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Power-law tail behavior and the summation scheme of Levy-stable distributions is the
basis for their frequent use as models when fat tails above a Gaussian distribution
are observed. However, recent studies suggest that financial asset returns exhibit tail
exponents well above the Levy-stable regime (0 < α ≤ 2). In this paper, we illustrate that
widely used tail index estimates (log–log linear regression and Hill) can give exponents
well above the asymptotic limit for α close to 2, resulting in overestimation of the tail
exponent in finite samples. The reported value of the tail exponent α around 3 may very
well indicate a Levy-stable distribution with α ≈ 1.8.
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1. Introduction

Levy-stable laws are a rich class of probability distributions that allow skewness

and fat tails and have many intriguing mathematical properties.1 They have been

proposed as models for many types of physical and economic systems. There are

several reasons for using Levy-stable laws to describe complex systems. First of

all, in some cases, there are solid theoretical reasons for expecting a nonGaussian

Levy-stable model, e.g., reflection of a rotating mirror yields a Cauchy distribution

(α = 1), hitting times for a Brownian motion yield a Levy distribution (α = 0.5,

β = 1), the gravitational field of stars yields the Holtsmark distribution (α =

1.5).2–4 The second reason is the Generalized Central Limit Theorem which states

that the only possible nontrivial limit of normalized sums of independent identically

distributed terms is Levy-stable.5 It is argued that some observed quantities are

the sum of many small terms — asset prices, noise in communication systems, etc.

— and hence, a Levy-stable model should be used to describe such systems. The

third argument for modeling with Levy-stable distributions is empirical: many large

data sets exhibit fat tails (or heavy tails, as they are called in the mathematical

literature) and skewness, for a review, see Refs. 4, 6 and 7. Such data sets are
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poorly described by a Gaussian model and usually can be quite well described by

a Levy-stable distribution.

Recently, in a series of economic and econophysics articles, the Levy-stability of

returns has been rejected based on the log–log linear regression of the cumulative

distribution function or the Hill estimator.8–17 In this paper, we show that the

cited estimation methods can give exponents well above the asymptotic limit for

Levy-stable distributions with α close to 2, which results in overestimation of the

tail exponent in finite samples. As a consequence, the reported value of the tail

exponent α around 3 may suggest a Levy-stable distribution with α ≈ 1.8.

2. Levy-Stable Distributions

Levy-stable laws were introduced by Paul Levy during his investigations of the

behavior of sums of independent random variables in the early 1920’s.18 The lack

of closed form formulas for probability density functions for all but three Levy-

stable distributions (Gaussian, Cauchy and Levy), has been a major drawback

to the use of Levy-stable distributions by practitioners. However, now there are

reliable computer programs to compute Levy-stable densities, distribution functions

and quantiles.19 With these programs, it is possible to use Levy-stable models in a

variety of practical problems.

The Levy-stable distribution requires four parameters to describe: an index of

stability (tail index, tail exponent or characteristic exponent) α ∈ (0, 2], a skewness

parameter β ∈ [−1, 1], a scale parameter σ > 0 and a location parameter µ ∈ R.

The tail exponent α determines the rate at which the tails of the distribution taper

off, see Fig. 1. When α = 2, a Gaussian distribution results. When α < 2, the
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Fig. 1. A semilog plot of symmetric (β = µ = 0) Levy-stable probability density functions for
α = 2, 1.95, 1.8, 1.5 and 1. Observe that the Gaussian (α = 2) density forms a parabola and is
the only Levy-stable density with exponential tails.
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variance is infinite. When α > 1, the mean of the distribution exists and is equal to

µ. In general, the pth moment of a Levy-stable random variable is finite if and only

if p < α. When the skewness parameter β is positive, the distribution is skewed to

the right. When it is negative, it is skewed to the left. When β = 0, the distribution

is symmetric about µ. As α approaches 2, β loses its effect and the distribution

approaches the Gaussian distribution regardless of β. The last two parameters, σ

and µ, are the usual scale and location parameters, i.e., σ determines the width and

µ the shift of the mode (the peak) of the distribution.

2.1. Characteristic function representation

Due to the lack of closed form formulas for densities, the Levy-stable distribution

can be most conveniently described by its characteristic function φ(t) — the inverse

Fourier transform of the probability density function. However, there are multiple

parameterizations for Levy-stable laws and much confusion has been caused by

these different representations.20 The variety of formulas is caused by a combina-

tion of historical evolution and the numerous problems that have been analyzed

using specialized forms of the Levy-stable distributions. The most popular param-

eterization of the characteristic function of X ∼ Sα(σ, β, µ), i.e., a Levy-stable

random variable with parameters α, σ, β and µ, is given by21,22:

logφ(t) =


−σα|t|α

{
1− iβ sign(t) tan−πα

2

}
+ iµt , α 6= −1 ,

−σ|t|
{

1 + iβ sign(t)
2

π
log |t|

}
+ iµt , α = 1 .

(1)

For numerical purposes, it is often useful23 to use a different parameterization,

logφ0(t) =


−σα|t|α

{
1 + iβ sign(t) tan

πα

2
[(σ|t|)1−α − 1]

}
+ iµ0t , α 6= 1 ,

−σ|t|
{

1 + iβ sign(t)
2

π
log(σ|t|)

}
+ iµ0t , α = 1 .

(2)

The S0
α(σ, β, µ0) parameterization is a variant of Zolotariev’s3 (M)-parameteri-

zation, with the characteristic function and hence the density and the distribution

function jointly continuous in all four parameters. In particular, percentiles and

convergence to the power-law tail vary in a continuous way as α and β vary. The

location parameters of the two representations are related by µ = µ0−βσ tan(πα/2)

for α 6= 1 and µ = µ0 − βσ(2/π) log σ for α = 1.

For simplicity, in Sec. 3, we will analyze only nonskewed (β = 0) Levy-stable

laws. This is not a very restrictive assumption, since most financial asset returns ex-

hibit only slight skewness. For β = 0, both representations are equivalent, however,

in the general case, the S0 representation is preferred.
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2.2. Simulation of Levy-stable variables

The complexity of the problem of simulating sequences of Levy-stable random vari-

ables results from the fact that there are no analytic expressions for the inverse

F−1 of the cumulative distribution function. The first breakthrough was made by

Kanter,24 who gave a direct method for simulating Sα(1, 1, 0) random variables, for

α < 1. It turned out that this method could be easily adapted to the general case.

Chambers, Mallows and Stuck25 were the first to give the formulas.

The algorithm for constructing a random variable X ∼ Sα(1, β, 0), in represen-

tation (1), is the following,22

• generate a random variable V uniformly distributed on (−π/2, π/2) and an

independent exponential random variable W with mean 1;

• for α 6= 1, compute,

X = Sα,β ×
sin(α(V +Bα,β))

(cos(V ))1/α
×
(

cos(V − α(V +Bα,β))

W

)(1−α)/α

, (3)

where,

Bα,β =
arctan

(
β tan

πα

2

)
α

,

Sα,β =
[
1 + β2 tan2 πα

2

]1/(2α)

;

• for α = 1, compute,

X =
2

π

(π
2

+ βV
)

tanV − β log

 π

2
W cosV

π

2
+ βV

 . (4)

Given the formulas for simulation of standard Levy-stable random variables, we

can easily simulate a Levy-stable random variable for all admissible values of the

parameters α, σ, β and µ using the following property: if X ∼ Sα(1, β, 0), then,

Y =


σX + µ , α 6= 1 ,

σX +
2

π
βσ log σ + µ , α = 1 ,

is Sα(σ, β, µ). The presented method is regarded as the fastest and the best

one known. It is widely used in many software packages, including S-plus and

STABLE.19
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2.3. Tail behavior

Levy18 has shown that when α < 2, the tails of Levy-stable distributions are asymp-

totically equivalent to a Pareto law. Namely, if X ∼ Sα<2(1, β, 0), then, as x→∞,

P (X > x) = 1− F (x)→ Cα(1 + β)x−α ,

P (X < −x) = F (−x)→ Cα(1− β)x−α ,
(5)

where,

Cα =

(
2

∫ ∞
0

x−α sinxdx

)−1

=
1

π
Γ(α) sin

πα

2
.

The convergence to a power-law tail varies for different α’s and, as can be seen in

Fig. 2, is slower for larger values of the tail index. Moreover, the tails of Levy-stable

distribution functions exhibit a crossover from a power decay with exponent α > 2

to the true tail with exponent α. This phenomenon is more visible for large α’s and

will be investigated further in the next section.

3. Estimation of the Tail Index

The problem of estimating the tail index (as well as other parameters) is in general

severely hampered by the lack of known closed-form density functions for all but a

few members of the Levy-stable family. Fortunately, there are numerical methods

that have been found useful in practice.
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Fig. 2. A double logarithmic plot of the right tails of symmetric Levy-stable cumulative distri-
bution functions for α = 2, 1.95, 1.8, 1.5 and 1. For α < 2, the power tails are clearly visible.
Moreover, the smaller the tail index the stronger is the power decay behavior. Recall that the
Gaussian tails decay much faster, i.e., exponentially.
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Currently, there exist three estimation procedures for estimating Levy-stable law

parameters worth recalling. The first one is based on a numerical approximation of

the Levy-stable likelihood function. The ML method, as it is called, was originally

developed by DuMouchel26 and recently optimized by Nolan.27 It is the slowest of

the three but possesses well known asymptotic properties.

The second method uses a regression on the sample characteristic function. It

is both fast and accurate (as long as we are dealing with a sample generated by

a Levy-stable law). The regression procedure was developed in the early 1980’s by

Koutrouvelis28,29 and recently improved by Kogon and Williams.30

The last, but not least, is the quantile method of McCulloch.31 It is the fastest

of the three, because it is based on tabulated quantiles of Levy-stable laws. Yet, it

lacks the universality of the other two, since it is restricted to α ≥ 0.6.

All presented methods work pretty well assuming that the sample under con-

sideration is indeed Levy-stable. However, if the data comes from a different distri-

bution, these procedures may mislead more then the Hill and direct tail estimation

methods. And since there are no formal tests for assessing the Levy-stability of a

data set, we suggest to first apply the “visual inspection” or nonparametric tests

to see whether the empirical densities resemble those of Levy-stable laws.

3.1. Log–log linear regression

The simplest and most straightforward method of estimating the tail index is to

plot the right tail of the (empirical) cumulative distribution function (i.e., 1−F (x))

on a double logarithmic paper, as in Figs. 2–7 (see also Refs. 13–16). The slope of

the linear regression for large values of x yields the estimate of the tail index α,

through the relation α = −slope.
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Fig. 3. A double logarithmic plot of the right tail of an empirical symmetric 1.95-stable distri-
bution function for sample size N = 106. Circles represent outliers which were not used in the
estimation process. Even the far tail estimate α = 2.07 is above the Levy-stable regime.
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This method is very sensitive to the sample size and the choice of the number

of observations used in the regression. Moreover, the slope around −3 may indicate

a nonLevy-stable power-law decay in the tails or the contrary — a Levy-stable

distribution with α ≈ 1.8. To illustrate this, we simulated (using Eq. (3)) samples

of size N = 104 and 106 of standard symmetric (β = µ = 0, σ = 1) Levy-stable

distributed variables with α = 1.95 and 1.8. Next, we plotted the right tails of
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Fig. 4. A double logarithmic plot of the right tail of an empirical symmetric 1.95-stable distri-
bution function for sample size N = 104. Circles represent outliers which were not used in the
estimation process. This example shows that inference of the tail exponent from samples of typical
size is strongly biased.
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Fig. 5. A double logarithmic plot of the right tail of an empirical symmetric 1.8-stable distribution
function for sample size N = 106. Circles represent outliers which were not used in the estimation
process. The far tail estimate α = 1.83 is slightly above the true value of α.
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the empirical distribution functions on a double logarithmic paper. For α close to

2, the true tail behavior of Eq. (5) is observed only for very large (also for very

small, i.e., the negative tail) observations, see Figs. 3 and 5, after a crossover from

a temporary power-like decay. Moreover, the obtained estimates still have a slight

positive bias: 0.03 for α = 1.8 and 0.12 for α = 1.95, which suggests that perhaps

even larger samples than 106 observations should be used.

To test the method for extremely large data sets, we also simulated samples of

size N = 108 of standard symmetric Levy-stable distributed variables with α = 1.95

and 1.8. As can be seen in Fig. 7, the improvement over one million records samples

is not substantial. The tail index estimate (2.02) is closer to the true value of

α = 1.95, but still outside the Levy-stable regime. Similarly, for α = 1.8, the

method overestimated the tail exponent and returned α = 1.82.

If a typical size data set is used, i.e., 104 observations or less as in Refs. 10, 17

and some data sets in Refs. 14–16, the plot may be quite misleading. An empirical

cumulative distribution function of a Levy-stable sample of size 104 and α > 1.5

does not exhibit the true tail behavior (x−α decay), but a temporary power-like de-

cay with the slope (more precisely: absolute value of the slope) significantly greater

then 2: |slope| = 4.99 for α = 1.95 and 2.89 for α = 1.8; see Figs. 4 and 6 and com-

pare with Figs. 3 and 5, respectively. Slight differences in the slope of the initial

temporary power-like decay (4.91 in Fig. 3 compared to 4.99 in Fig. 4 and 2.95 in

Fig. 5 compared to 2.89 in Fig. 6) are caused by inaccurate estimation for large

observations in the smaller samples.
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Fig. 6. A double logarithmic plot of the right tail of an empirical symmetric 1.8-stable distribution
function for sample size N = 104. Circles represent outliers which were not used in the estimation
process. This example shows that inference of the tail exponent from samples of typical size is
strongly biased and the reported value of the tail exponent around 3 may very well indicate a
Levy-stable distribution with α ≈ 1.8.
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Fig. 7. A double logarithmic plot of the right tail of an empirical symmetric 1.95-stable distri-
bution function for sample size N = 108. Circles represent outliers which were not used in the
estimation process. Even the far tail estimate α = 2.02 is above the Levy-stable regime.

Figures 3–7 clearly illustrate that the true tail behavior of Levy-stable laws is

visible only for extremely large data sets. In practice, this means that in order

to estimate α, we must use high-frequency asset returns and restrict ourselves to

the most “outlying” observations. Otherwise, inference of the tail index may be

strongly misleading and rejection of the Levy-stable regime unfounded. In Figs. 3,

5 and 7, we used only the upper 0.5% or less of the records to estimate the true tail

exponent. In general, the choice of observations used in the regression is subjective

and can yield large estimation errors.

3.2. Hill estimator

Hill32 proposed a method for estimating the tail index that does not assume

a parametric form for the entire distribution function, but focuses only on the

tail behavior. The Hill estimator is used to estimate the (Pareto) tail index α,

when the upper tail33 of the distribution is of the form: 1 − F (x) = Cx−α. If

X(1), X(2), . . . , X(N) is the order statistics, i.e., original sample ordered so that

X(1) ≥ X(2) ≥ · · · ≥ X(N), drawn from a population with law F , then, the Hill

estimate of α based on the k largest order statistics is:

αHill(k) =

(
1

k

k∑
n=1

log
X(n)

X(k+1)

)−1

. (6)

Unfortunately, it is difficult to choose the right value of k. In practice, αHill(k) is

plotted against k and one looks for a region where the plot levels off to identify the

correct order statistic.6,34 Algorithms for choosing “optimal” k have been proposed
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in the literature (see e.g., Refs. 35 and 36), but usually give numbers in the vicinity

of the plateau.

To illustrate the performance of the Hill estimator for Levy-stable laws, we

simulated (using Eq. (3)) samples of size N = 104, 106 and 108 of standard sym-

metric (β = µ = 0, σ = 1) Levy-stable distributed variables with α = 1.95, 1.8,

1.5 and 1. Next, we plotted the Hill statistic αHill(k) versus k and compared the

estimated and true values of α.

Figure 8 presents the results of the analysis for Levy-stable samples of size

104. As has been reported in the literature,34,37,38 for α ≤ 1.5, the estimation is

within reasonable limits but as α approaches 2, the Hill estimate is well above the

Levy-stable regime. In the “extreme” case of α = 1.95, there is no single value of

k that gives the right value of the tail exponent! For the 1.8-stable sample, Hill

estimates are close to the true value of α only for k < 50, whereas the plateau and

“optimal” order statistic36 are in the range k ∈ (200, 400) yielding αHill ≈ 2.85.

Actually, the results are very close to those of the log–log linear regression, see

Figs. 4 and 6 and Table 1, since in both methods, estimates are obtained from the

largest order statistics.

Figures 9 and 10 present a detailed study of the Hill estimator for samples of

size N = 106 and 108. Since for α ≤ 1.5, the results were satisfactory even for

much smaller samples, in this study, we restricted ourselves to α = 1.95 and 1.8.

When looking at the left panels of Fig. 9, i.e., for k < 10% of the sample size (as

in Fig. 8), the flat regions suggest similar values of αHill as did the Hill plots in

Fig. 8. However, when we enlarge the pictures and plot the Hill statistics only for
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Fig. 8. Plots of the Hill statistics αHill versus the maximum order statistic k for 1.95, 1.8, 1.5
and 1-stable samples of size N = 104. Dashed lines represent the true value of α. For α close to
2, the Hill tail estimator has a large positive bias resulting in overestimation of the tail exponent.
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Table 1. Pareto (power-law) tail index α

estimates for Levy-stable samples of size 104.

Estimation method

Simulated α Log–log regression Hill

1.95 4.19 4.4–4.6

1.8 2.85 2.8–2.9

1.5 – 1.5–1.6

1.0 – 1.0–1.1

k < 0.1% of the sample size, we can observe a much better fit. For the 1.8-stable

sample, Hill estimates are very close to the true value of α for k ∈ (150, 400). But,

for the “hopeless” case of α = 1.95, again there is no single value of k that gives

the right value of the tail exponent. Yet, this time the estimates are very close to

the Levy-stable regime. Like for smaller samples, the Hill estimates agree quite well

with log–log regression estimates of the true tail, see Figs. 3 and 5. For the extreme

case of 108 observations, the results are similar. The flat regions suggest almost

the same values of αHill as did the Hill plots in Fig. 9. In fact, the Hill plots for

k < 10% of the sample size look so much alike, that in Fig. 10, we plotted only

the counterparts of the right plots of Fig. 9, i.e., the enlarged plots for k < 0.1% of

the sample size. We can see that for α = 1.8, a good estimate is obtained only for
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Fig. 9. Plots of the Hill statistics αHill versus the maximum order statistic k for 1.95 and 1.8-
stable samples of size N = 106. Dashed lines represent the true value of α. For better visibility,
right plots are a magnification of the left plots for small k. For α = 1.8, a good estimate is obtained
only for k = 50, . . . , 400 (i.e., for k < 0.04% of sample size), whereas for α = 1.95, the estimate is
always above the Levy-stable regime.
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Fig. 10. Plots of the Hill statistics αHill versus the maximum order statistic k for 1.95 and 1.8-
stable samples of size N = 108. Dashed lines represent the true value of α. For α = 1.8, a good
estimate is obtained only for k = 25 000, . . . , 60 000 (i.e., for k < 0.06% of sample size), whereas
for α = 1.95, the estimate is in the Levy-stable regime only for k < 20 000 (i.e., for k < 0.02% of
sample size).

k = 25 000, . . . , 60 000 (i.e., for k < 0.06% of sample size), whereas for α = 1.95,

the estimate is in the Levy-stable regime only for k < 20 000 (i.e., for k < 0.02% of

sample size).

4. Conclusions

In the previous section, we showed that widely used tail index estimates (log–log

linear regression and Hill) can give exponents well above the asymptotic limit for

Levy-stable distributions with α close to 2. As a result, tail indices are significantly

overestimated in samples of typical size. Only very large data sets (106 observations

or more) exhibit the true tail behavior and decay as x−α. In practice, this means

that in order to estimate α, we must use high-frequency asset returns and analyze

only the most outlying values. Otherwise, inference of the tail index may be strongly

misleading and rejection of the Levy-stable regime unfounded.

Recently, extremely large data sets have become available to the researchers.

The largest ones studied in the literature so far (in the context of tail behavior)

are (i) the 40 million data points record of 5 min increments for 1000 U.S. com-

panies during the two year period 1994–9513,15 and (ii) the 1 million data points

record of 1 min increments for the Standard & Poor’s 500 index during the 13-

year period 1984–96.13,14 However, the former data set is not homogeneous. It is

formed out of 1000 data sets of 40 000 records for individual companies. Therefore,

strong correlations, which can conceal the true nature of asset returns, are present

in the data. The estimated tail indices for individual companies (see Fig. 1(b)
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in Ref. 15) were found to range from α = 1.5 to 5.5. As we have shown in the

previous section, these values can be easily obtained for samples of Levy-stable

distributed variables.

On the other hand, the second (ii) data set may be regarded as homogeneous.39

The tails of the distribution of 1 min returns were reported to decay in a power-

law fashion with an exponent α = 2.95 for positive and α = 2.75 for negative

observations.14 In an earlier paper by the same authors,13 the tail exponents were

reported to be 2.93 and 3.02, respectively, which shows that the log–log linear

regression method is very sensitive to the choice of observations used. Moreover, in

both papers, the tails of the empirical cumulative distribution function curl upward

for extreme returns,40 see Fig. 1(c) in Ref. 13 and Fig. 4(a) in Ref. 14. This suggests

that for very large and very small observations, the distribution could be fitted by a

power-law with a much smaller exponent. For example, if in Fig. 4(a) of Ref. 14, we

plot an approximate regression line for negative returns in the region 20 ≤ g ≤ 100,

we find that the power-law exponent is less then 2. This may indicate that the tail

exponents reported in both papers did not refer to the true tail behavior, but to the

initial power-like decay (see Figs. 3 and 5) and that the rejection of the Levy-stable

regime was not fully justified.

In this paper, we have shown that the reported estimated tail exponent around

3 may very well indicate a Levy-stable distribution with α ≈ 1.8.41 This is consis-

tent with earlier findings (for a review, see Ref. 7) where the returns of numerous

financial assets (individual stocks, indices, FX rates, etc.) were reported to be Levy-

stable distributed with α ∈ (1.65, 2]. However, nothing we have said demonstrates

that asset returns are indeed Levy-stably distributed. Although the analyzed tail

index estimates are not sufficient to reject Levy-stability, by no means can we rule

out a leptokurtic nonLevy-stable distribution that has power-law tails with α > 2.
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