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This paper investigates the existence of a deterministic nonlinear structure in the stock
returns of the Athens Stock Exchange (Greece), an emerging capital market. The
analysis utilizes the concepts of correlation dimension and Kolmogorov entropy, and
it also includes a forecasting experiment. Application of the BDS statistical test to raw
and ® ltered returns series suggests the presence of nonlinearities. The ® ndings provide
very weak, at best, evidence in support of a nonlinear deterministic data generating
process.

I . INTRODUCTION

Numerous studies have investigated the stochastic proper-
ties of stock returns of major national stock markets. The
obtained empirical evidence suggests that stock returns are
not normally distributed but leptokurtic (i.e, fat tailed) and
exhibit dependence in the second moments. To account for
the non-Gaussianity of stock returns, past research sugges-
ted distributions such as stable Paretian and mixtures of
normals as a model of speculative prices (Mandelbrot, 1963;
Fama, 1965, 1976; Blattberg and Gonedes, 1974; Hsu,
1982; Kon, 1984). The autoregressive conditional hetero-
scedastic (ARCH) model suggested by Engle (1982) and
its various extensions have been proposed as models of
conditional volatility of asset returns. The presence of
time-dependent conditional heteroscedasticity in returns
implies that the empirical distribution of returns is un-
conditionally leptokurtic. The ARCH family models and
their applications are surveyed in Bollerslev et al.
(1992). Semiparametric forms of conditional volatility
have also gained acceptance in recent years (Gallant, 1981;
Hamilton, 1989; Hornik et al., 1989a, b; and Kamstra,
1991a, b).

Other researchers have argued that stock returns may not
follow a stochastic process but they might be generated by
deterministic chaos. Chaos refers to bounded steady-state
behaviour that is not an equilibrium point, not periodic,
and not quasi-periodic. Certain parameterizations of non-
linear di� erence equations or systems of at least three

nonlinear di� erential equations can produce chaotic behav-
iour. The distinctive features of chaotic dynamical systems is
a sensitive dependence on initial conditions. This property
means that nearby points become exponentially separated
in ® nite time, which makes the evolution of those systems
very complex and essentially random by standard statistical
tests like the autocorrelation function and spectral density
analysis. Combined with measurement limitations of the
current state, sensitive dependence places an upper bound
on the ability to forecast chaotic systems, even if the model
is known with certainty. Only short-term predictability is
possible. If a deterministic structure is shown to exist in
asset prices, the empirical validity of the weak form market
e� ciency would be questioned. According to the market
e� ciency hypothesis in its weak form, asset prices incorpor-
ate all relevant information, rendering asset returns un-
predictable. The price of an asset determined in an e� cient
market should follow a martingle process in which each
price change is una� ected by its predecessor and has no
memory. The presence of deterministic chaos would indi-
cate the possibility of improved short-term, though not
long-term predictability. Concerning the US, Scheinkman
and LeBaron (1989) reported some evidence of chaos for
daily and weekly stock returns. May® eld and Mizrach
(1992) did not, however, ® nd evidence supportive of chaos in
real-time stock data. Using nonlinearity tests from chaos
theory, Phillipatos et al. (1993) could not infer evidence of
low-dimensional structure in the stock markets across
major economic regions.
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1 See Section III for description of the stock index used here.

In contrast to major stock markets, the question of a non-
linear structure in smaller markets has received little atten-
tion. Outside the world’s developed economies, there is
a host of emerging capital markets (hereafter ECM) in
several developing economies that, in recent years, have
attracted a great deal of attention by international corpora-
tions and investors that seek to diversify further their assets.
The nature of dynamics of stock returns in ECMs is there-
fore of great interest. It must be noted that ECMs are very
likely to exhibit characteristics di� erent from those ob-
served in developed capital markets. Biases due to market
thinness and non-synchronous trading should be expected
to be more severe in the case of ECMs. Also, in contrast to
developed capital markets, which are highly e� cient in
terms of the speed of information reaching all traders, inves-
tors in new capital markets tend to react slowly and grad-
ually to new information. One such emerging capital market
is the Greek stock market.

The Greek stock market is represented by the Athens
Stock Exchange (hereafter ASE), which has about 220 list-
ings for common and preferred equities as of the end of
1990. Until the beginning of 1987, interest in the ASE was
limited to Greek nationals. Then the government freed the
capital movement for securities investments which helped
the market to take o� due to the interest shown by
the European Union (EU) and third country investors.
This movement was further helped by the government
stabilization programme of 1985 Ð 1987, which posi-
tively a� ected company pro® ts and created much optimism
about their future growth. The market rallied during the
® rst nine months of 1987 resulting in an increase of
1068.27% in the stock index.1 This rally was interrupted by
the October 1987 international stock market crisis. Stock
prices fell sharply but, despite the stock prices falling sharply
in the last three months of 1987, the stock index enjoyed its
highest annual return of over 250% during 1987. The mar-
ket did not however, manage to overcome the negative e� ect
of the October stock market crisis and, for the next year and
a half, foreign investors left the Greek market (the stock
index decreased 18.04% in that period). In mid-1989, due to
the impressive positive developments that occurred in
western economies, especially in EU countries, and to the
expectations that the conservative party would return to
power, foreign investors returned to Greece and a new rally
began. In 1990, the return of a conservative government into
power and the expectation towards a more free economy
together with the intention of the government to privatize
many public companies provided a boost to the market and
brought stock prices and trade volume up to record levels.
From July 1989 to the beginning of July 1990 the stock
index recorded an increase of 613.20%. The rally ended
in July 1990 as the market reacted negatively to the

Middle East crisis (the Iraqi invasion of Kuwait) and, later
on, to the loss of the bid for the government to host the
Olympic games in 1996. From July 1990 until the end of
1990 the stock index recorded a decrease of 41.68%.

The Greek authorities are committed to modernizing and
liberalizing the ASE in order to increase its e� ciency and
make it more accessible to international investors. The new
reforms that were introduced by the new stock exchange law
(L. 1806/88) are expected to a� ect the market positively and
lead to the expansion of its activities. The introduction of
new ® nancial instruments, like warrants, options, commer-
cial paper, etc. are currently under way. There is no capital
gains tax in Greece.

There is scant evidence of stock market behaviour in the
ASE. Previous studies have primarily focused on e� ciency
and conditional heteroscedasticity issues using standard
statistical tests. More speci® cally, Papaioannou (1982, 1984)
reports price dependencies in stock returns for a period of at
least six days. Panas (1990) provides evidence of weak-form
e� ciency for ten large Greek ® rms. Koutmos et al. (1993)
® nd that an exponential generalized ARCH model is an
adequate representation of volatility in weekly Greek stock
returns. The intertemporal relation between the US and
Greek stock markets is analysed in Theodossiou et al.
(1993).

In this paper, we investigate the possibility of a determin-
istic nonlinear structure in Greek stock returns which has
not been addressed in previous studies. To our knowledge,
this is the ® rst attempt to examine the presence of chaotic
dynamics in any ECM. We employ the concepts of correla-
tion dimension and Kolmogorov entropy to search for
a chaotic structure in the ASE. To do so, we make use of
high-frequency (daily) data on a carefully constructed stock
index over a ten-year period. We also perform a forecasting
experiment.

The plan of the paper is as follows. Section II describes
deterministic chaos and its diagnostics, namely, the correla-
tion dimension and Kolmogorov entropy. In Section III we
describe the data and present estimates of the diagnostics
for chaos using raw and ® ltered data. A forecasting experi-
ment is performed in Section IV. We conclude in Section
V with a summary of our results.

II . DETERMINISTIC CHAOS

Following May® eld and Mizrach (1992), we study discrete-
time autonomous dynamical systems of the form

xt = F (xt ± 1 ), x ÎRn (1)

where F :U® Rn with U an open subset of Rn. A closed
invariant set AÌ U is the attracting set for (1) if there exists
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2 Besides correlation dimension, other types of fractal dimension exist: the capacity or Housdor� dimension, information dimension, kth
nearest neighbour dimension, and Lyapunov dimension.

an open neighbourhood V of A such that for all x ÎV the
limit set of iterates of (1) as t®¥ is A. A great deal of
empirical research has focused on determining the dimen-
sion of the attracting set for (1).

In the present application, the vector xt is thought of as
the market. What we get to observe is a scalar signal of the
market in the form of a univariate time series of the ASE
stock price index

yt = g (xt) (2)

where g : Rn® R is an observer function of the market,
which is assumed to be continuously di� erentiable. We
therefore observe the time series of stock prices, which
is the output of a dynamical system including a certain
number of variables and obeying certain dynamical laws.
The question is how to recover the market dynamics by
analysing the time series yt. This is accomplished through
the Taken’s (1980, 1983) embedding theorem. De® ne an
m-dimensional vector constructed from the observed time
series

ym
t = (yt, ¼ , yt+ m ± 1 ) = (g (xt), ¼ , g (Fm ± 1 (xt))) º Im (3)

where Fm ± 1 is the composition of F with itself m - 1 times.
Given that the true system that generated the time series is
n-dimensional, Taken’s embedding theorem states that for
smooth pairs (g, F ) the map Im :Rn® Rm will be an embed-
ding for m > 2n + 1.

Taken’s theorem essentially guarantees that if the embed-
ding dimension m is su� ciently large with respect to the
dimension of the manifold on which the attractor lies, the
m-dimensional image of the attractor provides a correct
topological picture of its dynamics (for example, its dimen-
sion and entropy).

Correlation dimension

One important characteristic of a chaotic attractor is its
dimension, which is a lower bound on the number of state
variables (degrees of freedom) needed to describe the steady-
state behaviour. The dimension of a non-chaotic attractor is
an integer, and the dimension of a chaotic attractor is
almost always a non-integer. Almost all strange attractors
are fractals, that is, they possess a non-integer dimension.
To estimate the dimension of the reconstructed attractor we
use the Grassberger and Procaccia (GP: 1983, 1984) algo-
rithm, which makes use of the idea of the correlation inte-
gral.2 De® ne a sequence of m-histories of the ASE index,

ym
t = (yj , ¼ , yj+ m ± 1 ) (4)

that is, the m-dimensional vectors obtained by putting
m consecutive observations together. The correlation inte-

gral measures the number of a vectors within an e distance
from one another and is given by

Cm (e ) = lim
N® `

1
N2 3 # {( j, k) | i ym

j - ym
k i < e },

m = 2, 3, ¼ , (5)

where {L }, i í , N, and m denote the cardinality of the set L ,
some norm, the number of m histories and the embedding
dimension, respectively. As GP showed with e ® 0,
Cm ( e ) ~ e v, where v is the correlation exponent. Therefore
for small e ,

ln2 Cm (e ) = ln2 S + v ln2 e (6)

where S is a constant. The estimate of v as m® ¥ provides
the correlation dimension estimate of the dynamical system.
For m > 2n + 1, Brock (1986) showed that the correlation
exponent is independent of both the norm used and the
embedding m.

The dimension of the dynamical system is determined by
® rst estimating the slope of the regression line of ln2 Cm (e )
on ln2 e and an intercept for each embedding dimension m.
If the data are purely stochastic, the correlation dimension
will equal m for all m (the data are space ® lling). If the data
are deterministic, the slope estimates will s̀aturate’ at some
m, not rising any more as m is further increased. This
saturation value of the slope is the correlation dimension
estimate for the unobserved structure generating the data.

The data for which the correlation dimension method is
applied must be stationary. If the data are nearly non-
stationary, in phase space the reconstructed attractor will be
stretched along a ray, resulting in an underestimation of the
true dimension. Since the ASE30 stock prices are non-
stationary, we perform the analysis on the rates of return.

To ensure that we truly capture nonlinear structure in the
data, we employ the residual and shuƒ e diagnostic tests. To
address the problem of correlated data, Brock (1986) sug-
gested a residual diagnostic test. Consider the model (1), (3)
with F possessing a strange attractor. Brock’s residual test
theorem states that the residuals from a ® nite-dimensional
autoregressive (AR) processes ® t to yt will have the same
dimension as yt. Consequently, we calculate the correlation
dimension for the rates of return as well as for AR- and
AR-ARCH- transformed rates of return.

Scheinkman and LeBaron (1989) proposal another diag-
nostic tool Ð shuƒ ing the data. A shuƒ ing of the original
series results in a series without temporal dependence. For
a purely random process, shuƒ ing will not a� ect the dimen-
sion, since the shuƒ ed series will also be a purely random
process. For a chaotic process of low dimensionality, how-
ever, the loss of structure due to shuƒ ing will result in no

Chaos in an emerging capital market? 233



3 A common tool to diagnose the presence of SDIC in a dynamic system is the algorithm by Wolf et al. (1985), which calculates the largest
Lyapunov exponent of the system (it must be positive for the system to be chaotic). Due to the judgementalnature of the algorithm,we use
instead an approximation to Kolmogorov entropy to examine the orbital instability of the system. Recently, Nychka et al. (1992) and
Gencay and Dechert (1992) proposed alternative algorithms to estimate the Lyapunov exponent(s) of the dynamical system based on the
indirect or Jacobian method.

saturation of the slope estimates. Therefore if we observe
that an actual dimension estimate is less than that of every
shuƒ ed series, that would provide evidence in support of
a nonlinear deterministic process underlying the data.

Kolmogorov entropy

A distinguishing feature of chaotic processes is sensitive
dependence on initial conditions (SDIC): given two distinct
initial conditions arbitrarily close to one another, the
trajectories emanating from these initial conditions di-
verge, at a rate characteristic of the system, until for
all practical purposes, they become uncorrelated. Besides
the dimension, we estimate the Kolmogorov entropy K for
the system, which measures the mean rate of creation of
information.3

The Kolmogorov entropy is a measure of how fast a pair
of states become distinguishable to a measuring apparatus
with ® xed precision under forward iteration (Eckmann and
Ruelle, 1985, p. 637). In other words, it quanti® es the rate at
which indistinguishable paths become distinguishable when
the system is observed with only some ® nite level of accu-
racy. The extraction of the Kolmogorov entropy from an
experimental system is important since this quantity also
quanti® es h̀ow chaotic’ a system is. A regular trajectory has
K = 0. A purely random process has K = - ¥ . A determin-
istic chaotic process is characterized by a ® nite K. Grassber-
ger and Procaccia (1984) showed that the vertical change in
the position of the invariant portion of the correlation
integral over the scaling region in e is a lower-bound esti-
mate of Kolmogorov entropy. They de® ned

K2 , m (e ) = 1
t

ln
Cm (e )

Cm+ 1 (e )
(7)

where Cm (e ) is de® ned as before and t is the delay time
between observations. GP showed that

lim
m® ` , e ®0

K2 , m (e ) ~ K2 (8)

where K2 is order-2 Renyi entropy, which is a lower-bound
estimate of Kolmogorov entropy (K2 < K ).

II I . DATA

The data used are Greek daily stock returns based on the
closing prices of a value-weighted index comprising the
30 most marketable stocks (during the period 1988 Ð 1990) in
the Athens Stock Exchange, referred to as ASE30 hence-

forth. The sample period is 1 January 1981 to 31 December
1990. A main feature of the data set is that prices of indi-
vidual stocks have been adjusted to re¯ ect any distribution
of cash and/or securities, such as cash dividends, stock
dividends, etc. Also, stock prices are adjusted for any
changes in the ® rm’s capital accounts which cause arti® cial
changes in the associated stock prices. This data set is of
relatively high quality, especially compared with the Athens
Stock Exchange composite index. The latter index is very
prone to biases due to market thinness. High quality data
are of great importance in our analysis and we have made
every e� ort to secure them. Figures 1 and 2 provide a graph
of the ASE30 index and the corresponding series of returns
over the sample period.

The period under analysis is of major importance because
it was associated with major changes in the political and
economic environment in Greece. First, in the political arena
the ruling conservative political party was replaced in gov-
ernment by a socialist party which, in turn, was replaced by
the conservative one. Second, during this period Greece be-
came a full member of the EU and undertook many institu-
tional changes in the money and capital markets. These
changes a� ected the investment opportunities of investors
and, consequently, the securities risk-return characteristics.

Before we proceed with formal statistical analysis we
provide some more evidence regarding the performance of
the Greek stock market. 100 drachmas invested on 31 De-
cember 1980 in the portfolio of stocks contained in our
stock index grows to 6005 drachmas on 31 December 1990
resulting in an average Ð in terms of geometric mean Ð an-
nual rate of return of 50.61%. Investors of stocks were
subjected to a large standard deviation (88.75%) of the
annual rate of return. For comparison purposes the asso-
ciated geometric mean (standard deviation) for common
stocks in the US over the past decade was 13.93% (13.32%).
That is, over the period 1981 Ð 1990 the average annual rate
of stock returns in the ASE was about four times larger than
in the US market, while the total risk was about seven times
larger. Figure 3 presents the annual stock returns for every
year in the sample period. The highest annual return was
over 250% in 1987 and the lowest return reached about
- 35% in 1983.

Table 1 reports the summary statistics for ASE30 returns.
The sample mean return is positive and statistically signi® -
cant at the 1% level. There are signi® cant departures from
normality as the series is positively skewed and leptokurtic.
Table 2 reports the autocorrelation structure of the returns
series and its absolute values at various lag orders. There
is evidence of linear dependence as the autocorrelation
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Fig. 1. ASE30 stock index

Fig. 2. Returns series on the ASE30 stock index
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Fig. 3. Y early returns on the ASE30 stock index

4 Application of Engle’s (1982) Lagrange Multiplier test for autoregressive conditional heteroscedasticity to the linearly ® ltered returns
series (Equation (9) below) suggests the presence of signi® cant time variation in the second moment of the returns series. These results are
not reported here to conserve space but are available upon request from the authors.
5 Based on the Schwarz information criterion (SIC) we obtained an AR(3) model; however, the residuals from ® tting this model were
serially correlated. We kept increasing the lag order of the AR model until the estimated residual series did not exhibit any serial
dependence for at least 24 lags (correspondingapproximately to a one-month period). This process resulted in an AR(11) speci® cation for
the returns series; the Q-test statistics (marginal signi® cance levels) for the correspondingresidual vector series for orders 15 and 30 are 7.09
(0.95) and 39.25 (0.12), respectively.

Table 1. Summary statistics of ASE30 returns (1981 Ð 1990)

Statistic ASE30

Mean 0.00188***
Median 0.000755
Standard deviation 0.02156
Skewness 1.0439***
Kurtosis 19.112***
Minimum - 0.1725
Maximum 0.2629

***indicates statistical signi® cance at the 1% level.

coe� cients at lags one and three are statistically signi® cant
(0.281 and - 0.089, respectively). Also, the autocorrelation
structure of the absolute values of the returns series reveals
the presence of nonlinear dependence, which is consistent

with conditional heteroscedasticity and other types of
nonlinearity.4

Based on these ® ndings and following Brock (1986), we
prewhiten the returns series by means of autoregressive (AR)
and autoregressive conditionally heteroscedastic (ARCH)
models. The return series are pre® ltered by the following
autoregression:

yt = b 0 +
1 1

+
i = 1

b iyt ± i + b MDM, t + b T DT , t + b W DW , t

+ b RDR, t + b HHOL t + ut (9)

where DM, t, DT , t, DW , t and DR, t are dummy variables for
Monday, Tuesday, Wednesday, and Thursday, resÂ pectively,
and HOL t is the number of holidays (excluding weekends)
between two successive trading days.5 We next model the
dependence in the second moment of the return series. An
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Table 2. Autocorrelations for ASE30 Returns (1981 Ð 1990)

Original Absolute
Autocorrelations returns series returns series

r (1) 0.281 (0.051)*** 0.515 (0.074)***
r (2) - 0.028 (0.052) 0.400 (0.076)***
r (3) - 0.089 (0.39)** 0.339 (0.055)***
r (4) - 0.076 (0.051) 0.342 (0.075)***
r (5) - 0.037 (0.037) 0.295 (0.052)***
r (6) 0.036 (0.38) 0.325 (0.053)***
r (7) 0.061 (0.36) 0.291 (0.050)***
r (8) 0.036 (0.030) 0.232 (0.040)***
r (9) 0.052 (0.036) 0.265 (0.049)***
r (10) 0.030 (0.040) 0.282 (0.057)***
r (20) 0.042 (0.031) 0.238 (0.042)***
r (30) 0.026 (0.032) 0.190 (0.042)***
r (40) 0.034 (0.026) 0.153 (0.032)***
r (50) - 0.047 (0.027) 0.151 (0.035)***
Q (20) 38.32 [0.007] 601.7 [0.00]
Q (50) 62.42 [0.111] 1171.9 [0.000]

Statistic r (k) is the autocorrelation coe� cient at lag k, Q (k) is
the heteroscedasticity-adjusted Box Ð Pierce Q-test statistic for
autocorrelation of order k (Diebold, 1986). Heteroscedasticity-
consistent standard errors are given in parentheses. Marginal
signi® cance levels are given in brackets.***(**) indicates statistical
signi® cance at the 1% (5%) level.

6 More parsimonious ARCH speci® cations (including speci® cations with declining weighting schemes) as well as generalized ARCH
(GARCH) speci® cations were also estimated. The ARCH(14) speci® cation was chosen over alternative parameterizations for the
conditional-varianceequation on the basis of its superior performance on diagnostic tests for serial correlation in the standardized and
squared standardized residuals. More speci® cally, the Q(15) and Q(30) test statistics (marginal signi® cance levels) for the standardized
residuals are 22.75 (0.11) and 42.40 (0.06), respectively. The Q(15) and Q(30) test statistics (marginal signi® cance levels) for the squared
standardized residuals are 16.36 (0.35) and 20.19 (0.91), respectively. The sum of the ARCH coe� cients is 0.95 and the restriction that the
ARCH coe� cients sum up to unity cannot be rejected: the x 2 test statistic for this restriction takes the values of 0.01 corresponding to
a marginal signi® cant level of 0.91.
7 Brock’s (1986) residual theorem, stating that the asymptotic distribution of the BDS test is not altered by using residuals instead of raw
data in linear models, extends to some nonlinear models but not to ARCH models.

ARCH(14) model is ® t to account primarily for the excess
kurtosis, and the data are ® ltered again. The conditional- mean
equation for the AR(11)-ARCH(14) model has the same form
as in Equation (9), where ut (conditional on past data) is
normally distributed with zero mean and variance ht, such that

ht = g 0 +
1 4

+
i = 1

g iu
2
t ± i + g MDM, t + g T DT , t + g W DW , t

+ g RDR, t + g HHOL t (10)

After estimation we standardize the obtained residuals by
their estimated conditional standard deviations, that is,

zt = uW t

Ï h= t
(11)

where uW t is the residual from the conditional-mean equation
and h= t is its estimated conditional variance.6 The Brock
residual theorem applies to this series as well.

Our subsequent analysis will therefore be based on the
following three series: (i) the original series of returns on
the ASE30 index; (ii) the residuals from passing the return
series through an AR(11) ® lter according to Equation (9);
and (iii) the standardized AR(11) Ð ARCH(14) residuals in
Equation (11).

To obtain additional evidence regarding the presence of
nonlinearities and further motivate our testing for chaotic
structure in the ASE, we perform the test suggested by
Brock, Dechert and Scheinkman (BDS, 1987) to the
returns series and two pre® ltered series. The BDS test
checks the null hypothesis of independent and identical
distribution (i.i.d.) in the data against an unspeci® ed
departure from i.i.d. A rejection of the i.i.d. null hypo-
thesis in the BDS test is consistent with some type of
dependence in the data, which would result from a linear
stochastic system, a nonlinear stochastic system, or a non-
linear deterministic system. Under the null hypothesis, the
BDS test statistic asymptotically converges to a standard
normal variate. However, the asymptotic distribution is not
appropriate when applied to the standardized residuals of
ARCH models.7

Table 3 reports the BDS test statistics for three sets of
data: the returns series and two prewhitened versions
created with the autoregressive and autoregressive condi-
tionally heteroscedastic (ARCH) ® lters in Equations (9)
and (10), respectively. We applied the BDS test to these
three sets of series for embedding dimensions of m = 2, 3,
4 and 5. For each m, e is set to 0.5, 1.0, 1.5 and 2.0 standard
deviations ( s ) of the data. The i.i.d. null hypothesis is over-
whelmingly rejected in all cases for the returns series. When
the BDS test is applied to the AR-® ltered series, we still
obtain strong rejections of the i.i.d. null hypothesis
suggesting that linear dependence in the ® rst moment
does not fully account for rejection of i.i.d in the returns
series. Strong rejections of the i.i.d. null are also ob-
tained when the BDS test is applied to the standardized re-
siduals from the AR-ARCH model in (10) thus suggesting
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Table 3. BDS test results

ASE30 ASE30 AR-ARCH Quantiles of the
ASE30 returns AR-® ltered ® ltered BDS
series returns series returns series distribution

Dimension e / s 2.5% 97.5%

m = 2 0.5 31.49** 25.49** 2.59* - 1.84 1.80
1.0 30.39** 25.14** 2.19** - 1.56 1.55
1.5 27.73** 24.07** 1.91§

2.0 25.27** 22.75** 1.68§

m = 3 0.5 40.45** 32.95** 3.28** - 1.72 1.79
1.0 34.57** 29.63** 2.61** - 1.31 1.31
1.5 29.53** 26.60** 2.07§

2.0 26.04** 24.27** 1.52§

m = 4 0.5 49.89** 40.36** 3.94** - 1.80 1.92
1.0 38.08** 53.04** 2.90** - 1.19 1.17
1.5 30.82** 28.27** 2.05§

2.0 26.00** 24.75** 1.31§

m = 5 0.5 62.63** 49.63** 5.56** - 2.05 2.19
1.0 41.92** 36.72** 3.48** - 1.07 1.10
1.5 32.10** 29.84** 2.22§

2.0 26.20** 25.34** 1.25§

The BDS(m, e ) tests for i.i.d., where m is the embedding dimension and e is distance, set in terms of the standard deviation
of the data (s ) to 0.5, 1.0, 1.5 and 2.0 standard deviations.The AR-® ltered series is the residual series obtained acording to
Equation (9). The AR-ARCH ® ltered series is the residual series obtained according to Equation (10). The critical values
for the BDS test applied to linear series (raw returns and AR-® ltered returns series) are the 2.5% and 97.5% quantiles of
the standard normal distribution, - 1.96 and 1.96, respectively. The critical values for the BDS test applied to
AR-ARCH standardized residuals in the case of e /s = 1.0 they are approximated by the 2.5% and 97.5% quantiles
reported by Brock et al. (1991 Table F3, p. 278) on GARCH(1, 1) standardizedresiduals for 1000 observations; in the case
of e /s = 1.0 they are approximatedby the 2.5% and 97.5% quantiles reported by Brock et al. (1991, Table F4, p. 279) on
GARCH(1, 1) standardized residuals for 2500 observations.** indicates statistical signi® cance at the 5% level. § indicates
that the corresponding critical values for the BDS test statistic are not available and no hypothesis testing has therefore
been performed. However, given the behaviour of the critical values across various values of e /s for each m, rejection of
the i.i.d. null hypothesis is almost certain in those cases as well.

the presence of an unspeci® ed omitted structure. The
evidence clearly suggests that these data are not simple
AR-ARCH processes and the forecastable structure remains
even after accounting for dependence in the ® rst and
second moments. A potential source of the neglected non-
linearity is the deterministic nonlinear structure and we
next test for its presence using the concepts of correlation
dimension and Kolmogorov entropy.

IV . EMPIRICAL ESTIMATES

Dimension calculations

We calculate estimates of the correlation dimension over the
range of embedding dimensions m = 1, 2, ¼ , 15. Results

are reported in Table 4. Columns (1) and (2) report the
estimates for the ordered time series and shuƒ ed time series,
respectively. The average correlation dimension estimates of
20 random draws from the raw and ® ltered series are re-
ported in column (2). We use a uniform pseudo-random
number generator to create our shuƒ ed series, which are
constructed by random draws without replacement from
the associated original series. The results indicate that the
correlation dimension estimates increase very slowly with
embedding dimensions for the three ordered series and are
well below the theoretical values for a completely random
process. However, the levels of dimension estimates do not
reach a plateau even though their rate of change with
respect to embedding dimension is much less than one
and decreasing with embedding dimension, suggesting
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Table 4. Correlation dimension estimates for original and shu§ ed series

ASE30 ARMA ARCH

m (1) (2) (1) (2) (1) (2)

1 0.816 0.540 0.757 0.585 0.646 0.675
2 1.478 1.083 1.383 1.171 1.280 1.352
3 2.054 1.622 1.938 1.756 1.901 2.029
4 2.580 2.159 2.459 2.339 2.511 2.707
5 3.063 2.695 2.966 2.922 3.090 3.386
6 3.500 3.231 3.448 3.510 3.643 4.065
7 3.878 3.767 3.885 4.094 4.189 4.749
8 4.226 4.298 4.283 4.679 4.733 5.433
9 3.565 4.827 4.683 5.257 5.291 6.111

10 4.896 5.353 5.060 5.844 5.873 6.790
11 5.164 5.876 5.413 6.430 6.413 7.464
12 5.364 6.402 5.747 7.024 6.934 8.146
13 5.552 6.928 6.086 7.630 7.440 8.837
14 5.711 7.458 6.392 8.235 7.937 9.507
15 5.842 7.967 6.686 8.826 8.429 10.126

m is the embedding dimension. Column (1) reports correlation dimension estimates for the
original series. Column (2) reports the average correlation dimension estimates to 20 random
draws from the original series.

8 If the time series is a realization of a random process, the slope estimates should increase monotonically with the dimensionality of the
space within which the points are contained. In ® nite data sets, however, stochastic data may give slope estimates which are substantially
lower than the embedding dimension m and which rise slowly with m while chaotic data may not give complete saturation. Consequently,
declaring saturation in ® nite samples can be quite judgemental.
9 It must be noted however that in ® nite samples and in the presence of a non-chaotic series with nonlinear structure, randomizing would
also cause the series to behave as if it were i.i.d. or more space ® lling.

saturation in that respect.8 The correlation dimension esti-
mates increase for the AR series and substantially so for the
AR-ARCH series. This may suggest that: (i) the series fails to
pass Brock’s residual test; and (ii) the strange attractor,
if it exists, is of relatively high complexity. It must be
stressed however, that the noticeable increase in the correla-
tion dimension estimates especially for the AR-ARCH
® ltered series may be inevitable due to the tremendous
® ltering the ASE returns series is subjected to, given our
small sample.

The data appear to pass the shuƒ e diagnostic for chaos.
For the larger embedding dimensions, the average correla-
tion dimension estimates are higher for the shuƒ ed series.
For embedding dimensions greater than seven, the correla-
tion dimension estimate for the ordered series is never
greater than the minimum correlation dimension estimate
of the 20 shuƒ ed series. The evidence in much stronger
for the AR-ARCH series where the shuƒ ing procedure
results overwhelmingly in higher dimension estimates for
the shuƒ ed series at all embedding dimensions. This
suggests that some deterministic nonlinear structure may
exist in the data that are lost when the data are randomly
reordered.9

Based on this evidence, no de® nite conclusions can be
drawn regarding the dimensionality of the system, especially
in light of the small sample size. In interpreting the evidence
it should be kept in mind that the GP algorithm may
produce dimension estimates with substantial upward bias
for attractors and with downward bias for random noise
(Ramesy and Yuan, 1990; and Ramsey et al. 1990). The
evidence in support of a strange attractor in the ASE returns
is very weak at best. The strange attractor, if it exists, is not
of low dimensionality. For comparison purposes, Scheink-
man and LeBaron (1989) estimate the correlation dimension
for US stock returns to be between 6 and 7.

Kolmogorov entropy estimate

Another way to investigate whether a process is chaotic
(rather than multiperiodic or random) is to measure its
Kolmogorov entropy. Actually, even if a system possesses
low dimensionality, it does not imply that it has a strange
attractor; it must also be shown that it has positive entropy.
Kolmogorov entropy is a measure of the amount of the
disorder in the system, or alternatively, of the information
necessary to specify the state of the system. It is zero for
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Fig. 4. Approximation to Kolmogorov entropy

1 0 Experimentation with alternative lag structures for the LWR model produced similar results.
1 1 For details on the method of LWR, see Cleveland and Devlin (1988).
1 2 This suggests that the correlation structure did not remain constant through time.

a stable process, in® nite for a completely random process,
and ® nite for the chaotic process. K2 > 0 is a su� cient
condition for chaos.

As previously indicated, we calculate the Grassberger
and Procaccia (1984) approximation to the Kolmogorov
entropy, denoted by K2 . Figure 4 shows a plot of
[ln2 Cm (e ) - ln2 Cm+ 1 (e )] versus m over the scaling region
for e (e = 0.92 0 to e = 0.93 0 ). These quantities settle down to
a roughly constant value at low embedding dimensions. As
we expected the curves are decreasing, and indeed as m
increases and for small values of e these curves tend to a
common value K2 > 0.50. Its interpretation is that the rate
at which the system processes create or destroy information
is 0.50 bits per day. This estimate is a lower bound on the
metric entropy and is consistent with the chaos interpreta-
tion of the returns series.

For comparison purposes, May® eld and Mizrach (1992)
estimate the entropy for real-time stock data at 0.33 bits per
minute. Frank and Stengos (1989) report estimates for K2

between 0.15 and 0.24 for daily and weekly gold and silver
rates of return.

Taken the evidence from all diagnostic tools for chaos
together, nonlinear determinism can only very weakly be
supported as a representation of the data generating process
for the Greek stock returns. The evidence from the correla-
tion dimension technique is very shaky at best, but more
encouraging results are provided by the entropy estimate.
The dynamical behaviour of the Greek stock returns series
is also likely to be the result of an underlying nonlinear

stochastic dynamical path, possibly subjected to sporadic
shocks.

V. FORECASTING EXPERIMENT

If Greek stock returns are consistent with a deterministic
time path, then the potential for short-term predictability
arises. As Farmer and Sidorowich (1987) argue `Ultimately
the ability to forecast successfully with deterministic methods
may be the strongest test of whether or not low-dimensional-
ity chaos is present’. They suggest a nearest-neighbour fore-
casting method, which is basically the locally weighted re-
gression (LWR), to predict low-to-moderate dimensionality
time series. Hsieh (1991) employed the LWR method to
forecast weekly US stock returns. He also argues that Ìf
stock returns are governed by low complexity chaos, we
should be able to use locally weighted regression to forecast
returns much better than simple models, such as the random
walk. Both Farmer and Sidorowich and Hsieh performed
simulation experiments and showed the e� ectiveness of LWR
to forecast in the case of a number of known chaotic maps.

In this section we make an attempt to explore the poten-
tial for increased forecasting performance by comparing the
in-sample and out-of-sample predictive ability of LWR rela-
tive to simple linear models: a random walk with drift (RW)
and an AR(11) model. The RW model is the benchmark
model. The AR(11) model was earlier found to account
adequately for linear dependence in the ® rst moment of the
returns series. The LWR estimated here is a nonlinear auto-
regression of order 9.1 0 , 1 1 The last 674 observations (one-
third of the sample) are reserved for forecasting purposes, the
out-of-sample forecasting horizon is one step ahead, and the
criteria for forecasting performance are the root mean
squared error (RMSE) and mean absolute deviation (MAD).

Tables 5 and 6 report the in-sample and out-of-sample
predictive performance of the alternative models of ASE30
returns, respectively. Comparing the performance between
the linear models ® rst, we observe that the AR(11) model
outperforms the RW model in-sample on both prediction
criteria, but only on the MAD criterion out-of-sample.1 2

The LWR model signi® cantly outperforms its linear
counterparts in-sample and maintains its superior perfor-
mance out-of-sample on the basis of both RMSE and MAD.
The superior performance of the LWR model holds true for
the vast majority of window sizes, thus providing evidence
of robustness. Not surprisingly, the out-of-sample forecast-
ing improvements of the non-parametric ® t are smaller than
those achieved in-sample. This evidence compares favour-
ably with the disappointing forecasting performance of the
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Table 5. In-sample forecasting performance from alternative models
for predicting ASE30 returns

Window size LWR AR(11)/LWR RW/LWR

0.10 15.5015 1.1991 1.2990
9.6232 1.1146 1.1886

0.20 16.2035 1.1471 1.2427
9.9652 1.0764 1.1478

0.30 16.6406 1.1170 1.2100
10.1021 1.0618 1.1322

0.40 16.8896 1.1005 1.1922
10.1523 1.0565 1.1266

0.50 17.0242 1.0918 1.1828
10.1844 1.0532 1.1231

0.60 17.2016 1.0806 1.1706
10.2448 1.0470 1.1165

0.70 17.3759 1.0697 1.1588
10.3059 1.0408 1.1098

0.80 17.6386 1.0538 1.1416
10.3692 1.0344 1.1031

0.90 17.9401 1.0361 1.1224
10.4045 1.0309 1.0993

AR(11) 18.5885
10.7268

RW 20.1365
11.4385

Window size refers to the percentage of total observations which
are chosen as nearest neighbours. The ® rst entry of each cell is
the root mean squared error (RMSE), while the second is the
mean absolute deviation (MAD). LWR stands for locally
weighted regression with weights given by wit = 1 - u, where
u º i yit - y*t i / + q

i = 1 i yit - y*t i . We also tried the tricube weight-
ing function suggested by Cleveland and Devlin (1988) but the
above weighting function proved superior empirically. The LWR
model is a nonlinear autoregression of order 9. AR stands for
the autoregression model. RW stands for random walk (with
drift). The smallest RMSE and MAD are underlined. AR(11)
[RW]/LWR is the ratio of the forecasting criteria values (RMSE
and MAD), obtained from the AR(11) [RW] model, to the ones
obtained from the LWR model.

Table 6. Out-of-sample forecasting performance from alternative
models for predicting ASE30 returns

Windows size LWR AR(11)/LWR RW/LWR

0.10 25.3521 0.9928 0.9877
15.9590 0.9737 1.0100

0.20 24.7629 1.0164 1.0112
15.5636 0.9984 1.0356

0.30 24.5873 1.0237 1.0184
15.3806 1.0103 1.0479

0.40 24.5701 1.0244 1.0191
15.3324 1.0135 1.0512

0.50 24.6058 1.0229 1.0176
15.2826 1.0167 1.0546

0.60 24.2989 1.0273 1.0221
15.2237 1.0207 1.0587

0.70 24.7118 1.0185 1.0133
15.3008 1.0156 1.0534

0.80 24.8285 1.0137 1.0085
15.2698 1.0176 1.0555

0.90 24.9728 1.0079 1.0027
15.2710 1.0176 1.0555

AR(11) 25.1701
15.5399

RW 25.0412
16.1187

See the notes in Table 5 for an explanation of the table.

LWR model in the case of the US stock returns (Hsieh 1991;
LeBaron, 1988) or exchange rates (Meese and Rose, 1990,
1991; Mizrach, 1992). The evidence provided by this fore-
casting experiment may be consistent with a chaos inter-
pretation of the Greek stock returns, but it is not conclusive
by any means.

VI . CONCLUSIONS

We apply nonlinear dynamic analysis to a stock price index
in an emerging capital market, namely, the Athens Stock
Exchange in Greece. Application of the BDS test detects
remaining unspeci® ed hidden structure in the Greek stock

returns after accounting for dependencies in the ® rst and
second moments. To test for chaos we rely on the diagnostic
tools of correlation dimension and Kolmogorov entropy,
which capture di� erent aspects of deterministic nonlinear
behaviour. Consistent with similar studies on major stock
markets, we do not ® nd strong evidence in support of
a chaotic structure in the Athens Stock Exchange.

Several explanations can be put forward in interpreting
the obtained evidence. First, the lack of strong convergence
in the correlation dimension estimate is consistent with the
presence of stochastic nonlinearities in the data generating
process of the Greek stock returns. Also, the potential
downward bias in the correlation dimension estimates in
small samples for random noise could further provide
evidence against a chaos interpretation of the evidence.
Second, the evidence could be consistent with the presence
of a higher-dimensional strange attractor. Such an eventual-
ity would, however, be of little help as only low-dimensional
strange attractors (with dimension estimates less than 5 or 6)
could be useful in practice. Finally, an under-appreciated
explanation of the evidence obtained here and in other
related studies is the one o� ered by DeCoster and Mitchell
(1991). Their simulation study demonstrated the lack of
power of the correlation dimension technique to detect the
presence of deterministic structure in sample sizes similar to
ours when slightly complicated structures are considered.
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Consequently, negative evidence on empirical data leaves
open the possibility of slightly complex, yet simple enough
(relative to the real world), deterministic structures. Overall,
the behaviour of Greek stock returns may be consistent with
a nonlinear stochastic process and, unless stronger evidence
in support of chaos is obtained, we deem the present evid-
ence as being only very weakly supportive of a chaos inter-
pretation.

We suggest that a similar analysis be implemented for
other ECMs. Despite temporary setbacks, ECMs will con-
tinue to be important conduits for diversi® cation for inter-
national investors and corporations. For the development
of investment strategies, a complete characterization of
stock returns in ECMs is warranted and nonlinear dynam-
ics should be part of it. If the behaviour of ECMs di� ers, this
should be in the investor conditioning information set.
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