those alternatives.
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third-order nonlinear dependence. Hence if ‘linearity” is accepted with that test,
further testing by other means would seem to be in order.®®

9.3. Results with the BDS test

Results with the BDS test are reported in Tables 3 and 4. The data were
prewhitened by Box-Jenkins estimation of an ARIMA model, as a means of
removing linear dependence. Hence, with the exception of case V, the BDS test
with the large samples appears to be detecting nonlincarity in all of our data
series. In addition, the rejection of linearity in case I is extreme. This is a very
favorable result for the BDS test, since case V was the only linear case, and case
I is the chaotic Feigenbaum map data.

The results are similar with the smaller sample in the two extreme cases of
linearity and chaos, but not as successful in the nonchaotic nonlinear cases. In
particular the test’s results with the small sample are ambiguous in all of the
nonchaotic nonlinear cases, since the test statistic is too unstable against
variation of the embedding dimension in those cases to produce an unambigu-
ous conclusion. However, the rejection of linearity with the chaotic case I data
remains extremely strong, and the acceptance of linearity with the case
V ARMA data is fairly clear, although some ambiguity is introduced by the
result at m = 6.

In both the small sample and large sample cases, the evidence of nonlinearity
is stronger with the ARCH data than with the GARCH data. Although this
result is somewhat surprising, the Kaplan test produced the same conclusion, as
discussed below. Perhaps both tests have somewhat higher power against
ARCH than GARCH.

These resuits are consistent with the prior findings of high power of the BDS
test against a vast class of nonlincar alternatives. Evidently the test is triggered
by any evidence of nonlinearity in the data. If the null is rejected, other tests
should be used to permit the class of relevant alternatives to be narrowed. If the
null is accepted, there is little point to continue further, since an acceptance of
linearity by the BDS test is a strong result.

Much of the Monte Carlo research that has been published on the BDS test
{e.g., Hsich and Le Baron (1991)} has emphasized the pretesting issue and the
potential dependence of the properties of the test on the prior linear filter. The
results in Tables 3 and 4 suggest that the past emphasis on those concerns was
well directed, since the prior linear filter selected in both the large sample and
small sample linear case (case V) was not correct. Some of the test’s sensitivity to

** In that regard, an important new related test in the time domain has been proposed by Hinich
(1996). But as discussed above, we have not included that newer test in this competition.
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Table 3
BDS test Z statistics. Residuals from ARIMA fit to simulated data with 380 observations

Process FFitted ARIMA  Epsilon  Embedding BDS Z Decision
order (i, j. k) dimension Statistic

I (Feig) (0.0.0) 0.122 82.33 Reject lincarity
156.37  (very strongly)
270.50
507.63
994.15
2032.00
4286.00

0.35 Awmbiguous
1.68
2.56
3.03
291
8.31
~-4.16

3.57 Ambiguous

4.76 {weakly reject linearity)
4.03

285

229

0.39

0.59

426 Ambiguous
4.49 (weakly reject linearity)
393
372
3
1.62
- LIt
- 0.99 Accept hincarity
- 1.34
0.24
1.31
2.50
1.50
- 0.78

IL(GARCH) (0,00 0.084

I (NLMA)  (0.00) 0.078

IV (ARCH}) (0,00 0.076

Sip WY 2N D R WY NN W S N DU e W
!

=2

V (ARMA) (20.0) 0.074

bW N

[2. S B

Note: The order of the fitted ARIMA process was acquired by Box--Jenkens methodology. The
ARIMA fit detected and filtered out linear structure only in Process V. The resulting estimated
coeflicient of the AR(1) term was 1.08025, and the estimated coeflicient of the AR(2) term was
—0.12002. The BDS Z statistic is asymptotically standard normal under the null of whiteness, and
the test is one sided. with rejection if Z is large (perhaps exceeding 2).
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Tuble 4
BDS test Z statistics, Residuals from ARIMA fit to simulated data with 2000 observations

Process Fitted ARIMA  Epsilon  Embedding BDS Z Decision
order (i, j. k) dimension statistic

I (Feig) ©0.0) 0.012 262.15  Reject lincarity
52882  (very strongly)
1065.80
2383.60
5631.60

13.904.00

35,434.00

345 Reject lincarity
499

6.66

7.65

8.81

10.02

9.47

8.55 Reject lincarity
11.84 (strongly)
13.76

14.81

16.07

19.07

2382

16.65 Reject lincarity
10.06  (strongly)
15.73

1548

16.31

17.52

17.10

1.15  Accept linearity
1.51

L1

0.77

1.03

0.14

099

HAGARCH! (0,00 0.060

Fa el 10 B~ TN L S e B9

1 (NLMA)  (0.0.0) 0.053

ESO PN B - R - )

IV (ARCH) 0.0.0) 0.032

L~ DB Wl N

V(ARMA) {1,0.0) 0.079

o B RV e

Note: The order of the fitted ARIMA process was acquired by Box-lenkens methodology. The
ARIMA fit detected and filtered out lincar structure only in Process V. The resulting estimated
coefficient of the AR(1} term was 0.96963. The BDS Z statistic is asymptotically standard normal
under the null of whiteness. and the test is ene sided. with rejection if Z is large (perhaps exceeding 2).
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nonlinearity could be a result of remaining linear dynamics in the data. How-
cver, the BDS test in this competition did successfully accept linearity in the
linear cases, despite the fact that the test’s prior linear filter in the linear cases
was never estimated to be the correct ARMA (2.1) process.

In short, the BDS test and the Hinich test have very different capabilities.
While a rejection of linearity is a dramatic result with the Hinich test, which
is not easily triggered, the BDS test’s null is rejected over a vast range of
alternatives.

9.4. Results with the NEGM test

With the NEGM Lyapunov exponent test, the GCV estimates of the para-
meter triple, (L. d. ¢). are displayed in Table 5. The dominant Lyapunov
exponent estimates are provided in Table 6. According to this test. only case
I appears chaotic. The same conclusion was reached with both the large and the
small sample. This result is very favorable for the NEGM test, since case | is the
only case of chaotic data. Since the test is a test of chaos rather than of general
nonlinearity, comparisons among the results with cases [I-1V are not meaning-
ful, aside from the fact that the test correctly recognized the fact that the
nonlinearity in that data was not chaotic. Figs. 1 and 2 indicate the sensitivity of
the Lyapunov exponent estimate to variations in the parameters for case L. See
Section 6.3 for details of the construction and interpretation of those plots.

The NEGM sensitivity plots for the small sample chaotic case, case I, are
displayed in Fig. 1. According to Table 5, the GCV estimate for (L, d) with the
small sample Feigenbaum data is (1, 1). Observing the box corresponding to
(L.d)= (1, 1) in Fig. 1, we sce that the entire range of the box is above zero.

Table 5
Dominant Liapunov exponent estimation: Scicction of delay, number of lags, and number of hidden
units

Process (L. d. ¢) Triple that minimizes GCV

380 Observations 2000 Observations
[ (Feig) (LLY) (1.24)
11 (GARCH) (4.3.1) (4.4.2)
HI(NLMA) (1,2.3) {1.3,8)
iV (ARCH) (1.6.2) (1.6.3)
V (ARMA) (.. (13D

Note: Each entry in the table is the GCV sclection {minimizing the gencralized cross validation
criterion) of the triple. (L. d. ). where L is the time delay parameter, d is the number of lags in the
autoregression, and g is the number of units in the hidden layer of the neural net. The data were not
prewhitened.
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Process Dominant Liapunov Cenclusion

Exponent

380 2000 380 2600

observations observations observations observations
I (Feig) 0.0168 0.0130 Accept chaos Accept chaos
HAGARCH) - 1.3379 - 0.394 Reject chaos Reject chaos
It (NLMA) - 03716 -0.298 Reject chaos Reject chaos
IV (ARCH) - 0.9634 -0.517 Reject chiaos Reject chaos
V (ARMA) -~ 00539 - 0.038 Reject chaos Reject chaos

Note: Data was not prewhitened. The Liapunov exponent was computed from the fitted time series
using a neural net noaparametric fit. Logarithms are natural logarithms.
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Fig. 1. NEGM scnsitivity plot with Feigenbaum small sample: Indicates sensitivity of the 2 estimate
to the initial condition for ¢ and to variations In (L, d).

Hence the inference of chaos is robust to variations in the parameter vector
# within the 20 cases selected by the nested iteration. Furthermore, observe that
the inference of positive Lyapunov exponent is robust to an increase in either the
time lag, L, or the number of lags, d, but not to a simultaneous increase in both.
If d and L are simultancously increased by 1, so that (L, d) = (2,3), the sign of the
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Fig. 2. NEGM sensitivity plot with ARIMA large sample: Indicates sensitivity of the 2 estimate to
the initial condition for 0 and to variations In (L. d).

dominant Lyapunov exponent becomes heavily dependent upon the parameter
vector (). While the use of the neural net method has some instability (and
thereby robustness) problems, the stability of that approach is superior to that of
the other methods that have been considered in this context.*” We do not supply
the analogous plot for the large sample Feigenbaum data, since the large and
small sample plots are similar in that case.

For comparison, the NEGM sensitivity plots are supplied in Fig. 2 for the
large samplc ARIMA data. According to Table 5, the GCV estimate for (L, d)
with the small sample case V data is (1,3). Observing the box corresponding to
(L, d) = (1,3) in Fig. 2, we see that the entire range of the box is below zero.
Furthermore, observe that the full range of every box for each setting of (L, d) in
that plot is negative. Clearly there is not evidence of chaos in the large sample
ARIMA data. The smali sample ARIMA data produced a similar plot.

9.5. Results with White's test

The results with White's test, displayed in Table 7, provide clear evidence
against the hypothesis of linearity in the mean of the growth rate data in case 1.

47 This fact is well established in Nychka ct al. (1992),
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Table 7
Whitc's test

Series Value of test statistic Decision at 5% level
T=380 T=2000 T =380 T = 2000
I (Feig) 299 1998.7 Reject linearity (strongly)  Reject linearity (strongly)
IHHGARCH) 4.95 1.27 Accept linearity Accept linearity
I {NLMA) 5.29 8.20 Accept lincarity Reject lincarity
IV (ARCH) 0.39 0.55 Accept lincarity Accept linearity
V (ARMA) 0.079 7.430 Accept lincarity (strongly}  Reject finearity

Note: The test for lincarity is not against general nonlincarity of the process but against nonlinecarity
in the mean.

which was the chaotic Feigenbaum data. The strength of that conclusion is
evident from the fact that the critical value of the test at the 0.05 level is 5.99,
with rejection for values of the test statistic exceeding that critical value. In that
case, White's test strongly rejected linearity in the mean with both the small
sample size and the large sample. The test correctly accepted linearity in the
mean with both the small sample and the large sample of the ARCH and
GARCH processes. Although ARCH and GARCH are nonlinear processes,
they are lincar in the mean,

In the case of the nonlinear moving average data, White's test was able to
reject linearity with the large sample, but not with the small sample. The
converse happened with the lincar ARMA data. In that case, White’s test
correctly accepted linearity with the small sample, but then rejected linearity
with the large sample. The rejection of linearity in the large sample ARMA case
is a puzzling failure of the test.

The direction in which the test looks for nonlinearitics is chosen at ran-
dom. To obtain a feel for the variability inherent in the test itself, White’s
test was replicated 50 times on each time series. The results are summarized
in Table 8. The table focuses on the location as well as the spread of the
realizations of the test statistic with each data series. The outcome of the
replication experiment implies substantial robustness to the randomly selected
direction. In particular, the strong rejection of linearity in the Feigenbaum case
continues to hold over the entire range of the test statistic in both the small
sample and large sample case. Similarly the acceptance of linearity in the small
sample ARIMA case holds over the entire range of the test statistic within the 50
replications.

The test statistic for series V in Table 7 with the large sample is slightly outside
the range reported for that generating model with the large sample in Table 8.
While odd, this result nevertheless does not represent a contradiction, since the
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Table 8
Selected descriptive statistics for the results of 50 replications of White's test

Serics T Min. Max. Mecan Std. dev.
I (Feig) 380 298.8 299 299 0.023
2000 1998.3 1999 1999 0.145
I1 (GARCH) 380 4.85 5.04 494 0.04
2000 1.91 1.92 141 0.13
I (NLMA) 380 4.26 534 4.77 0.24
2000 6.34 8.29 7.44 0.40
iV (ARCH) 380 0.34 2.32 0.78 0.34
2000 0.26 1.41 0.36 0.17
V (ARMA) 380 0.004 4.135 0.268 0.299
2000 0.900 7.381 4.219 2.002

Note: Min, max, and mean refer to the minimum, maximum, and mean of the test statistic over
the 50 replications, while std. dev. is the standard deviation of the test statistic over the 50

ren! - ations,

g

ivaplan .est statistics, results from simulated data with 380 obscrvations

Process Mcan K on Min K on Std Dev. of  Embudding K on Conclusion

surrogates surrogates K on dimension simulated
surrogates data

I (Feig) 0.121 0.097 00133 i 0.00358 Reject linearity
0.072 0.044 00191 2 0.00365 (strongly)
0057 0.026 00136 3 0.00356
0.049 0.036 0.0098 4 0.00318

I (GARCH) 348 3404 0.0363 I 333 Reject lincarity
346 3.376 0.0484 2 326
348 3.367 0.0540 3 1.04
349 3316 00728 4 291

1H (NLMA) 1412 1.384 00124 1 1303 Reject lincarity
1413 1.364 0.0200 2 L133
1421 1.377 00222 3 1.141
1426 1.365 00325 4 1134

IV (ARCH) L.516 1.492 0.0139 ! 1.281 Reject lincarity
1510 1453 0.0222 2 1.165
1518 1462 0.0335 3 L160
1519 1.433 00443 4 1.155

V(ARMA) 3632 3.565 0.0525 1 N3 Accept linearity
3633 3.494 0.0782 2 3739
3597 3411 0.12% 3 3481
3.531 3.008 0.1981 4 3482

Note: K is the Kaplan test statistic. Twenty surrogates were w. :d, and hence the mean, minimum, and standard
deviations are over the 20 surrogates. Embedding dimension, m. as defined by Kaplan, is m ~ 1, when embedding
dimension is defined as in the BDS or NEGM tests. Hence add 1.0 to cach embedding dimension in the table to
acquire consistency with the definitions used by BDS and NEGM. Time delay was determined as in Kaplan (1994).
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test results reported in Table 7 are not included among the 50 replications used
in producing Table 8.

9.6. Results with Kaplan's test

The null hypothesis for Kaplan’s test is linearity of the process. The results
with Kaplan’s test are displayed in Tables 9 and 10. The test was successful in all
cases, including all generating models and all sample sizes. Based upon the very
low tail area of the test in the case of the Feigenbaum map, Kaplan’s test appears
to have very strong power against chaos and hence can be expected not to
accept linearity when the data is chaotic. However, the test in its current form
can either accept of reject linearity, but cannot accept chaos, which is not the
test’s null hypothesis. In that sense the model is similar to the BDS test, although
the success rate of Kaplan’s test in this competition exceeded that of the BDS
test.

Table 10

Kaplan test statistics, results from simulated data with 2000 observations

Process Mecan K on Min Kon  Std Dev.of  Embedding K on Conclusicn
surrogates surrogates K on di ion simulated

surrogates daia

I (Feig) 0.163 0.086 0.0200 I 4x10°° Reject linearity
0.125 0.110 00119 2 Ixt0® {very strongly)
0096 0.043 0.0166 3 4x10°¢
0064 0019 0.0221 4 Ix10°*"

IH{GARCH) 4003 3863 00738 ] 3905 Reject linearity
3983 3.690 0.1300 2 3661 (marginally)
4006 3.624 0.1457 3 3424
4047 3.701 0.1748 4 3.280

[ (NLMA) 1470 1.405 0.0412 1 1.394 Reject linearity
1473 1.358 0.0559 2 1.240
1457 1.354 00639 3 1135
1458 1.263 0.0869 4 1162

IVIARCH) 1695 1.608 00393 1 1337 Reject linearity
1678 £.581 0.0534 2 £.230
1.681 1.543 0.0779 3 1.173
1.703 1483 00892 4 1161

V (ARMA) 4.382 3.708 03148 1 4.089 Accept lincarity
4.542 3.889 0.3972 2 3.790
4436 X3 0.5381 3 4.355
4181 2623 0.7026 4 4.885

Note: K is the Kaplan test statistic. Twenty surrogates were used, and hence the mean, minimum, and stan-
dard deviations are over the 20 surrogates. Embedding dimension. m. as defined by Kaplan, is m ~ 1, when
embedding dimension is defined as in the BDS or NEGM tests. Hence add 1.0 to each embedding dimension in the
table to acquire consistency with the definitions used by BDS and NEGM. Time delay was determined as in
Kaplan (1994).
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Observe the somewhat stronger rejection of linearity in the ARCH case than
in the GARCH case. Perhaps the Kaplan test may have somewhat higher power
against ARCH than against GARCH. The same result was acquired with the
BDS test.

10. Conclusions

We find some consistency in our inferences across methods of inference,
although there are some clear differences among the power functions of the tests.
It is possible that greater robustness across inference methods might be attained
at much greater sample size, although the results with the 2000 observation
sample size probably capture much of the characteristics of the tests with large
samples.®® None of these tests, which are among the best of the available tests
for nonlinearity and chaos in noisy data, has the ability to isolate the origins of
the nonlinearity or chaos to be within the structure of the economy. These tests,
which do not condition upon any particular economic structure, could detect
deterministic nonlinear or chaotic weather conditions that are transmitted to
economic variables through a linear economic structure, as emphasized recently
by Day (1992).

Two considerations are impertant in interpreting the differences in the results
among some of these tests. One consideration is the differences in the power
functions over alternatives, for fixed null. The other considerati:n is the differ-
ences in null hypotheses of each test. The latter consideration produces a degree
of noncomparability of the tests and the possibility that some of the tests could
be used jointly. For example, the bispectrum test has no power against those
forms of nonlinearity that produce flat bispectrum and non-flat higher order
polyspectra. Hence the ‘linearity” hypothesis usually viewed as the null of the test
actually is correctly interpreted as lack of third-order nonlinear dependence. In
fact the bispectrum test also has low power against those forms of chaos that
produce irregular and widely spaced spikes in the bispectrum. Such singular and
widely spaced spikes can be difficult for the Hinich test statistic to detect,
although the spikes become evident from visual inspection of the bispectrum.3?

% Relative to the literature on empirical cconomics. our large sample is very large. Nevertheless,
much larger samples arc common in the physical sciences, and in some of our results there is
cvidence that the large sample may not be large enough. For example, White’s test in one case did
better with the small sample than with the large sample. It is possible that small sample properties
are still being seen with the 2000 observation data, and an even larger sample would produce better
results.

39 8ee. e.g.. Ashley and Patterson (1989, p. 690). The problem in those cascs is associated with the
fact that the test is based upon only the 80th quantile of an empirical distribution function. Using
more quantiles, or a Kolmogonov-Smirnov statistic using all of the quantiles, could raise power.
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Some of the ‘competing’ tests could be viewed as complementary, rather than
competing, Using all of them jointly can produce deeper insight into the nature
of the nonlinearity that may exist in the data.*® In particular, the BDS and
Kaplan tests are omnibus tests that test linearity against all possible alternatives
to exact linearity. Those tests secem to be very sensitive to departures from
linearity, and the values of the test statistic for the BDS test were dramatically
convincing in the extreme cases of linearity and chaos. The Kaplan test’s
characteristics appear to be similar to those of the BDS test, although the
Kaplan test is newer, and its properties have not yet been as extensively
investigated as those of the BDS test. However, it is noteworthy to observe that
in our experiments the Kaplan test, unlike the BDS test, got the right answer in
every case, with both the large and small samples. Hence it would seem that the
BDS or Kaplan test, or perhaps both tests, could be the first test run to rule out
the narrowest null of exact linearity.

If linearity is rejected with the BDS and Kaplan test, it becomes reasonable
to usc morc focused tests to try to distinguish among the possible forms of
nonlinearity. For example, the bispectral test could be used to distinguish
between third-order nonlinear dependence and other forms of nonlinearity.
if linearity already has been rejected by the BDS or Kaplan test. White’s
test has very high power against chaos and can be used to distinguish
among those noniinear processes that are nonlinear in the mean (such as
the NLMA) and those that are not (such as ARCH and GARCH). Hence
before proceeding to the NEGM test, which is focused specifically on chaos as
the null, White's test could be run. If linearity is rejected with White's test, the
computationally difficult and very focused NEGM test becomes well worth
running.

If used jointly in this manner, problems of pretesting arise, including ques-
tions regarding statistical significance of tests run conditionally upon the results
of prior tests. Nevertheless, we believe that few alternatives currently exist to
sequential learning from data in that manner, since many specific forms of
nonlinear structure are worth investigating, including chaos. Simply rejecting
linearity is not likely to exhaust the useful information in the data about
nonlinear structure.

Finally it should be observed that we hiave by no means exhausted all possible
interesting cases in our competition. For example, the competition woula have
benefited from the inclusion of (1) a higher dimensional case to permit investiga-
tion of the properties of the order determination algorithm used in some of the
tests, (2) an even larger sample to permit determination of whether or not the

#We are indebted to William Brock for suggesting this idea to us in a private correspondence
with William Barnett.



190 W.A. Barnett et al. /Journal of Econometrics 82 (1997) 157-192

2000 observation case was large enough to support the use of asymptotic
inference, and (3) the inclusion of a noisy chaotic case. But the computational
burdens upon the participants in this competition were already pressing the
limits that could reasonably be expected of those courageous enough to subject
their tests to this professionally risky competition.
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