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NONLINEAR DYNAMICS IN REAL-TIME EQUITY
MARKET INDICES: EVIDENCE FROM THE UNITED
KINGDOM*

A. Abhyankar, L. S. Copeland and W. Wong

This paper tests for the presence of nonlinear dependence and chaos in real-time returns on the
U.K. FTSE-100 Index, using a six month sample of about 60,000 observations. Since there is clear
evidence of nonlinearity, we follow other researchers in this field by applying the same tests to the
residuals from a GARCH process fitted to the data, in order to find out whether or not the
nonlinearity can be explained by this type of model. In the event, our results suggest that GARCH
can explain some but not all of the observed nonlinear dependence.

In the past few years, a large literature has appeared on nonlinearity in finance
and economics. At a theoretical level, it has been shown that even very simple
economic models often involve a rich variety of dynamic processes, including
in some cases the possibility of nonlinear or complex chaotic behaviour for some
range of parameter values (see survey in Boldrin (1988)). More recently, the
published empirical literature has concentrated on testing economic and
financial time series for the presence of nonlinear dependencies using various
measures indicative of complex dynamics.

The issues involved in this area are of critical importance, not least in their
implications for market efficiency. For example, the presence of a well-behaved
nonlinear structure would be inconsistent with market efficiency, at least if
accompanied by risk-neutrality and negligible transaction costs. On the other
hand, a chaotic process; defined for our purposes simply as one characterised
by sensitive dependence on initial conditions,' need not necessarily imply the
existence of exploitable profit opportunities. In the first place, the complexity
of the process may make it impossible for agents to identify, though if
researchers can uncover the true model, it could be argued that the market is
equally capable of doing so. More importantly, however, sensitive dependence
on initial conditions means that knowing the function driving the market price
may be insufficient to guarantee a profit, because forecast accuracy may
degenerate too rapidly to leave time for profitable trades to be executed.

In order to investigate these empirical questions, researchers in economics
have for the most part had to use methods originally developed in the physical

* The authors are grateful to the International Stock Exchange, London and its Quality of Markets Unit
for providing the data used here. We would like to thank S. Ellner, D. W. Nychka and A. R. Gallant for use
of their LENNS software and K. Briggs for his Lyapunov exponent estimation code. The Manchester
Computing Centre generously provided time on their Fujitsu VPX 240/10 vector processor. The paper has
benefited from comments by Professors Maurice Priestley, Subba Rao and Xubin Zeng, participants in the
Annual Conference of the Society of Economic Dynamics and Control, UCLA, June 1994, the European
Institute for Advanced Studies in Management Conference on Empirical Methods in Finance, Brussels, May
1994 and seminars in a number of departments in the United Kingdom. The second author acknowledges
with gratitude the support of the Nuffield Foundation.

1 See Devaney (1989) for a more formal definition. Baumol and Benhabib (1989) discuss the implications
of chaos in an economic context.

[ 864 ]



[JuLy 1995] NONLINEAR DYNAMICS 865

sciences for analysing the relatively large and less noisy data sets available in
those areas. Applying the same methods to financial time series has inevitably
involved the use of relatively low frequency (e.g. daily) data obtained over a
number of years so as to provide sufficient observations (Frank and Stengos,
1989; Hsieh, 1989; Scheinkman and LeBaron, 1989). So far, very few studies
have used the high frequency data which are nowadays becoming available
from the equity, foreign exchange and derivatives markets. This is unfortunate,
since higher frequency datasets offer several important advantages: larger
sample sizes, more potential for observing microstructural effects and, given the
shorter time period involved, other things being equal, a greater likelihood that
the underlying process has remained stationary over the sample period.

The present paper has the advantage in this regard in relying on a dataset
consisting of the 60,000 minute-by-minute real time returns on the UK FTSE-
100 Index for the first 6 months of 1993. Moreover, the dataset has another
attractive feature, insofar as it provides a relatively clean measure of the index
return, since it is based on the mid-quote prices of market-makers who are
obliged, on the London Stock Exchange, to quote firm two-way prices. In each
of our tests we are able to examine evidence of nonlinearity at a range of
different frequencies (1-, 5-, 15-, 30-, and 60-min).

There are a number of tests for nonlinearity in the literature, including non-
parametric tests in the frequency and time domain and parametric and semi-
parametric tests in the time domain. In this paper we implement two well-
known tests, the Hinich (1982) bispectrum and the BDSL (Brock et al. 1987).
We then proceed to test for chaos using two different methods for estimating the
Lyapunov exponent, the neural nets approach of Nychka et al. (1992), and the
method of higher-order local neighbourhood-to-neighbourhood mappings
(Briggs, 1990; Brown et al. 1991; Zeng et al. 1992).

Our results clearly indicate the presence of nonlinear dependence in high
frequency FTSE returns. However, we find very little evidence to support the
view that returns could be characterised by a low-dimension chaotic process.
Specifically, while both the Hinich and BDSL tests reveal significant
nonlinearities at all frequencies, the estimates of the Lyapunov exponents are
in some cases unstable (i.e. highly sensitive to the embedding dimension) and
in other cases consistently negative, depending on the estimation methodology
employed. We conclude that either the process is low-dimensional chaos
contaminated by large amounts of noise, or the attractor is of very high or,
indeed, infinite dimension.

The paper is organised as follows. In Section I, we briefly review earlier
empirical work. In the next section, we describe the tests used in this paper. In
Section III, we give some details of our dataset and present our results and
Section IV contains our conclusions.

I. REVIEW OF PREVIOUS WORK ON FINANCIAL MARKETS

From the substantial literature which has appeared in the last ten years or so,
there is broad agreement that a nonlinear structure is to be found in financial
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series. This statement applies equally to exchange rates (e.g. Kodres and
Papell, 1991; Kriger and Kiigler, 1992), to stock market series (Hsieh, 1991;
Philippatos et al. 1993), and to gold and silver prices (Frank and Stengos,
1989).2 In particular, BDSL tests almost invariably reject independence.

The published evidence on chaos is more mixed. By and large, there appears
to be more evidence to support a low dimensional structure in the US stock
market index than in exchange rate series (compare, on the one hand,
Mayfield and Mizrach (1989), Vaidyanathan and Krehbiel (1992), with Hsieh
(1989; 1993), Tata (1991)), though for the most part this conclusion is based
on the results of correlation dimension tests rather than direct Lyapunov
exponent (L.E.) estimates (but see Vassilicos ¢t al. 1992; Eldridge and
Coleman, 1993).

Even where Lyapunov exponent estimates are presented, there is no rigorous
criterion for assessing their significance. For the most part, moreover, the
estimates were derived by direct fitting of the state space mapping (Wolf ez al.
1985), rather than by working with the Jacobian, which is preferable in the
context of noisy time series. In general, the results suggest that L.E. estimation
may be highly sensitive to the algorithm used, a suspicion which is borne out
by the results presented in Section III below.

With this caveat in mind, it is unclear how much importance should be
attached to estimates of positive L.E.’s. Certainly, it is unsurprising that a
number of researchers report dimension estimates of 6—7, at or near the upper
limit of the dimension which can be estimated with datasets of the size used in
most of the work reported in the table. It should also be borne in mind that L.E.
estimates are known to be subject to upward bias in cases where the dataset is
contaminated by noise (McCaffrey ¢t al. 1992) or equally where the number of
observations is inadequate.

There remain a number of questions outstanding.

(1) Is the apparent nonlinearity capable of being explained by any of the
time series models prevalent in the finance literature, in particular the ARCH
family: GARCH, IGARCH, EGARCH etc.? Although there is evidence that
GARCH or its variants can account for much, though probably not all of the
nonlinear structure in exchange rates (Hsieh, 1989; Kodres and Papell, 1991),
the situation as regards stock markets is less clear. )

(2) Are the answers to these and other questions dependent on the frequency
with which the data are observed? Or is the degree of nonlinearity and/or
apparent sensitivity to initial conditions greater at higher frequencies? The
results to be reported in this paper will confront this issue directly. It is
noticeable that while early work relied on relatively small datasets made up of
no more than a few hundred or so daily or weekly observations, researchers in
the last few years have increasingly used very high frequency data (see
especially Vassilicos ¢t al. 1992). In part, this trend simply exploits the fact that
high frequency datasets have become available. But, more importantly, it also
reflects a widespread recognition that only with very large amounts of data is

2 Note that the literature includes a number of studies of future prices. However, there is no clear
difference between the results reported for futures and spot prices.
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it ever going to be possible to arrive at reliable estimates of the sensitivity of an
observed stochastic process to disturbances, as measured by the Lyapunov
exponent (see next section).> Moreover, given the structural changes in
financial markets during the 198os, it is unlikely that stationarity could have
been expected to hold over anything more than a few months, or a year or two
at most. In practice, therefore, a large dataset must involve high-frequency
observations.*

At the same time, it is noticeable that, at least as far as exchange rates are
concerned, there appears to be little qualitative difference between the results
achieved with the real time dataset of Vassilicos et al. (1992), and those
published by researchers using weekly or daily returns.

II. TESTS FOR NONLINEARITY AND CHAOS
In this paper, we implement two nonlinearity tests: the Hinich (1982)
bispectrum and BDSL tests. We then proceed to estimate the Lyapunov
exponent, following the neural nets approach of Nychka et al. (1992), and the
nearest-neighbour methods of Zeng et al. (1992) and Briggs (1990).

II.1. The Hinich (1982) Bispectrum Test

In heuristic terms, the bispectrum is a generalisation of the spectral den-
sity, with covariance terms E(x,x,.) replaced by third-order cumulants
E(x, %,4,%,.,). Brillinger (1965) shows that if a grd-order stationary time series
{x(¢)} is IID-linear, then the skewness function:

B(wb &)2)2 ( I)
Slw,) flwp) flo, + w,)°

where f(w,) and B(w,,w,) are respectively the 2nd- and grd-order spectra of
{x(#)}, is constant over all frequencies (w,, w,) in the principal domain given by:

" Fz(wl’ wz) =

Q= (0;,0,):0 < w; < 05,0, < 0,20, +0, < I. (2)

Furthermore, if {x(#)} is Gaussian, then the expression in (1) is zero in Q.

These results were first applied to tests for nonnormality and nonlinearity by
Subba Rao and Gabr (1980). Using results on the asymptotic distribution of
the sample bispectrum, Hinich (1982) developed a method based on robust test
statistics which is both simpler and more stable, and has been widely studied
and applied (Ashley et al. 1986; Brockett et al. 1988; Hinich and Patterson
1985, 1989). We follow the procedures in Ashley et al. (1986). In particular, we
base our tests on their interquartile range and 809, quantile statistics, with
their recommended window size of M = N %, where N is the number of
observations available.

Finally, we note that the fact that bispectrum-based tests have been shown

% Thus, Vassilicos et al. (19g2) argue that a minimum size of dataset required for work of this type is
around 5,000 observations.

% This is not to say that high-frequency data are necessarily stationary. For example, we are grateful to
a referee for pointing out that microstructural effects are likely to induce nonstationarities into intra-daily
returns (Brock and Kleidon, 1992). Our contention is simply that these nonstationarities are likely to be far
less of a problem than those present in longer period datasets.
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to be invariant to linear filtering (Ashley et al. 1986) means that they nicely
complement the BDSL test, which is of course sensitive to linear structure.’

IL.2. The BDSL Test

Brock et al. (1987) have developed a powerful test for independence and
identical distribution based on the correlation integral. Given a time series of
N observations {x(¢),t = 1,2, 3,... N}, the correlation integral is defined as:

C(m, e, N) = I[(t,): | X" — XT|| < €]/N?, (3)
where X7* = [x(¢),...,x(t—m+1)], ||. || is the L, norm on R™ and I[.] denotes
the number of elements in the set. Intuitively, the correlation integral measures
the proportion of embedded vectors of dimension m lying within the e-

neighbourhood of an initial embedding, X,. Under modest regularity conditions
C(m,e, N) has a limit C(m,€) as N— o0. Now if {x(¢)} is IID, then we have

C(m,¢e) = C(1,€)™, (4)
from which we define the BDSL test statistic:
(m,e, N) =/§[C(m,e,N)—C(I,e,N)m], (5)

which converges in distribution to N(o, 1) as N— 0o0. The variance V can be
consistently estimated from the data, as detailed in Brock et al. (1987).

I1.3. Lyapunov Exponent Tests
It was shown in Takens (1981) that the underlying dynamics of a process can
be understood in terms of the phase space reconstruction. Thus a noisy (scalar)
time series {x(),¢ = 1,2...} can be rewritten in state space form as:
X, =F(X,,) +¢&, (6)

where X, = {x(¢),x(t—L),...x[t—(d—1)L]},d is the embedding dimension, L
the time delay, & = (¢,,0...0) represents the stochastic component of the
process, with {¢,} a sequence of IID random variables, and F a R* > R? function
satisfying some general regularity conditions.

Now, given two initial state vectors X§, X{? sufficiently close together, then
after one time point:

X1 — X 1| & I (X5” — X57) I (7)

where J, is the d x d Jacobian matrix of partial derivatives of F evaluated at
X{®. Then the Lyapunov exponent (L.E.) of the system can be defined as:

A#lim%ln A A A (8)
t—>o0

One operational definition of chaos is a bounded system with A > o, since if this
condition is satisfied, trajectories which start at two almost identical state
vectors will diverge exponentially as time passes (the property known as
‘sensitive dependence on initial conditions’).

5 Ashley et al. (1986) also use Monte Carlo methods to show that the distribution of the bispectral skewness
statistic is unlikely to be greatly affected by estimation error in the linear filter.
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The direct L.E. estimation method of Wolf ¢t al. (1985) involves averaging
observed divergence rates which, as approximations of the LHS of (7), will tend
to grow without limit if the series is chaotic. However, this direct approach is
less appropriate when the process is assumed to be contaminated with noise, in
which case A estimates derived in this fashion are liable to be biassed upward
(McCaflrey et al. 1992).

Instead, we use Jacobian methods based on estimates of (7) and (8). One
advantage of this approach is that the approximation in (%) can be improved
by the introduction of higher-order terms in the Taylor expansion. Moreover,
the noise in the underlying process (6) can be smoothed out by using additional
near-neighbours in the estimation algorithm, an approach which has been
successfully implemented by Briggs (1990), Brown et al. (1991) and Zeng et al.
(1992).

In the work reported here, we first follow Zeng ¢t al. (1992) in choosing near
neighbours from within a ‘shell’ (i.e. the zone between two spheres) rather
than from a ball. This method is claimed to be an improvement in so far as it
minimises the effect of noise on the estimates, though in the present case, it was
especially attractive because it greatly reduced the difficulties presented by the
large number of zero returns in the higher frequency datasets (see Section III).

An alternative non-parametric regression approach which we implement
here involves approximating the function F in (6) by using a single hidden-
layer feed-forward neural network with a single output, of the general form:

N q

SX,) = ﬂ0+121ﬂj G(y; X, +py)s (9)

where we have introduced the logistic distribution function:® G(x) = ¢*/(1 +¢*)

(see McCaffrey et al. 1992 and Nychka et al. 1992). Unlike the nearest-

neighbour algorithms, this approach avoids the ‘curse of dimensionality’. It is

also an advantage to be able to obtain Bayesian Information Criterion values

for each function approximation, giving some kind of numerical indication of

the reliability of the L.E. estimates. In fact, the results in Nychka et al. (1992)

suggest this method works reasonably well on noisy systems even when the
number of observations is far smaller than is the case here.

III. THE RESULTS

The data set used in this paper consisted of real-time observations of the return
on the FTSE-100 Index of stocks quoted on the London International Stock
Exchange over the period from 4 January 1993 to 30 June 1993. The index is

8 In practice, Ellner et al. (1991) use the approximation:

X
2+ x| +—
2

However, in our case, the optimisation routine converged faster using (9).
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recomputed every minute, so that at the highest (i.e. 1-min) frequency, our
dataset includes a total of about 60,000 points.” However, our tests were also
conducted at lower frequencies. Table 1 gives a selection of descriptive statistics

Table 1
Descriptive Statistics for FTSE Returns

Sample  Unique  No. of

size values zeroes
Frequency N NC NO Mean s.d. Skewness Kurtosis
60-min 992 981 10 2:860E-06 1'g80E-03 0843 8702
30-min 1,984 1,942 34 1'430E-06 1°320E-03 0201 4'537
15-min 3,968 3,737 152 7:150E-07 8-720E-04 0194 8247
5-min 11,904 8,975 1,292 2:380E-07 3:840E-04  —0226 16355

I-min 59,520 14,722 22,491 4770E-08 1'110E-04  —o0993 293082

Notes: N is number of observations in sample; NC'is N less the number of repeated observations in sample;
NO is number of zero observations in sample. Both skewness and kurtosis statistics centred on zero.

on the data set sample at a range of frequencies from hourly to minute-by-
minute. A number of points are worth noting.

First, looking at the columns headed N (sample size), NC' (number of unique
i.e. non-repeated values) and NO (number of zero values), it is clear that there
is a potential problem with the maximal (i.e. 1-min) data set. Our concern here
is with the return on the FTSE-100, defined as the log difference in the level
of the index. It follows that on every occasion when the index remained
unchanged over the observation interval, the return was zero. Obviously, the
shorter the observation interval, the more likely it is that the FT'SE will remain
unchanged. In fact, as can be seen from the table, the return was zero at well
over one third of the points in the 1-min data set, and about 109, of the points
at the 5-min frequency. '

For nearest-neighbour estimation methods, it is also relevant to consider the
number of unique (i.e. excluding repeated) values. In fact, over 759, of the
maximal data set consisted of non-unique values (zero or otherwise), leaving
fewer than 15,000 unique values. By contrast, of the gg92 hourly observations,
only 11 were repeated, of which all but one were zeroes.

Looking at the remaining columns of Table 1, there is very little obvious sign
of mean reversion, insofar as the standard deviation increases (though not
necessarily in strict proportion) as the frequency falls. Although the dataset is
only mildly skewed, the degree of leptokurtosis is overwhelming, as is usually
the case with financial data. Moreover, while it is significantly non-Gaussian in
this respect at all frequencies, the extent of the leptokurtosis is vastly greater for
the 1-min data set, a finding which is consistent with the well-established
conclusion in the literature that deviations from normality are more marked at
higher than lower frequencies.

? For obvious reasons, the ‘overnight’ data point (i.e. the first return of the day) was excluded from the
data set at each frequency.
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Table 2
BDSL Tests for Independence of FTSE Returns
(January—June 1993)

dim 1-hour 30-min 15-min 5-min 1-min

ARMA residuals

2 3941 4912 12°332 51995 136'453
3 4627 6790 14814 53585 143:908
4 4817 8-089 16:177 54°642 147'126
5 4749 8726 17570 56452 150°426
6 4188 9'166 19'224 59197 154567
7 3724 9’125 20'994 62701 159'733
8 3642 8810 22985 66953 166-244
9 3853 8305 24°961 72'247 174222
10 4187 7-386 27:066 78757 183'628
GARCH residuals
2 2702 2°450 10°421 9'384 5771
3 2896 3914 12755 9969 8410
4 2595 4817 14089 11292 13057
5 1961 5'092 15433 13004 17899
6 1092 5113 16:856 14847 22630
7 0419 4'556 18:338 16:859 27'480
8 0187 3853 19-822 18'955 32203
9 0226 2:967 21216 21-036 37°154
10 0'446 1-866 22:560 23290 42505

Notes: BDSL statistics are distributed N(o,1) under null hypothesis of IID residuals. ¢/o = 1-0 for results
given above. Results for €/ = 0'75, 125, 150 available from authors.

Nonlinearity (1): the BDSL Test (Table 2)

Table 2 shows estimated values of the BDSL test for embedding dimensions
from 2 to 10.> The computed statistics are asymptotically standard normal
variates. In fact, in the light of the Monte Carlo studies reported in Brock et al.
(1991), normality holds well for sample sizes of 1,000 and upwards, and for
values of € of between 05 and 2-0 standard deviations. It should be noted that
the same authors also warn against relying on asymptotic normality for values
of N/m of less than 200. Thus, for our hourly data set, this would indicate
embedding dimensions no greater than 5. We note also their conclusion that
asymptotic normality is robust both to skewness and leptokurtosis.

It is well known, however, that the BDSL test rejects IID for a wide range
of processes, including linear ARMA and nonlinear GARCH. Since our
concern here is with nonlinearity, an ARMA model was fitted to the data prior
to testing, so that the results in the top half of Table 2 refer to the residuals from
an ARMA model selected by the Bayesian Information Criterion.

One conclusion can be drawn immediately. In virtually every case, our
results are inconsistent with an IID process. This is true at all dimensions and
for all frequencies.” Moreover, as expected, the higher the frequency, the

& The results given in Table 2 are for /0 = 1-0. The computations were performed for values of € ranging
from o5 to 1'5 times the standard deviation, with qualitatively similar results (available from authors).

® And at all values of ¢/0" (not presented in the table). As noted by Brock et al. (19g1), at high dimensions
the results are potentially very sensitive to the chosen value of /0.
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Table g
Buspectral Normality and Linearity Tests (Hinich, 1982)
60-min 30-min 15-min 5-min I-min
(a) Raw data
n 990 1,980 3,960 11,900 59,500
m 31 45 63 109 243
Normality tests
csq 3351 6090 1,322°0 68840 2'06E + 06
D.F. 140 294 600 1,908 9,760
p o o o [ o
Hinich linearity tests
A 279 214 241 522 420°15
D.F. 2 2 2 2 2
z1 2°328 0852 0179 3318 125696
p! 001 0197 04288 00005 o
z2 2:264 1799 2'303 6-525 661°44
P2 oor18 0'036 00106 o o
(b)) GARCH residuals
n 980 1,980 3,960 11,900 59,500
m 31 45 63 109 243
Normality tests
csq 2855 4893 972'9 3,439 38,180
D.F. 140 2094 600 1,908 9,760
P o [ o o o
Hinich linearity tests
A 208 1'33 1-24 16 582
D.F. 2 2 2 2 2
z1 0423 —0°205 0'096 —o8o1 16:306
p! 0'3363 0581 04619 07885 o
22 156 1587 1384 1-388 16'489
p2 04379 0'0563 0-0832 00825 o

Notes : n, Number of data points used ; m, width of spectral window (= SQRT(n) +1); csq, chi-sq statistic
for Gaussianity tests; D.F., degrees of freedom; p, p-value of Gaussianity test statistics; A, non-centrality
parameter; z1, N(0,1) test statistic for inter-quartile-range (IQR) linearity test; p1, p-value of IQR linearity
test; z2, N(o,1) test statistic for 80 %-quantile-range (R80) linearity test; p2, p-value of R8o linearity test.

further into the tail of the distribution are the computed z-statistics. But there
is little reason to doubt the basic result that the data are almost certainly
characterised by nonlinear dependence at high frequencies, and probably at
lower frequencies too.

The bottom half of the table repeats the same tests on the residuals from a
GARCH(1,1) process. While the null hypothesis of IID residuals is
unequivocally rejected in virtually every case, the values of the BDSL statistic
are very noticeably reduced at all dimensions. The improvement is particularly
dramatic in the 1-min case. To that extent, our results endorse the conclusions

of Hsieh (1990) and others.

Nonlinearity (I1): the Hinich (1982) Test (Table 3)

Our data set is well suited to spectral tests, not least because the use of a wide
range of frequencies reduces the aliasing problem discussed in Hinich and
Patterson (1989).

© Royal Economic Society 1995
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Table g presents the results of tests based on the bispectrum of the raw data,
at each sampling frequency. Lines g to 5 give the results of the test for
Gaussianity, exploiting the fact that under the null hypothesis of normally
distributed observations, the bispectrum is zero. Plainly, this condition is
violated here at all frequencies, with vanishingly small associated p-values of
the chi-square statistic. The evidence of skewness implies that the data cannot
be adequately described by any symmetric model. In this light, it is not
surprising that GARCH residuals fail the BDSL tests.

For the nonlinearity test, we present values of the standard normal test
statistics both for the interquartile range (z,) and for the 80 %,-quantile range
(z,), with their associated p-values, p; and p, respectively. The advantage in
restricting attention to the quantile range statistics is that they exclude outliers
in the extreme tails of the distribution.

Perhaps the superiority of the 809, range is reflected in the fact that it yields
results which are more in line with our a priori expectations, as well as with the
BDSL results already reported. What is surprising about the values of z; in
Table 3 is that they are actually lower (i.e. less extreme) at the 30-min than the
60-min frequency. Moreover, the value falls even further at 15-min, where the
p-value is actually over 40%,. This flies in the face of our expectation that the
degree of nonlinearity would increase, not decrease, as the frequency increases.
The results for the 809, range are vastly more plausible. The IID hypothesis
is unambiguously rejected, at least at the standard 5%, level, although the
results for 60, 30 and 15 min are very similar. At the 5-min frequency, and
especially at the 1-min, the rejection of linear independence is overwhelming.

The bottom half of the table shows the results of the same tests applied to the
residuals from GARCH processes fitted to the raw returns. The difference
between the two halves is dramatic. It is plain that on the basis of this type of
test, GARCH removes almost every trace of any structure in the series at all
frequencies except 1-min, where once more we see an improvement, but
nowhere near sufficient to eliminate the dependence entirely. On the evidence
here, one cannot reject the proposition that the data are completely
characterised by a GARCH process. However, a caveat is in order here. The
fitting of a GARCH model to what are clearly skewed data involves an obvious
misspecification and may well have distorted the underlying structure (Brock
et al. 1991), a point which is probably relevant to many of the recently
published empirical studies of financial markets.

Nearest-neighbour Estimates of Lyapunov Exponents (Table 4)

Table 4 presents estimates of the maximum Lyapunov exponents, A;, of our
data series, derived from fitting the Jacobian matrix by the Zeng et al. (1992)
algorithm.’® The estimates are arranged in ascending order of embedding
dimension (from 1 to 8), order of the fitted polynomial (¢ = 1,2) and number
of extra neighbours used (nb).

Although the results are mixed, the overall conclusion seems to point to a

10 Computations of the other (smaller) L.E. values are available from the authors on request.
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high, probably infinite dimension. It should be noted that a large element ol
judgement is involved in assessing the estimates, simply because nothing is
known of the asymptotic distribution of the estimators.

The maximal A, for the 1-min returns are sometimes positive (especially for
g = 2), and at lower frequencies the sign also varies. All that can be said is that
it is more often positive for higher dimensions when more neighbouring points
are used and the second-order polynomial is fitted. In absolute terms, the A;
are invariably small, usually less than 0'25. Moreover, the sum XA, over all
A; > o, which is a measure of the Kolmogorov entropy, is negative in virtually
every case, and the Kaplan—Yorke dimension, which is given by:

. k K+l
Dyy=k+——3 A for: TA=0> 3 A
1 Agsal ima i=1 i=1

is unstable across dimensions and polynomial order. It is worth noting that,
even in the case of the estimate most favourable to low dimensional chaos, for
nb = 30, ¢ = 2 and dimension 8, the implied maximum forecast horizon is less
than 1} min. It is also noteworthy that the L.E. estimates tend to diminish as
we increase the number of extra neighbours used in estimation, but tend to
increase as the order of the polynomial is increased.'*

Neural Net Estimates of Lyapunov Exponents'®

One of the attractive features of the Nychka et al. (1992) approach is that, in
order to remedy the lack of any rigorous significance testing procedure, they
suggest the use of scatter plots that are informative about precision.

_Figs. 1a and 1) show the scatter of A estimates for different (L,d,q)
combinations, where L is the time delay used (L = 1 for hourly returns, L = 2
for 1-min returns), d = 1,...,10 is the embedding dimension and ¢ =1,...,5
is the selection parameter equal to the number of units in the hidden layer of
the net.”® This means that we have a total of 1X 10X 5= 50 parameter
combinations in each case. We then plot the 20 BIC-minimising estimates of
the L.E. associated with each (L, d, ¢) triplet i.e. 1,000 points in each figure.

As can clearly be seen, although the estimates are quite sensitive to the
estimation parameters, the conclusion that the A, are all negative is extremely
robust. Moreover, this is obvious even though the estimates are poorly defined,
with a number of different L.E. values associated with the same minimum BIC,
especially at the half- and one-hour frequencies. This result in itself may be
taken as a sign that the data are characterised by a low signal-to-noise ratio.

11 We also experimented with Briggs (1990) estimates, but the results were not very plausible. Though
they indicated the presence of at least one positive Lyapunov exponent in every case, the estimates were
extremely large in absolute terms, especially at the 1-min interval. Moreover, the estimates of all the A,
appeared to be very sensitive to the values of m and ¢, so that the entropy measure fluctuated wildly,
indicating that the series is virtually unforecastable at any horizon. The difficulty with the Briggs (1990)
algorithm in the present case seems to lie in the large number of zero returns in the high frequency data,
many of which are excluded by the Zeng et al. (1992) ‘shell’ technique.

12 The results in this section were achieved by vectorising the LENNS program of Ellner, Nychka and
Gallant to run on a supercomputer.

13 To save space, we only present graphs for the hourly and 1-min returns. Our conclusions were
qualitatively similar at the other frequencies.
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Fig. 1. Scatter of A estimates for different combinations. (), 1-min returns; (b), hourly returns.

Figs. 2a and 26 give a somewhat different perspective on the results. At each
embedding dimension d = 1,..., 10, the graphs show:
(a) the BIC-minimising L.E. estimate (the ‘best fit’)
(b) the mean of the 10 BIC-minimising L.E. estimates (the unbroken line)
(¢) given the standard deviation of the 10 BIC-minimising L.E. estimates, a
range of one standard deviation about the mean (‘Upper’ and ‘Lower’,
marked by the two dotted lines).

Again, it is plain that even the upper bounds on the estimates are below zero
in almost every case. In other respects, however, the results are ambiguous. For
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example, in the case of the 1-min returns the mean L.E. estimate appears to be
levelling off at around —o°17. But the ‘best’ estimate fluctuates wildly, falling
outside the one-standard deviation bounds in several cases, in spite of the fact
that the bounds themselves are very wide. The estimates with hourly returns
(Fig. 2b) are even more erratic and show no clear levelling off in the A

estimates, though they are still negative at d = r1o0.
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IV. CONCLUSIONS

This paper has addressed two major questions. Is there a nonlinear structure
in the process generating returns on the FTSE 100? And, if so, is there any
evidence that the process may be chaotic?

Our answers are plain. There is clear evidence of nonlinear dependence at
all frequencies, especially the 1- and 5-min. However, it seems that some of the
nonlinearity can be explained by a simple GARCH process. We find little to
support the view that the process is chaotic at any frequency. Our estimates of
the maximal Lyapunov exponent seem very sensitive both to the estimation
methodology and to the chosen embedding dimension. In the case of the
nearest-neighbour estimates, they are very much dependent on the choice of
embedding dimension, as well as on the number of additional neighbours used
and the order of the fitted polynomials. As far as the neural nets are concerned,
the result that the maximum L.E. is negative seems highly robust.

We are very conscious that the research agenda in this area is still very full
indeed. The obvious next step would be to proceed to forecasting the index
using locally weighted regression. As far as other datasets are concerned, not
only is it of interest to know whether other countries’ stock market indices have
the same dynamic characteristics as the FTSE, it would also be intriguing to
see whether the associated futures prices follow a similar pattern. It is also
essential to proceed at an early stage to examining the patterns in individual
stock returns. Not only is the subject important in its own right, it may also help
to explain the time series pattern of index returns, though the relationship
between the statistical properties of the index and its components is potentially
camplex in the extreme.

University of Stirling
Date of receipt of final typescript: November 1994
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