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This article tests for nonlinear dependence and chaos in real-time returns on the world’s four most
important stock-market indexes. Both the Brock-Dechert-Scheinkman and the Lee, White, and
Granger neural-network-based tests indicate persistent nonlinear structure in the series. Estimates
of the Lyapunov exponents using the Nychka, Ellner, Gallant, and McCaffrey neural-net method
and the Zeng, Pielke, and Eyckholt nearest-neighbor algorithm confirm the presence of nonlinear
dependence in the returns on all indexes but provide no evidence of low-dimensional chaotic pro-
cesses. Given the sensitivity of the results to the estimation parameters, we conclude that the data

are dominated by a stochastic component.
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1. INTRODUCTION

This article addresses two important questions that have
been the focus of a substantial and still growing literature in
recent years. Is there nonlinear dependence in stock-market
returns? And, if so, is the nonlinear structure characterized
by low-dimensional chaos? In other words, is the apparent
randomness of the time series pattern of returns explicable,
in part at least, by a deterministic process?

Until relatively recently, it was more or less taken for
granted that movements in stock-market prices were over-
whelmingly stochastic in nature, if not actually a random
walk. The assertion seemed unchallengeable not only on
empirical grounds but also for apparently sound theoreti-
cal reasons—namely, consistency with the ruling efficient-
markets paradigm. Moreover, it seems improbable a priori
that the pattern of returns could be explained to any sub-
stantial degree by a deterministic process, given that the
major cause of market movements is normally assumed to
be the random flow of news.

In the last few years, however, several developments have
taken place that have led to serious questioning of the
proposition that stock returns are inherently unforecastable.
First, researchers using conventional econometric methods
have uncovered several deviations from efficiency in the be-
havior of stock prices (Fama 1991). Second, the efforts of
statisticians, econometricians, and physicists have resulted
in the development of several tests capable of detecting
nonlinear as well as linear patterns in the data (see Sec.
2). Third, the exciting progress made in the last 20 years in
understanding the mathematics of nonlinear systems means

that we can now entertain the possibility of certain types of
deterministic process in financial data. In particular, it has
become clear that many low-dimension deterministic non-
linear systems are capable of generating output that is in
most respects indistinguishable from white noise. It is im-
portant to note that, as far as financial series are concerned,
this type of process could be consistent with market ef-
ficiency if it is only forecastable at horizons too short to
allow for profitable exploitation by speculators. The unre-
solved issue addressed in this article relates, therefore, to
whether stock-market index returns are best represented by
a purely stochastic process or rather by a (nonlinear) deter-
ministic structure, presumably with superimposed noise.

As can be seen from Table 1, there is already a substantial
literature examining the questions addressed in this article.
Most of the research so far has concentrated, as we do here,
on stock-market indexes [especially the Standard &Poor
(S&P)] or on exchange rates, though a few have looked else-
where (futures markets, gold and silver prices). The most
commonly deployed test is the Brock—Dechert—Scheinkman
(BDS) test for independence (see Sec. 2), though several au-
thors have relied on estimates of the correlation dimension
itself.

As regards the main conclusions of the literature, there
is a broad consensus of support for the proposition that
the return process is characterized by a pattern of nonlin-
ear dependence. In particular, BDS tests almost invariably
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Table 1. Nonlinearity Testing on Financial Data: Summary of Published Results

Authors Dataset Sample info. Tests Results
Abhyankar, FTSE-100 N = 60,000 (1) Bispectral (1) Nonlinear
Copeland, and cash linearity test (3) No evidence
Wong (1995) (2) BDS of chaos
(3) L.E.
Eldridge and FTSE-100 N =~ 1000, (1) Correlation Not iid and consistent

Coleman (1993)

Hsieh (1993)

Philippatos,
Pilarinu, and
Malliaris (1993)

Krager and
Kugler (1992)

Vaidyanathan
and Krehbiel
(1992)

Vassilicos,
Demos, and
Tata (1992)

Brock,
Hsieh, and
LeBaron
(1991)

Kodres and
Papell (1991)

cash and futures

Foreign currency spots
and futures

Ten major national
stock indexes

Exchange rates
(1) Japanese yen
(2) German mark
(3) French franc
(4) ltalian lira

(5) Swiss franc

S&P 500
futures mispricings

(1) Deutsche mark
(2) Swiss franc
(3) NYSE (daily)

(1) CRSP
value-weighted index
(2) S&P 500

Daily futures
(1) British pound

June ’84 to Sept. '87

N = 1,275
from 22/2/85
to 9/3/90 daily

N = 833, weekly levels
and returns from
Jan. ’76 to Dec. '91

N = 500,
weekly returns from
June '80 to Jan. '90

N = 1,500

N = 20,000 to 30,000

N = 2,510, daily from
2/1/74 to 30/12/83

N =~ 3,500, from
1/7/73 to 17/3/87

dimension test
(2) Wolf's L.E.

Tests of linear
and nonlinear
predictabilities

BDS tests

BDS

(1) BDS
(2) Correlation
dimension test

(1) Wolf's L.E.
(2) Correlation
dimension test

(1) BDS

(2) Tsay

(3) Dimension plots

(4) Sign-scrambling plots
(5) Recurrence plots

BDS

with chaos

No linear and nonlinear
predicabilities

Nonlinear

Nonlinear

Nonlinear and
low-dimensional
chaos (d = 6)

No evidence of chaos

Nonlinearity; nonconstant
variance; little
evidence of nonlinear
forecastability

Nonlinear

(2) Canadian dollar
(3) Deutsche mark
(4) Japanese yen
(5) Swiss franc

reject the null of an iid process. On the other hand, the
evidence on chaos is more mixed, with some evidence of
a low-dimensional structure in the U.S. stock-market in-
dex (Mayfield and Mizrach 1989; Vaidyanathan and Kreh-
biel 1992) but little or none in exchange-rate series (Hsieh
1989, 1993; Tata 1991). Note, however, that this conclusion
is based for the most part on the results of correlation di-
mension tests rather than direct Lyapunov exponent (L.E.)
estimates (but see Vassilicos, Demos, and Tata 1992; Eld-
ridge and Coleman 1993).

A notable feature of the literature summarized in the ta-
ble is that, because most of the published work in this area
relies on relatively low-frequency (typically daily or even
weekly) data, it invariably uses datasets of fewer than 5,000
observations and often much smaller. This is a serious draw-
back for several reasons, which are most apparent in testing
for sensitivity to initial conditions, the hallmark of chaos.
[See Devaney (1989) for a more formal definition.] In the
first place, the scope for applying L.E. methods to datasets
of only 1,000 or so observations is very limited. The prob-

lem is particularly acute in the light of the fact that there
are no rigorous criteria for assessing the significance of L.E.
estimates.

Perhaps most worrying of all, note that, to find sufficient
observations to implement the tests, most researchers were
forced to use data periods measured in years (up to 15
in some cases). The longer the data period, however, the
less plausible is the assumption that the underlying process
could have remained stationary from start to finish, a fact
that makes the results in the table difficult to interpret.

By contrast, for each of our six stock-market indexes
(four cash and two futures) we use high-frequency real-
time datasets covering only three months but still involv-
ing a minimum of 10,000 observations, which means that
we are able to implement several tests of nonlinear depen-
dence. In particular, we apply the now-standard nonpara-
metric test to the prewhitened series, as well as to the output
of generalized autoregressive conditional heteroscedasticity
(GARCH) filters. In addition, we make use of a recently de-
veloped neural-net-based test for nonlinear structure. In the
light of the indications of nonlinear dependence uncovered
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Table 1—Continued

Authors Dataset Sample info. Tests Resuits
Tata (1991) Swiss franc N = 32,200 (1) Correlation No evidence of
dimension test low-dimensional
(2) BDS chaos but nonlinear
Hsieh (1991) CRSP N = 1,297-2,017, data (1) BDS Not iid, nonlinear
from 1963 to 1987 (2) 3rd moment tests
S&P 500 (1) N = 1,500 BDS tests Not iid
(1) Weekly (2) N = 1,700
(2) Daily (3) N =~ 1,800
(3) Four 15-min. returns
Vassilicos (1990) Deutsche mark N = 20,408, Correlation dimension test No low-dimensional chaos

Frank and Stengos
(1989)

Returns of
(1) Gold
(2) Silver prices

ask-quotes from
9/4/89 to 15/4/89

(1) N = 2,900
) N~ 3,100

(1) Correlation
dimension test
(2) Kolmogorov entropy

(1) Dimension of 6-7
(2) Positive;
low-dimensional chaos

Hinich and Dow Jones N =~ 750, Bispectral Non-Gaussian
Patterson (1989) Industrial from 1/9/78 Gaussianity and and nonlinear;
Average to 31/8/81 linearity tests unaliased data
less nonlinear
Hsieh (1989) Major foreign currencies N = 2,510, (1) Box—Pierce Nonlinear
daily closing bid prices from 2/1/74 (2) Ljung-Box
to 30/12/83 (3) BDS
Mayfield and S&P 500 N = 20,088, 20-sec. Correlation Low-dimensional chaos
Mizrach (1989) returns from Jan '87 dimension tests
Scheinkman Daily returns N = 5,200 BDS tests Evidence of nonlinearity
and LeBaron on CRSP on original
(1989) weighted index and filtered
Brockett, Hinich, (1) 10 common U.S. (1) N not given Bispectral Non-Gaussian

and Patterson stocks (2) N = 400
(1988) (2) U.S.$-yen spot
and forward rates
Eckmann, Kamphorst, Daily returns on CRSP N = 5,200

Ruelle, and
Scheinkman (1988)

weighted index

Gaussianity and and nonlinear

linearity tests

(1) Recurrence plots Weak evidence of chaos

(2) Wolf's L.E.

NOTE: L.E. is the Lyapunov exponent test.

by the tests, we proceed to estimate L.E.’s for each of the
series, in an attempt to establish whether the underlying
processes are characterized by extreme sensitivity to initial
conditions.

The results reported here suffice to establish several
points. First, we support the bulk of the literature in find-
ing clear evidence of nonlinear dependence in all four se-
ries at all frequencies examined. Second, this dependence is
largely, but not entirely, explained by volatility clustering,
as specified in the class of conditional heteroscedasticity
models already widely used in financial time series model-
ing. Third, if there is a low-dimensional deterministic struc-
ture generating the data, it is almost certainly not chaotic
(i.e., not sensitive to initial conditions). In view of the in-
stability of the L.E. estimates as the estimation parameters
are varied, however, the most plausible explanation of the
processes observed is that they are predominantly random.

This conclusion reinforces the results of Abhyankar,
Copeland, and Wong (1995) (henceforth ACW) in several
different respects. First, for reasons discussed in Section 2,
our conclusions regarding nonlinear dependence are made

more robust by replacing the Hinich (1982) bispectrum test
used by ACW with the Lee~White—Granger (1993) (LWG)
test.

Second, where ACW examined the behavior only of the
U K. Financial Times Stock Exchange-100 (FTSE-100) in-
dex over the first six months of 1993, the conclusions of
this article relate to all four of the world’s most important
stock-market indexes over a different data period. In the
case of the United Kingdom and the United States, we also
present results on the futures, as well as the cash index.
Our dataset in fact consists of real-time observations for
the period September 1 to November 31, 1991, at 1-minute
frequency in the case of the FTSE-100, the Deutscher
Aktienindex (DAX), and the Nikkei and 15-second fre-
quency for the S&P 500, and transaction prices over the
same period for the FTSE and S&P futures.

Third, and most important, we are concerned here with
index data generated under a wide variety of differing mar-
ket microstructures, ranging from the specialist system of
the New York Stock Exchange to the auction markets of
Tokyo and Frankfurt and the competitive dealership envi-
ronment of London. In addition, each index is different, in
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Table 2. Descriptive Statistics for Index Returns: September— November 1991

Unique No. of
Sample size values zeroes
Frequency N NC NO Minimum Maximum Mean S.D. Skewness Kurtosis
S&P 500

15-second 97,185 19,821 22,011 —.00108 .00084 —.00000 .00007 -.276 10.732
1-minute 24,504 14,884 2,579 —.00257 .00263 —.00000 .00018 —.548 21.486
5-minute 4,898 4,518 189 —.00560 .00450 —.00001 .00054 —.625 15.516

FTSE-100
1-minute 31,200 9,723 14,123 —.00121 .00133 —.00000 .00009 —-911 17.134
5-minute 6,240 4,797 932 —.00324 .00332 —.00001 .00038 —-1.122 13.429
DAX
1-minute 11,340 9,796 1,446 -.01 §60 .00898 —.00001 .00036 -10.513 747.204
5-minute 2,268 2,232 33 -.01910 .00967 —.00003 .00100 —2.803 77.766
NIKKEI
1-minute 16,348 16,164 159 —.00358 .00421 .00000 .00044 1.318 14.729
5-minute 3,172 3,169 3 —.00758 .00733 —.00000 .00113 .436 4.176
S&P 500 FUTURES
1-minute 24,180 4,961 5,442 —.00420 .00359 —2.6E-06 .000365 —.341 8.540
5-minute 4,836 3,147 533 —-.00774 " .00479 —1.3E-05 .000814 -.573 7.159
FTSE-100 FUTURES

1-minute 26,390 1,762 16,728 —.00334 .00375 —5.6E-06 .000303 -.107 7.776
5-minute 5,278 1,497 1,634 —.00606 .00562 —2.8E-05 .00065 —.305 5.820

NOTE: N is the number of observations in the sample. NC is N less the number of repeated observations in the sample. NO is the number of zero observations in the sample. Both skewness and

kurtosis statistics are centered on 0.

terms of how its constituent stocks are selected, the type of
price incorporated, and the way its weights are computed.
The advantage of using such heterorogeneous series is that
we can be confident that any common patterns we succeed
in uncovering must be independent of market structures and
the details of index composition.

In Section 2, we outline our methodology, including two
tests for nonlinearity and two different approaches to esti-
mating Lyapunov exponents. Section 3 describes the main
features of our datasets for each index, and our results are
presented and discussed in Section 4.

2. METHODOLOGY

In this article we implement two tests for nonlinear de-
pendence, the well-known Brock, Dechert, Scheinkman,
and LeBaron (1987) test (henceforth BDS) and the more
recent Lee, White, and Granger (1993) (LWG) test.

The BDS test relies on the limiting value of the correla-
tion integral

C(m,e,N) = I[(t, 8): IX;" = XJ"|| <el/N?, (1)

where X" = (2(t),...,z(t — m + 1)),[ - || is the Lo
norm on R™, and I[-] denotes the number of elements.
Subject only to modest regularity conditions, as N —
00,C(m,e,N) has a limit C(m,¢) such that, if {z(f)} is
iid, it follows that

C(m,e) = C(1,e)™. (2)

This reasoning motivates the BDS test statistic

W(m,e,N) = \/g [C(m,e,N) - C(1,e, N)™], (3)

which converges in distribution to N(0,1) as N — oo.
Moreover, Brock et al. (1987) derived the estimator vari-
ance, providing a basis for tests of the iid hypothesis.

Note, however, that the BDS test rejects iid for linear
as well as nonlinear processes. Because we are concerned
with nonlinearity, we apply the test here to data from which
the autocorrelation has been removed by prior fitting of a
Bayes information criterion (BIC)-minimizing autoregres-
sive moving average model.

We also implement a newer test for nonlinearity intro-
duced by Lee et al. (1993). The LWG test involves fitting
a single hidden layer neural network to the residuals from
a linear model, then testing its incremental contribution to
explaining the movements in the dependent variable. More
specifically, if the neural net modeling a series x{t} can be
represented as

q
o=2x2'0+ Z,@ﬂ/}(x"yj), 4)

j=1

where o is the network output, 6 is a vector of (linear)
weights, and 9(z’v;) is a given nonlinear mapping from
R to R (the “activation function”), then linearity implies
that the optimal network weights g;,5 = 1,...,q, are all
0. LWG suggested proceeding to implement the Lagrange
multiplier test based on the statistic

nR® — x*(q"), )
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Table 3. BDS Tests for Nonlinear Dependence (Sept.—Nov. 1991): Cash Indexes
DAX FTSE-100 S&P-500 Nikkei
Linear GARCH(p, q) Linear GARCH(p, q) Linear GARCH(p, q) Linear GARCH(p, q)
m e/o 1-min. 5-min. 1-min.  5-min. 1-min. 5-min. 1-min.  5-min. 15-sec. 1-min. 5-min. 1-min.  5-min. 1-min. 5-min. 1-min. 5-min.
2 50 3143 1434 19.90 6.55 5598 33.08 10.68 2.04 4046 3815 21.19 -1.04 447 4471 1442 1532 11.19
3 50 3609 1585 20.23 710 6920 4248 16.71 589 4775 4398 2470 97 648 5238 18.09 19.26 13.93
4 50 3840 1582 18.67 768  80.17 5222 23.14 8.77 53.71 4813 2712 229 688 5879 2285 21.84 17.11
5 50 4051 16.24 1853 829 9156 6479 3126 1201 59.75 51.88 29.19  3.51 6.53 6521 2813 23.57 20.60
6 50 4239 16.74 20.96 879 10545 8167 4167 1509 6587 56.37 3266  4.61 6.17 7283 3479 2516 24.20
7 50 4434 1731 2441 9.07 12228 10635 5495 1881 7322 6192 3746 590 597 8336 4453 2747 2945
8 50 4640 17.90 26.98 9.14 14507 14071 7386 2273 8275 6808 4413 685 579 9770 60.34 3049 38.24
9 50 4870 1846 28.35 920 17542 191.08 10053 27.36 9421 7583 53.10 7.95 564 116.15 80.86 33.86 4887
10 .50 51.44 1944 29.19 954 22013 265.12 14296 3289 107.65 84.69 6460 9.1 521 140.65 114.49 3764 6691
2 75 3052 1370 15.37 508 5954 29.87 2.67 09 4589 40.02 2139 -.53 381 4616 1071 1413 722
3 .75 3428 1443 1560 489 7482 3584  3.91 281 5236 4501 2387 140 566 5121 1246 17.61 8.48
4 75 3557 13.88 14.69 507 8675 40.38 5.07 466 5694 4820 2539 255 607 5460 1424 1957 9.49
5 .75 3643 1358 14.78 528 9998 4526  6.13 672 6099 50.81 2666  3.63 596 5757 16.07 20.76 10.79
6 .75 3685 1339 16.78 547 11575 50.90 7.29 828 6451 5372 2865 4.49 573 6091 1812 21.81 11.93
7 .75 3721 1326 19.23 555 13557 5848 821 1003 6833 5731 3123 557 552 6517 2068 23.18 13.44
8 .75 3755 13.18 20.84 549 161.18 67.62 9.05 1157 7270 61.14 3452 6.28 530 70.74 2422 2479 1560
9 .75 3800 1314 2157 547 19452 79.09 10.03 1305 7755 6565 3860 6.81 515 7742 2808 2652 17.84
10 .75 3857 13.15 2196 554 23926 93.75 1153 1467 8287 7075 4348 7.31 481 8554 3349 2851 21.37
2 100 2860 1288 10.99 3.21 60.07 26.88 169 -1.00 5349 4211 1997 .38 262 4300 815 11.15 4.41
3 100 3113 13.06 10.83 286  71.87 30.82 1.68 91 6083 4641 2161 207 430 4564 9.04 1380 507
4 100 3160 1220 10.09 2582 7954 33.03 209 218 6575 4889 2252  3.01 468 4664 965 1513 5.14
5 100 3177 1155 10.13 275 8695 35.08 2.77 364 69.87 5065 2329 385 472 4728 1038 1586 5.65
6 100 3158 11.09 1179 280 9501 3723 335 463 7348 5245 2429 447 459 4821 11.09 1654 595
7 1.00 3133 1070 13.71 285 10421  40.05 3.75 577 7726 5468 2560 528 438 4950 11.79 1732 6.31
8 100 31.08 1030 14.88 273 11514  43.11 4.02 6.67 8144 5702 2710 575 422 5128 1277 1814  6.90
9 100 3091 10.00 1544 265 12844 46.66 4.40 7.38 8612 5969 2890 602 412 5351 1371 19.00 7.47
10 1.00 3073 970 15.75 258 14475 51.07 4.96 8.18 9133 6266 3093 6.30 385 5614 1512 19.92 840
2 125 2680 1155 7.92 149 5829 2457 264 -136 5874 4372 17.71 1.63 1.05 3717 641 720 240
3 125 2827 1156 744 116 6874 26.96 2.63 -.16 6514 4751 1872 299 243 3816 694 888 274
4 125 2788 1053 6.78 .98 7457 2794 293 59 6896 4944 1926  3.68 279 3778 711 974 246
5 125 2757 979 679 82 7941 2882 3.58 158 7191 5057 1980 430 294 3725 746 1017 270
6 125 2725 928 819 87 8415 2970 420 226 7434 5155 20.31  4.68 291 3711 771 1070 278
7 125 2686 887 974 94 8921 3086 4.75 304 7678 5278 21.05 526 276 3718 7.88 1123 281
8 125 2556 838 10.65 .87 9494 3204 5.14 362 79.35 54.09 2179 555 267 3753 816 11.74 295
9 125 2623 802 11.13 .83 10168 33.33 5.77 403 8216 5557 2268 567 261 3814 837 1230 3.12
10 125 2587 771 11.46 .80 109.53  34.92 6.45 452 8525 5717 2356 580 246 3888 883 1289 3.49
2 150 2402 908 546 10 5431 2262 204 -131 6458 4430 1522 299 -.40 3085 559 338 127
3 150 2499 929 496 -.17 63.00 24.00 157 -.77 7062 4767 1580  4.00 58 3098 58 421 1.33
4 150 2413 842 447 -43 6725 2433 1.78 -51 7384 4915 16.17 _ 447 95 3004 581 477 .89
5 150 2334 780 442 -59 7015 2471 2.24 07 7613 4979 1660  4.86 120 29.12 601 508 104
6 150 2289 737 555 -58 7268 25.05 2.89 50 7794 50.16 16.89 505 121 2860 6.11 556 1.06
7 150 2243 697 677 -.52 7516 2556  3.48 99 7965 5066 17.35 540 111 2822 614 601 1.03
8 150 2208 649 748 -60 7779 26.10 3.93 139 8140 5122 17.76 557 109 2809 625 641 1.10
9 150 2174 612 787 -.62 8092 26.61 458 164 8330 5187 1830 558 110 2815 632 687 1.21
10 150 2139 581 8.23 -62 8451 27.26 5.24 198 8539 5256 1872 562 1.02 2825 = 656 737 146

-NOTE: mis the embedding dimension. GARCH residuals are from the BIC-minimizing model.

where R? is the uncentered squared multiple correlation co-
efficient from ordinary least squares regression of the resid-
uals from the purely linear model on z and ¥(z’y;).

In repeated applications of this test to a sequence of
draws of the random weights, ~;, the fact that the results
are not independent means that standard p values are not
applicable. LWG, however, relied on the improved version
of the Bonferroni bound (see Hochberg 1988) as an es-
timate of the maximal p value associated with the null
hypothesis.

Notice that we do not follow ACW in implementing the
Hinich (1982) bispectrum test for nonlinearity. The rea-

son is that this test relies on the existence of all moments
up to and including the sixth, whereas tests on our data
along the lines of Loretan and Phillips (1994) suggested
that this assumption is probably unjustified, at least in the
case of the U.S. and German indexes (see ACW 1994).
At the same time, our own simulations of the LWG test
suggest that it is highly robust with respect to moment
failure.

Having tested for nonlinear structure, we proceed to ad-
dress the question of sensitive dependence on initial con-
ditions (“chaos”) in our datasets, using two different ap-
proaches.
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Table 4. BDS Tests for Nonlinear Dependence (Sept.—Nov. 1991): Index Futures

S&P 500 Futures FTSE-100 Futures
Linear GARCH(p, q) Linear GARCH(p, q)

m elo 1-min 5-min 1-min 5-min 1-min 5-min 1-min 5-min
2 .50 30.15 12.79 8.30 1.33 19.70 17.68 8.30 3.37
3 .50 40.76 17.04 11.17 1.38 27.61 25.24 12.20 5.08
4 .50 51.05 20.53 14.58 1.56 33.96 31.29 15.04 6.27
5 .50 63.46 24.66 19.05 2.43 40.71 37.70 19.31 7.78
6 .50 80.04 30.11 25.62 3.46 48.78 45.39 23.93 9.56
7 .50 102.55 37.05 32.33 4.04 58.27 54.33 30.58 11.72
8 .50 138.91 47.14 44.57 4.73 70.19 65.52 40.34 14.69
9 .50 196.78 61.70 66.04 5.65 85.71 79.95 55.83 20.03

10 .50 293.15 81.80 105.66 6.49 105.82 98.98 83.08 31.36
2 .75 30.97 13.34 .70 117 28.68 11.97 16.32 1.10
3 .75 39.65 17.24 3.35 .81 37.60 18.06 20.56 1.11
4 .75 46.57 20.19 6.38 .80 45.56 22.59 24.63 1.97
5 .75 53.27 23.42 9.48 1.49 54.11 26.97 28.54 222
6 .75 60.57 27.48 12.66 2.09 64.33 31.62 32.94 2.27
7 .75 68.87 32.17 15.90 2.33 77.13 36.40 38.23 218
8 .75 78.99 38.50 20.33 2.87 93.93 42.07 44.96 2.07
9 .75 91.67 46.96 25.59 3.48 116.27 49.15 53.58 2.24

10 .75 107.60 57.85 33.33 4.07 145.02 57.72 64.29 2.32
2 1.00 30.76 14.25 1.14 .92 21.49 7.18 14.40 3.40
3 1.00 39.52 - 17.47 2.35 .45 30.76 11.52 18.71 4.46
4 1.00 46.50 19.61 3.69 31 38.29 15.11 22.83 5.87
5 1.00 53.24 21.55 4.97 .73 45.85 18.15 26.86 7.01
6 1.00 60.55 23.79 6.05 1.13 54.37 20.57 30.85 7.96
7 1.00 68.84 26.08 6.95 1.21 64.70 22.71 35.46 8.82
8 1.00 78.89 28.74 7.89 1.52 77.90 2491 41.04 9.88
9 1.00 91.48 32.02 8.74 1.94 95.04 2712 48.11 11.24

10 1.00 107.24 35.79 9.84 2.35 116.52 29.38 56.73 12.59
2 1.25 31.85 15.15 .25 .54 9.35 3.77 17.71 1.58
3 1.25 39.55 18.20 1.29 —-.07 17.16 6.69 21.24 1.90
4 1.25 44.80 20.07 2.70 -.35 23.11 9.38 24.72 2.46
5 1.25 49.29 21.66 412 -.17 28.81 11.30 27.64 3.04
6 1.25 53.51 23.42 5.32 .04 33.60 12.66 30.64 3.31
7 1.25 57.86 25.17 6.22 .03 38.26 13.69 33.53 3.56
8 1.25 62.48 2712 7.12 24 43.19 14.80 36.52 3.87
9 1.25 67.79 29.43 7.86 .56 48.73 16.73 39.82 4.35

10 1.25 73.58 32.00 8.64 .86 55.04 16.58 43.50 4.91
2 1.50 32.62 15.14 -.18 .24 44.88 217 13.78 1.47
3 1.50 39.96 17.65 .48 —.43 47.55 3.90 16.58 1.29
4 1.50 44.39 18.90 1.39 —.78 49.24 5.15 18.71 1.67
5 1.50 47.77 19.78 2.46 -.82 50.55 6.08 20.78 2.05
6 1.50 50.48 20.80 3.33 -.75 51.66 6.54 22.24 2.10
7 1.50 53.01 21.75 3.96 —.87 52.85 6.71 23.65 2.01
8 1.50 55.40 22.84 458 -.73 54.28 6.82 25.13 1.94
9 1.50 57.95 24.06 5.03 —.47 55.88 6.84 26.71 2.08

10 1.50 60.54 25.34 5.50 —-.21 57.59 6.90 28.40 2.24

NOTE: m is the embedding dimension. GARCH residuals are from the BIC-minimizing model.

Our starting point is the familiar Takens (1981) phase
space reconstruction, which allows us to write a noisy
(scalar) time series {z(t),t = 1,2,...} in state-space form
as

X; = F(X_1) + €, 6

where X; = (z(t),z(t—L),...,z(t—(d—1)L)),d is the em-
bedding dimension, L is the time delay, £; = (e;,0,...,0)
represents the stochastic component of the process, with
{e:} a sequence of iid random variables, and F' is an
R? — R9 function that satisfies some general regularity
conditions.

Given any two initial state vectors Xél) , Xéz) sufficiently
close together, then after one time period has elapsed, the

following approximation will hold:
12 = X{V1 & 105 = X1, @)

where Jj is the d x d Jacobian matrix of partial derivatives

of F evaluated at Xéz) . The L.E. of the system can now be
defined as

1
A= lim —1n ”Jt-1 . Jt—2 """ Jo” (8)
t—oo ¢

In practical terms, a bounded system with A > 0 exhibits
the sensitive dependence on initial conditions characteristic
of chaos because, if this condition is satisfied, trajectories
that start at two points arbitrarily close together will diverge
exponentially as time passes.
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Table 5. Lee—White—Granger Tests of Nonlinearity

Interval AR(p) p1 p2
S&P 500

15-second 12 .0000 .0000
1-minute 3 .0000 .0000
5-minute 3 .0000 .0000

FTSE-100
1-minute 7 .0000 .0000
5-minute 3 .0000 .0000
DAX
1-minute 4 .0000 .0000
5-minute 5 .0005 .0000
Nikkei
1-minute 1 .0000 .0000
5-minute 2 .0000 .0000
S&P 500 Futures
1-minute 2 .0000 . .0000
5-minute 3 .0000 .0001
FTSE-100 Futures

1-minute 5 .0206 .0099
5-minute 1 .0001 .0000

NOTE: p1 and p2 are Hochberg-Bonferroni bounds on p value (Lee et al. 1993, sec. 6) with
q* = 2for p1, g* = 3 for p2 (Lee et al. 1993, sec. 4).

Most early work on L.E. estimation used the direct
method of Wolf, Swift, and Vastano (1985). In essence, this
approach involves averaging the observed divergence rates,
which can be regarded as approximations to the left side
of (7). If the series is chaotic, these divergences will tend
to grow without limit. As McCaffrey, Ellner, Gallant, and
Nychka (1992) showed, however, X estimates derived in this
fashion are liable to be biased upward when the process is
contaminated by noise, as we must assume is the case here.

Rather than direct estimates of the rates of divergence, we
prefer to rely on the Jacobian estimation methods of Briggs
(1990), Nychka, Ellner, Gallant, and McCaffrey (1991), and
Zeng, Pielke, and Eykholt (1992). This approach offers sev-
eral advantages. First, it makes it possible to augment the
approximation in (7) by the introduction of higher-order
terms of the Taylor expansion. Moreover, the noise in the
underlying process (6) can be smoothed out by using addi-
tional near neighbors in the estimation algorithm.

In the results reported here, we adopt the Zeng et
al. (1992) estimation algorithm. This involves defining a
“shell” (i.e., the zone between two spheres) rather than a
ball from which near neighbors are to be selected, a modi-
fication intended to minimize the effect of noise on the es-
timates. In the present case, it was also preferred because it
greatly reduced the difficulties presented by the large num-
ber of zero returns in the higher-frequency datasets (see
Sec. 4).

As an alternative to this general line of approach, we
also implement a neural-network algorithm, as set out by
McCaffrey et al. (1992) and Nychka et al. (1992). This non-
parametric regression procedure approximates the function
F in (6) by a single hidden-layer feed-forward neural net-
work with only a single output. More specifically, the esti-

mator takes the general form

q
F(Xe) = Bo+ Y BiGOXe + py), 9)

=1

where G(u) = e*/(1 + e*) is the logistic distribution func-
tion, the v; are the weights modifying the inputs, the 3;
are similarly applied to the outputs of the hidden units, and
the p; are constant inputs equivalent to the column of ones
in the standard econometric model [see McCaffrey et al.
(1992) and Nychka et al. (1992) for details].

The neural-network algorithm outlined here offers two
possible advantages over the nearest-neighbors approach.
First, it avoids the so-called “curse of dimensionality,” the
increasing unreliability of estimates at higher dimensions.
Second, because it is possible to obtain BIC values for each
function approximation, we are able to derive a kind of
numerical indication of the reliability of the L.E. estimates.
In fact, the results of Nychka et al. (1992) suggest that this
method works reasonably well on noisy systems even when
the number of observations is far smaller than we have here.

3. THE DATA

We use a total of six series, four published cash indexes
(the FTSE-100, the S&P 500, the DAX, and Nikkei) and
two series constructed for futures on the FTSE-100 and
S&P 500.

The main features of the FTSE-100 and the S&P 500
are well known. Both are value-weighted indexes compiled
respectively at 1-minute and 15-second intervals. Neither
index includes dividend payouts, and each represents a siz-
able proportion of its respective market, whether in terms
of capitalization or turnover. In fact, although the FTSE ac-
counts for about 70% of the value of the London market,
the comparable figure for the S&P is 80%. Both indexes
are arithmetic weighted means, with market capitalizations
as weights. The most significant difference between the two
is in the nature of the stock prices used. Although the S&P
is based on the last transaction price of a constituent stock,
the FTSE uses the midpoint of the best bid-and-ask prices
taken from the London Stock Exchange’s automated quo-
tation system (SEAQ). As is well known, the U.S. index
includes prices that may be “stale,” in the sense that they
are no longer up-to-date, in cases in which stocks trade less
frequently than the 15-second interval at which the index is
recomputed. On the other hand, the FTSE uses prices that
are only notional quotes anyway because they apply nei-
ther to very small nor very large block sizes and because
there may in some cases never be any trades at those prices
within the minute. (See Sutcliffe 1993.)

The DAX is also a value-weighted arithmetic mean, but
it includes only the 30 largest firms on the Frankfurt Stock
Exchange, though it still represents 60% of the total market
capitalization and over 65% of trading volume. It differs
from the U.K. and U.S. indexes insofar as it incorporates
dividend payments as reinvested income, with the weights
being recomputed once a year to preserve a balance between
high- and low-dividend stocks.
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Table 6. Zeng, Pielke, and Eykholit (1992) L.E. Estimates for S&P
15-second returns (N = 97,180) 1-minute returns (N = 24,500) 5-minute returns (N = 4,895)
max max max
dim A Do K — Y dim A A K — Y dim A 2o K — Y dim
nb=20q=1
1 —1.403 —1.403 —.860 —.860 —.410 —.410
2 —.507 —1.659 —.247 —1.168 .035 1.046
3 —.253 —1.829 —.086 —1.385 .103 —.933 1.383
4 —.144 —1.900 —.022 —1.513 135 —1.079 2.069
5 —.091 —1.993 .006 —1.615 1.034 123 —-1.183 2.446
6 —.061 —2.020 .019 —1.668 1.151 129 —1.222 3.085
7 —.043 —2.075 .021 —1.765 1.229 114 —1.304 3.502
8 —.032 —2.086 .026 —-1.775 1.392 100 —1.399 4.003
nb=40,qg=1
1 —1.463 —1.463 —.961 —.961 —-.527 —.527
2 —.542 —1.782 —.281 —1.271 -.027 —.848
3 —.269 —1.978 —.098 —1.503 .072 —1.051 1.228
4 —.155 —2.090 —.037 —1.666 .100 —1.182 1.620
5 —.098 —2.187 —.005 —1.784 .099 —1.337 2.054
6 —.066 —2.236 .009 —1.868 1.053 .096 —1.405 2.365
7 —.047 —2.306 .011 —1.963 1.082 .096 —1.480 2.688
8 —.035 —2.341 .015 —2.006 1.149 .074 —1.613 2.944
nb=30q=2
1 —1.513 —1.513 —1.201 —1.201 —.682 —.682
2 —.442 —1.428 —.258 —1.128 —.011 —.761
3 -.127 —1.322 .025 —1.005 1.088 232 —.654 2.098
4 .004 —1.251 1.020 144 —-.913 2.293 .333 —.516 3.247
5 .068 -1.175 2.050 204 —.823 3.515 .399 —.455 4.349
6 104 -1.109 3.274 .244 —.745 4.764 424 —.365 5.468
7 133 —1.054 4579 .268 —.694 5.985 .456 -.307 6.558
8 152 —.998 5.862 294 —.630 7.074 470 —.292 7.578
nb=60q=2 '
1 -1.717 -1.717 —1.440 —1.440 —.813 —.813
2 —.553 —1.670 —.399 —1.370 —.169 —1.079
3 —.202 —1.593 —.089 -1.297 .089 —.924 1.340
4 —.055 —1.548 .048 —-1.215 1.295 .208 —.866 2.550
5 .017 —1.503 1.109 118 —1.158 2.376 .267 —.766 3.802
6 .054 —1.448 1.661 152 —1.078 3.575 .291 —.686 4.928
7 .076 —-1.413 2.586 175 —1.059 4.803 318 —.650 6.071
8 .089 —1.366 3.716 .189 —.993 6.027 .351 —.589 7.136

NOTE: dim = dimensions estimated (1 to 8); g = order of estimation polynomial (1 or 2); nb = number of nearest neighbors used.

The Nikkei 225 Stock Average is the most widely quoted
index of price movements on the Tokyo Stock Exchange
(TSE). It is a price-weighted average of the 225 shares listed
in the First Section of the TSE and is updated at 1-minute
intervals throughout the trading day.

The two futures series were constructed following the
established convention in the literature. Starting with raw
transactions data, the price at any point of time, ty, was
taken from the first recorded transaction after ty. In this
fashion, we were able to generate futures series to match
the cash indexes for the United Kingdom and the United
States over the entire data period.

For each of the six series our data period runs from
September 1 to November 30, 1991. We are concerned in
this article with the return on the index, measured as the
log change in the index level over a 15-second interval in
the case of the S&P and also over a 1-minute and a 5-
minute interval in all three cases. Descriptive statistics are
presented in Table 2, page 4. There are several noteworthy
characteristics.

First, the 1-minute datasets are of unequal size because
the respective markets are not open for the same num-
ber of hours per day, or at least the proportion of the day
over which their indexes are continuously updated varies—
8 hours for the FTSE, 7 % hours for the S&P, and only 4.5
hours for the DAX. Note that there are fewer observations
on the futures than on the respective cash indexes, reflecting
the fact that futures trading finishes well before the close
of both London and New York stock markets. Thus, the
U.K. dataset contains over 30,000 1-minute observations,
compared to just under 25,000 for the New York market
and only 11,000 for Frankfurt. Our largest dataset contains
nearly 100,000 15-second returns on the S&P. The higher
the data frequency, however, the greater the proportion of
zero returns—well over 20% in the case of the 15-second
S&P returns and over 10% of the 1-minute returns but fewer
than 5% of the 5-minute returns.

Although all three series are approximately zero mean,
all except the Nikkei are also characterized by negative
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Table 7. L.E.s for FTSE-100: Zeng et al. (1992) Estimates

1-minute returns 5-minute returns

(N = 31,200 (N = 6,230)
max max
dim X YA K-Ydm A YA K-Ydm
nb=20,q=1
1 —.156 —.156 -506  —.506
2 799 —.341 1.701 —-.100  —.980
3 432 —830 2143 027 1197 1075
4 253 —1012 2438 071 —1372  1.388
5 152 —1.180 2500 074 -1.396  1.890
6 155 —1217  3.257 089 1428 2361
7 152 -1357  3.763 099 -1517  3.043
8 147 -1416  4.268 094 -1558  3.385
nb=40,q=1
1 —281 —.281 —49  —.490
2 565 377 1600  —.111 —1.095
3 244 —1.002  1.685 004 -1288  1.011
4 160 —1257  1.896 049  —1.491 1.223
5 104 -1329 2042 055 —1579  1.461
6 134 —1384 2671 060 1612 1776
7 135 —1539  3.142 064 —1.701 2.190
8 130 1608  3.499 057 —1778 2366
nb=230,qg=2
11025  1.025 -582  -582
2 1204 079 -.080 —.994
3 1409 598 153 —.838 1.697
4 1060 -.158  3.871 263 -753 2973
5 690 —459 4563 330 —655 4111
6 460 -639 5140 374 -527 5251
7 380 —.687  6.047 416 —.478  6.344
8 284 —824 6612 456  —.400  7.446
nb=2604q9=2
1 AT1 477 —-559  —559
2 748 —265 1738  -.188 —1.291
3 712 -373 2596 042 —1148 1122
4 439 —.901 2,978 128 —-1.110 2089
5 499  —847 . 4.181 198 —1.006  3.208
6 358 960  4.415 238 —907 4431
7 293 -996 5174 276 858 5660
8 198 -1.153 5415 308  -.792  6.809

NOTE: See note to Table 6.

skewness, for reasons that are unclear. As expected, there
is clear evidence both of leptokurtosis and strong autocor-
relation in all cases, but most especially in the case of the
DAX. It is somewhat surprising that the degree of leptokur-
tosis varies little over the different frequencies for the FTSE
and the S&P, whereas the increase is extremely marked for
the DAX.

Comparing the respective futures with the cash returns,
it is noticeable that, although the futures distributions are
less fat-tailed, they also exhibit greater volatility. This
pattern is consistent with the argument of, for example,
Whaley (1993) that infrequent trading is likely to increase
the volatility of the futures relative to the spot, other things
being equal. Specifically, Whaley (1993) showed that the
less frequently stocks trade and the greater is the moving
average component of the futures price induced by so-called
“bid-ask bounce,” the greater will be the volatility of the fu-
tures relative to the cash, other things being equal. In our

case, stocks often traded less frequently than our 1-minute
observation interval, especially in the U.K. market. It is
noteworthy that our futures series are volatile by compari-
son with the cash, and moreover that the disparity is greater
at the higher frequency.

4. RESULTS

4.1 Nonlinearity

The results of the BDS tests are given in Table 3, page
5 (for the cash indexes), and Table 4, page 6 (for the fu-
tures). For each series, the computed values are given first
for the residuals from a linear filter, followed by the resid-
uals from BIC-minimizing GARCH(p, ¢) models. To save
space, we present no results at frequencies lower than 5
minutes, though our results for observations at 15-minute,
30-minute, and 1-hour intervals are entirely consistent with
the pattern of the high-frequency results given here (see
ACW for the FTSE-100).

Table 8. L.E.s for DAX: Zeng et al. (1992) Estimates

1-minute returns 5-minute returns

(N = 31,200) (N = 6,230)
max max
dim A YA K-Ydm A YA K-Ydm
nb=20,q=1
1 —468 —.468 -306 —.306
2 -038 -.800 018  —780  1.023
3 074 -1.005  1.248 065 —1.086  1.216
4 411 -1.139  1.827 090 —1.137  1.752
5 120 -1220 2339 105 —1.351 2.322
6 130 —1.301 2910 106 —1.287  3.040
7 130 1356  3.521 114 —1.371 3.767
8 126 —1.383  4.164 126 -1.333 4535
nb=40q=1
1 —509 —.509 —441  —.a41
2 -058 -.839 -.080 —.988
3 053 —1.067  1.164 006 —-1215 1015
4 090 -1275 1538 049 —1346  1.201
5 100 -1345 2079 057 -1529 1544
6 106 —1.439 2477 071 —1495 2102
7 105 —1492  3.020 053 1580 2412
8 096 —1553  3.415 075 —1664  3.102
nb=30q=2
1 =707 —707 -612  -612
2 -08 835 010 -679  1.014
3 178 —-733  1.931 214 -685 2058
4 304 -627 3132 356 —544 3225
5 387  —487  4.296 430 379 4455
6 455  —.401 5.435 506  —.266  5.639
7 489 -298 6571 618  —095  6.867
8 549  -226  7.680 705 078
nb =60,q=2
1 -818 —818 -.785 —.785
2 -195 —1.040 -.182  —1.036
3 048 -1.014  1.168 061 —1.031 1.222
4 189 —911 2.421 184  —858 2453
5 264 —.788 3735 275 —737 3841
6 329 735 5007 330 -680  5.076
7 356 —.630  6.103 402 -570  6.236
8 393 -536  7.230 453 382 7452

NOTE: See note to Table 6.
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Table 9. L.E.s for Nikkei: Zeng et al. (1992) Estimates

1-minute returns 5-minute returns

(N = 16,345) (N = 6,230)
max max
dim A A K—vYdm >X  K-Ydm
nb=20q=1
1 —-5603 —.5600 —.0984  —.0980
2 —.0695 —.8380 2435  —.3300 1.4250
3 .0681 —1.0230 1.2230 2914  —.5100 2.2510
4 1087 —1.1220  1.7930 2736  —.6550 3.0600
5 1173 —1.2340 2.3030 .2720 —.7720  3.8000
6 1239 —-1.2630 29710 2465  —.8380 4.5580
7 1184 -1.3610 3.5310 2075 —1.0130 5.1070
8 1128 —1.4020 4.1240 .1906 —1.1080 5.6560
nb=40,qg=1
1 —.6670 —.6670 —.2412 —.2410
2 -.1096 —.9390 1339 —.5150 1.2060
3 0271 —-1.1360 1.0770 2363  —.6880 2.0540
4 .0706 —1.2770  1.3700 2315 —.7790 2.7120
5 .0849 —-1.3870  1.7900 2354  —.8890 3.4450
6 .0899 —1.4350 22330 2227  —.9690 4.1700
7 .0888 —1.5390 2.6550 1741 —1.1860 4.3170
8 .0813 —1.5850 3.1160 1629 —1.2570 4.7810
nb=230qg=2
1 —.8028 —.8030 —.4618  —.4620
2 -.0318 -.7610 1071 —.5820 1.1550
3 2109 —-.6610 2.0730 2905  —.5540 2.2230
4 3193 —-.5630  3.1900 4085  —.4090 3.4250
5 3795 —.4720 4.3280 4685  —.3180 4.5570
6 4273 —-.3540  5.4870 4880 —.2860 5.56940
7 4719 —.2840 6.5960 4755  —.3200 6.5640
8 5079 —.2180  7.6930 4899  —.1930 7.7250
nb=260q=2
1 —-9974 —.9970 —-.7321 -.7320
2 —-.1917 -1.0300 —.0820 —.8510
3 .0738 —.9580  1.2820 1562 —.7990 1.8040
4 .1886 —.8640 2.5100 2870 —.6230 3.1160
5 2586 —.7900  3.7560 3667 —.5910 4.1650
6 3025 —.6990 5.0210 3607 —.5840 5.1710
7 3344 —.6200 6.1280 3534 —.6070 6.1680
8 3642 —-5590 7.2210 3565 —.5620 7.2200

NOTE: See note to Table 6.

There are several features common to the results for all
the series. First, the degree of departure from independence
is invariably greatest at the highest frequencies. Second, in
no case are the raw data independent, and moreover the
dependence is not removed by linear filtering. Perhaps the
only surprise is that the apparent departure from indepen-
dence is smallest for the DAX and largest for the FTSE.

The evidence from the GARCH residuals is more mixed.
On the one hand, in every case the BDS statistics are sub-
stantially reduced compared to the residuals from the lin-
ear filter. On the other hand, whether one concludes that
GARCH explains all the structure or not depends very much
on the embedding dimension, m, and the value of the neigh-
borhood parameter, ¢/o, used in estimation. For example,
the results for the 5-minute DAX returns are consistent with
iid when m > 2 and ¢/o > .75. On the other hand, iid is
rejected for all parameter values at the 1-minute frequency.
Similarly, for the other series there is a tendency for the
BDS statistic to fall as the degrees of freedom are exhausted
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by higher values of m and /0.

Table 5, page 7, presents the results for the LWG neural-
net-based test, in the form of Hochberg—Bonferroni bounds
on the probability of the test statistic under the null of an
iid process. As can be seen from the near-zero values in
the table, the outcome is overwhelming for all series at
all frequencies with the sole exception of the 1-minute ob-
servations on FTSE futures, in which the null hypothesis
of independence is accepted at a probability bounded from
above by 1% or 2%, depending on the network order. In
all other cases, the maximum probability of independence
is negligible. The implication is clear: The nonlinear com-
ponent unambiguously improves forecast accuracy.

4.2 Sensitive Dependence

In Tables 6-11, we present estimates of the L.E.’s for
the six series, derived from implementation of the Zeng et

Table 10. L.E.s for S&P 500 Futures: Zeng et al. (1992) Estimates

1-minute returns 5-minute returns

(N = 31,200) (N = 6,230)
max max
dim A YA  K-Ydm A > A K-Ydm

nb=20q=1

1 —1324 -1.324 -.823 —.823

2 —.486 -1617 -205 —1.119

3 —239 1772 -.048 —1.321

4  -139 -1877 007 —1.438  1.028

5  —.086 —1.947 027 -1561  1.147

6  —.059 —1.963 032 —1.609  1.259

7 —.042 —2031 031 -1688  1.347

8  —.032 -—2026 029 —1.714 1474
nb=40,q =1

1 1420 —1.420 -920 —.920

2 -530 -1.764 —241 —1.245

3 —.259 1943 —-.071 —1.445

4 —151 —2063 -.005 —1.59

5 —.096 -—2.160 017 —1.755  1.069

6 —.071 —2222 026 —1812  1.141

7 —.049 —2260 029 -1.872  1.210

8  —.037 -—2284 027 -1.908  1.244
nb=30q=2

1 -1568 —1.568 -1279 —1.279

2 —.440 -—1.407 -.318 —1.190

3 —116 -1276 -.011 —1.051

4 008 —1.211  1.048 131 —909 2265

5 075 —1.130  2.166 190 —.834  3.504

6 113 —-1.068  3.428 233 —791  4.691

7 136 —1.055  4.620 251 —759  5.838

8 152 —-1.013 5833 274 677  7.024
nb=60q=2

1 -1815 —1815 -1.599 —1.599

2 581 -1692 -529 —1.527

3 —211 1574 —-.161  —1.390

4  —.058 —1505 013 1250  1.075

5 017 —1.456  1.112 088 —1.187 2129

6 052 —1414 1672 134 1143  3.368

7 074 -1387 2573 153 —1.101  4.586

8 086 —1.369  3.641 173 —-1.021  5.769

NOTE: See note to Table 6.
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Table 11. L.E.'s for FTSE-100 Futures: Zeng et al. (1992) Estimates
1-minute returns 5-minute returns
(N = 26,389) (N = 5277)
max max
dim A >X  K-Ydm A >A  K-Ydm

nb=20,qg=1

1 —2272 -2.272 —1.303 —-1.303

2 -.816 —2.100 —.431 —1.509

3 —.455 —2.200 —.217 —-1.695

4 —.293 -2216 —.124 —1.793

5 —-.208 —2217 —.083 —-1917

6 —.154 —2.236 —.061 —1.925

7 -.119 —-2.271 —.047 -1.972

8 —.106 —2.408 —.038 —2.036
nb=40q=1

1 —-2.310 -2310 —1.424 —1.424

2 —905 -—2.295 —490 -—1.668

3 —.524 2477 —.243 —1.857

4 —.334 -—-2470 —.146 —2.012

5 —-250 —-2518 —.097 -2.126

6 —-.179 —2.495 —-.072 -2179

7 —.139 -—-2.542 —.052 —2.208

8 —.122 —2.605 —.042 —-2.320
nb=230q=2

1 —2.052 —2.052 —-1.616 —.162

2 —.709 —1.839 —.437 -1.377

3 -.335 -—1.828 —111  —1.246

4 —.165 —1.679 .026 —1.150 1.182

5 —.094 —1.702 .087 —1.140 2.315

6 —.031 —1.552 118 —1.040 3.507

7 .003 —1.529 1.050 148 —.991 4.780

8 .027 —1.538 2.135 179 —972 6.068
nb=260q=2

1 —2.205 —2.205 —-1.909 -1.909

2 —.834 —2.081 —.587 —1.681

3 —.452 —-2.150 —.204 —1.547

4 —.254 2016 —.053 —1.490

5 —-.176 —2.093 .001 -—1.484 1.007

6 -.098 —1.907 .040 —1.411 1.657

7 -.067 —1.927 .065 —1.369 2.669

8 —.044 —1.943 .082 —-1.379 3.906

NOTE: See note to Table 6.

al. (1992) algorithm. On the one hand, the estimated L.E.’s
are, for the most part, negative so that the sum }_ A;, A > 0,
which is a measure of the Kolmogorov entropy, is negative
in virtually every case. Our estimates of the maximal L.E.
values vary in sign, however, with positive values occur-
ring often at the higher dimensions, though it should be
noted that positive L.E. estimates occur far less often for
the futures than for the cash indexes. Where it is defined
(i.e., where there are positive L.E.’s), we present the implied
Kaplan—Yorke dimension in the final column of the tables.
It is given by

1 k k k+1
Dry =k+1m— 3. X, DA =0>3 A5 (10)
|)‘k+1| i—1 =1 j=1

that is, k is the largest integer for which ) A; > 0. Clearly,
our estimates are highly sensitive to the choice of embed-
ding dimension and polynomial order.

The results of applying the neural-net estimation methods
of Nychka et al. (1992) are presented in Figures 1-5. As
they recommend, in each case we examine the results from
two perspectives.

The scatterplots (Figs. 1-3) show the spread of ) esti-
mates for different (L, d,q) combinations, where L is the
time delay used, d = 1,...,6 is the embedding dimension,
and q is the selection parameter equal to the number of units
in the hidden layer of the net, chosen so as to minimize the
BIC. This means that we have a total of 6 x 50 = 300
parameter combinations in all cases. We then plot the 10
BIC-minimizing estimates of the L.E. associated with each
(L,d,q) triplet—that is, from 200 to 300 points in each
figure.

The results are set out differently in the line graphs (Figs.
4 and 5). Here, for each embedding dimension d =1, ..., 6,
the graphs show

1. The BIC-minimizing L.E. estimate (the “best fit”)

2. The mean of the 10 BIC-minimizing L.E. estimates
(the unbroken line)

3. Given the standard deviation of the 10 BIC-
minimizing L.E. estimates, a range of one standard devi-
ation about the mean (“Upper” and “Lower” marked by the
two dotted lines)

For illustration purposes, Figure 1 shows the output from
applying this algorithm to a dataset consisting of 500 points
generated by simulating the Lorenz mapping. It can be seen
from the scatterplot that as the computed BIC value falls,
the L.E. estimate stabilizes in the neighborhood of the true
value of .0745 per .05 time units (i.e., 1.49 per full time
unit) (Wolf et al. 1985). The line graph for this system (not
shown here) rises steeply from negative to positive as the
embedding dimension goes from 1 to 3 and subsequently
levels off as the estimates settle down in the region of the
correct value.

1.0+
0.5
0.0_ o o ® ' o
-0.5- =%

1.0 g

BIC values

-1.5

-2.0

o6l BRSSO 5P

-2.5

-3 -2 -1 0 1
Estimated L.E.
Figure 1. Lorenz System (Delay = 2).
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Figure 2. S&P 500 Cash 1-Minute Returns (Delay = 6).

In Figures 2-5, we show scatterplots for the S&P 500
cash and futures, and line graphs for the FTSE, at the 1-
minute frequency only to save space. An earlier working-
paper version of this article, available from us on request,
presents both line and scatter graphs for each of our six
series at both 5-minute and 1-minute frequencies, with re-
sults that are qualitatively very similar to those given here.
By comparison with our simulations on the Lorenz equa-
tions, the results for the cash indexes are much less stable
and therefore far harder to interpret, as can be seen from
Figure 2. All that can be said with any confidence is that
there is no evidence of a positive L.E. and no clear pattern
of convergence toward a particular value. The line graphs
are perhaps more informative, in most cases rising as the
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Figure 3. S&P 500 Futures 1-Minute Returns (Delay = 2).
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Embedding Dimension

Figure 4. FTSE-100 Cash 1-Minute Returns (Delay = 9).

dimension increases without much sign of ever leveling off,
though there is some evidence of an L.E. of about —.07 in
the FTSE 1-minute data (Fig. 4). It is noteworthy that the
graphs for the FTSE bear a reassuring resemblance to those
for the first six months of 1993, as reported by ACW. This
may possibly be evidence that, for this particular index at
least, the data-generating process has remained reasonably
stable in recent years.

Looking at Figures 3 and 5, the L.E. estimates for the
futures look slightly less erratic than those for the respec-
tive spot indexes. This is especially true in the case of the
S&P futures. Nonetheless, even here it is hard to justify a
conclusion more precise than simply that the dominant L.E.
is almost certainly negative.

Two general conclusions appear to be justified. First,
there is little sign of any sensitive dependence. Second, the
true dimension of the systems generating our datasets is
unclear, probably infinite.

10

L.E. Estimates
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o

-30
o fit
-40 5 Best fit ...
- Upper
Lower
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Figure 5. FTSE-100 Futures 1-Minute Returns (Delay = 2).
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5. CONCLUSIONS

In this article, we have provided what we believe to be
reasonably robust answers to two questions regarding the
behavior of stock-market index returns. In the first instance,
we are able to reject the hypothesis of independence in fa-
vor of a nonlinear structure for all six data series. To some
extent, it seems that this dependence can be attributed to
volatility clustering, though this phenomenon appears un-
likely to provide a complete explanation.

When we proceed to estimation of L.E.’s, however, we
find no support for the view that the underlying processes
are chaotic (i.e., exhibit sensitive dependence on initial con-
ditions). Instead, we interpret the evidence as, for the most
part, supporting the view that the data processes are dom-
inated if not actually swamped by noise. Thus, although
there might be an underlying deterministic nonlinear but
nonchaotic process in the data, there is almost certainly also
a stochastic component whose presence cannot be ignored.
These conclusions are borne out by our results using both
standard nonparametric methods and neural-network-based
approaches.

Several important questions remain on the research
agenda. Are the properties of stock-market index returns
matched by those of their components? That is, are the
characteristics of returns on individual stocks qualitatively
similar to those described in this article? How general are
these results? Last but by no means least, insofar as there
are discernible patterns in returns, can they be forecast with
enough accuracy and far enough into the future to generate
trading profits?
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