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CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS:
A NEW APPROACH

By Danier B. NeLson!

GARCH models have been applied in modelling the relation between conditional
variance and asset risk premia. These models, however, have at least three major
drawbacks in asset pricing applications: (i) Researchers beginning with Black (1976) have
found a negative correlation between current returns and future returns volatility.
GARCH models rule this out by assumption. (i) GARCH models impose parameter
restrictions that are often violated by estimated coefficients and that may unduly restrict
the dynamics of the conditional variance process. (iii) Interpreting whether shocks to
conditional variance “persist” or not is difficult in GARCH models, because the usual
norms measuring persistence often do not agree. A new form of ARCH is proposed that
meets these objections. The method is used to estimate a model of the risk premium on
the CRSP Value-Weighted Market Index from 1962 to 1987.

KeywoRrps: Autoregressive conditional heteroskedasticity (ARCH), generalized au-
toregressive conditional heteroskedasticity (GARCH), exponential ARCH, market volatil-
ity, risk premium, nonlinear time series.

1. INTRODUCTION

AFTER THE EVENTS of October 1987, few would argue with the proposition that
stock market volatility changes randomly over time. Understanding the way in
which it changes is crucial to our understanding of many areas in macroeco-
nomics and finance, for example the term structure of interest rates (e.g., Barsky
(1989), Abel (1988)), irreversible investment (e.g., Bernanke (1983), McDonald
and Siegel (1986)), options pricing (e.g., Wiggins (1987)), and dynamic capital
asset pricing theory (e.g., Merton (1973), Cox, Ingersoll, and Ross (1985)).
Recent years have also seen a surge of interest in econometric models of
changing conditional variance. Probably the most widely used, but by no means
the only such models,? are the family of ARCH (autoregressive conditionally
heteroskedastic) models introduced by Engle (1982). ARCH models make the
conditional variance of the time ¢ prediction error a function of time, system
parameters, exogenous and lagged endogenous variables, and past prediction
errors. For each integer ¢, let £, be a model’s (scalar) prediction error, b a
vector of parameters, x, a vector of predetermined variables, and o the
variance of ¢, given information at time ¢. A univariate ARCH model based on

! This paper is a revision of part of Chapter III of my Ph.D. dissertation (Nelson (1988)). The
Department of Education and the University of Chicago Graduate School of Business provided
financial support. I am indebted to George Constantinides, John Cox, Nancy Hammond, Daniel
McFadden, Mark Nelson, Adrian Pagan, James Poterba, G. William Schwert, Stephen Taylor,
Jeffrey Wooldridge, Arnold Zellner, two referees, and a co-editor for helpful comments. Seminar
participants at the 1987 Econometric Society Winter meetings, at the 1989 A.S.A. meetings, at
Berkeley, Chicago, M.I.T., Northwestern, Princeton, the Research Triangle Econometrics Work-
shop, Rochester, Stanford, Wharton, and Yale also made helpful suggestions. Jiahong Shi provided
able research assistance. Remaining errors are mine alone.

2 See, e.g., Poterba and Summers (1986), French, Schwert, and Stambaugh (1987), and Nelson
(1988, Chapter 1).
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Engle (1982) equations 1-5 sets
(1.1) (=02,
(12)  z,~iid. with
E(z,)=0, Var(z,)=1, and
(13)  o’=0%(& 1,65yt x,,b)
=0%0,_12,_1,0,_32,_5,...,1,%,,b).

The system (1.1)-(1.3) can easily be given a multivariate interpretation, in
which case z, is an n by one vector and o, is an n by n matrix. We refer to any
model of the form (1.1)-(1.3), whether univariate or multivariate, as an ARCH
model.

The most widely used specifications for o?(-,-,...,-) are the linear ARCH
and GARCH models introduced by Engle (1982) and Bollerslev (1986) respec-
tively, which make o, linear in lagged values of £2 = 0,2z2 by defining

p
(14)  of=w+ Y a;z7 02, and
j=1

q 14
(1~5) 0'12=w+ ZBiUt2—i+ Eajz?—jo'tz—j,
i=1 j=1

respectively, where w, the a;, and the B; are nonnegative. Since (1.4) is a special
case of (1.5), we refer to both (1.4) and (1.5) as GARCH models, to distinguish
them as special cases of (1.3).

The GARCH-M model of Engle and Bollerslev (1986a), adds another equa-
tion
(1.6) R,=a+bo?+¢,

in which o2, the conditional variance of R,, enters the conditional mean of R,
as well. For example if R, is the return on a portfolio at time ¢, its required rate
of return may be linear in its risk as measured by ;%

Researchers have fruitfully applied the new ARCH methodology in asset
pricing models: for example, Engle and Bollerslev (1986a) used GARCH(1, 1) to
model the risk premium on the foreign exchange market, and Bollerslev, Engle,
and Wooldridge (1988) extended GARCH(1, 1) to a multivariate context to test
a conditional CAPM with time varying covariances of asset returns.

Substituting recursively for the B,0,2; terms lets us rewrite (1.5) as®

(1.7)  o?=w*+ X dp 2707
k=1

It is readily verified that if w, the « ;» and the B; are nonnegative, w* and the ¢,
are also nonnegative. By setting conditional variance equal to a constant plus a

3 The representation (1.7) assumes that {0',2} is strictly stationary, so that the recursion can be
carried into the infinite past.
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weighted average (with positive weights) of past squared residuals, GARCH
models elegantly capture the volatility clustering in asset returns first noted by
Mandelbrot (1963): “...large changes tend to be followed by large changes—of
either sign—and small changes by small changes...” This feature of GARCH
models accounts for both their theoretical appeal and their empirical success.

On the other hand, the simple structure of (1.7) imposes important limitations
on GARCH models: For example, researchers beginning with Black (1976) have
found evidence that stock returns are negatively correlated with changes in
returns volatility—i.e., volatility tends to rise in response to “bad news” (excess
returns lower than expected) and to fall in response to “good news” (excess
returns higher than expected).* GARCH models, however, assume that only the
magnitude and not the positivity or negativity of unanticipated excess returns
determines feature o2 If the distribution of z, is symmetric, the change in
variance tomorrow is conditionally uncorrelated with excess returns today.’ In
(1.4)-(1.5), o2 is a function of lagged o> and lagged z?2, and so is invariant to
changes in the algebraic sign of the z,’s—i.e., only the size, not the sign, of
lagged residuals determines conditional variance. This suggests that a model in
which o responds asymmetrically to positive and negative residuals might be
preferable for asset pricing applications.

Another limitation of GARCH models results from the nonnegativity con-
straints on w* and the ¢, in (1.7), which are imposed to ensure that ¢,> remains
nonnegative for all ¢ with probability one. These constraints imply that increas-
ing z?2 in any period increases o2, for all m > 1, ruling out random oscillatory
behavior in the o> process. Furthermore, these nonnegativity constraints can
create difficulties in estimating GARCH models. For example, Engle, Lilien,
and Robins (1987), had to impose a linearly declining structure on the «;
coefficients in (1.4) to prevent some of them from becoming negative.

A third drawback of GARCH modelling concerns the interpretation of the
“persistence” of shocks to conditional variance. In many studies of the time
series behavior of asset volatility (e.g., Poterba and Summers (1986), French,
Schwert, and Stambaugh (1987), and Engle and Bollerslev (1986a)), the central
question has been how long shocks to conditional variance persist. If volatility
shocks persist indefinitely, they may move the whole term structure of risk
premia, and are therefore likely to have a significant impact on investment in
long-lived capital goods (Poterba and Summers (1986)).

There are many different notions of convergence in the probability literature
(almost sure, in probability, in LP”), so whether a shock is transitory or

* The economic reasons for this are unclear. As Black (1976) and Christie (1982) note, both
financial and operating leverage play a role, but are not able to explain the extent of the asymmetric
response of volatility to positive and negative returns shocks. Schwert (1989a, b) presents evidence
that stock volatility is higher during recessions and financial crises, but finds only weak relations
between stock market volatility and measures of macroeconomic uncertainty. See also Nelson
(1988), and Pagan and Hong (1988).

Adrian Pagan pointed out, however, that in a GARCH-M model a-,2 may rise (fall) on average
when returns are negative (positive), even though ¢% ; — 02 and R, are conditionally uncorrelated,
since in (1.6) E[lz,||R, < 0]> E[lz,| IR, > 0] if a and b are positive.
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persistent may depend on our definition of convergence. In linear models it
typically makes no difference which of the standard definitions we use, since the
definitions usually agree. In GARCH models, the situation is more complicated.
For example, the IGARCH(1, 1) model of Engle and Bollerslev (1986a) sets

(18) of=w+or[(1-a)+azr,], O<a<l

When w =0, 0,2 is a martingale. Based on the nature of persistence in linear
models, it seems that IGARCH(1,1) with w > 0 and o =0 are analogous to
random walks with and without drift, respectively, and are therefore natural
models of “persistent” shocks. This turns out to be misleading, however: in
IGARCH(1,1) with w =0, of collapses to zero almost surely, and in
IGARCH(1, 1) with @ > 0, o* is strictly stationary and ergodic (Geweke (1986),
Nelson (1990a)) and therefore does not behave like a random walk, since
random walks diverge almost surely.

The reason for this paradox is that in GARCH(1,1) models, shocks may
persist in one norm and die out in another, so the conditional moments of
GARCH(1, 1) may explode even when the process itself is strictly stationary and
ergodic (Nelson (1990a)).

The object of this paper is to present an alternative to GARCH that meets
these objections, and so may be more suitable for modelling conditional vari-
ances in asset returns. In Section 2, we describe this o> process, and develop
some of its properties. In Section 3 we estimate a simple model of stock market
volatility and the risk premium. Section 4 concludes. In Appendix I, we provide
formulas for the moments of o> and &, in the model presented in Section 2.
Proofs are in Appendix II.

2. EXPONENTIAL ARCH

If o is to be the conditional variance of ¢, given information at time ¢, it
clearly must be nonnegative with probability one. GARCH models ensure this
by making o a linear combination (with positive weights) of positive random
variables. We adopt another natural device for ensuring that o2 remains
nonnegative, by making In(o,?) linear in some function of time and lagged z,’s.
That is, for some suitable function g:

(2-1) ln(0,2)=a,+ Z ﬁkg(zt—k)? B =1,
k=1

where {a},_ .. and {B.},_,. are real, nonstochastic, scalar sequences.
Pantula (1986) and Geweke (1986) have previously proposed ARCH models of
this form; in their log-GARCH models, g(z,) = Inlz,|* for some b > 0.5

% See also Engle and Bollerslev (1986b).
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To accommodate the asymmetric relation between stock returns and volatility
changes noted in Section 1, the value of g(z,) must be a function of both the
magnitude and the sign of z,. One choice, that in certain important cases turns
out to give o> well-behaved moments, is to make g( z,) a linear combination of
z, and |z,|:

(22)  g(z,)=0z,+v[lz,] —Elz,l].

By construction, {g(z,)},_ _.. .. is a zero-mean, i.i.d. random sequence. The two
components of g(z,) are 6z, and v[|z,| — Elz,|], each with mean zero. If the
distribution of z, is symmetric, the two components are orthogonal, though of
course they are not independent. Over the range 0 <z, <, g(z,) is linear in z,
with slope 6 + vy, and over the range —o <z,<0, g(z,) is linear with slope
6 —vy. Thus, g(z,) allows the conditional variance process {0?} to respond
asymmetrically to rises and falls in stock price.

To see that the term y[|z,| — E|z,|] represents a magnitude effect in the spirit
of the GARCH models discussed in Section 1, assume for the moment that
y >0 and 0 = 0. The innovation in In(o2 ) is then positive (negative) when the
magnitude of z, is larger (smaller) than its expected value. Suppose now that
vy =0 and # < 0. The innovation in conditional variance is now positive (nega-
tive) when returns innovations are negative (positive). Thus the exponential
form of ARCH in (2.1)-(2.2) meets the first objection raised to the GARCH
models in Section 1.

In Section 1 we also argued that the dynamics of GARCH models were
unduly restrictive (i.e., oscillatory behavior is excluded) and that they impose
inequality constraints that were frequently violated by estimated coefficients.
But note that in (2.1)-(2.2) there are no inequality constraints whatever, and
that cycling is permitted, since the B8, terms can be negative or positive.

Our final criticism of GARCH models was that it is difficult to evaluate
whether shocks to variance “persist” or not. In exponential ARCH, however,
In(g?) is a linear process, and its stationarity (covariance or strict) and ergodic-
ity are easily checked. If the shocks to {In(o,?)} die out quickly enough, and if
we remove the deterministic, possibly time-varying component {e,}, then {In(a,>)}
is strictly stationary and ergodic. Theorem 2.1 below states conditions for the
ergodicity and strict stationarity of {exp(—a,)o;?} and {exp(—a,/2)¢,}, which
are {0’} and {¢,} with the influence of {@,} removed.

THEOREM 2.1: Define {0}, {¢,}, and {z,} by (1.1)-(1.2) and (2.1)-(2.2), and
assume that vy and 6 do not both equal zero. Then {exp(—a,)o 2}, {exp(—a,/2)¢,},
and {In(0?) — &} are strictly stationary and ergodic and {In(o}?) — a,} is covari-
ance stationary if and only if ¥5_ B2 < oo. If L5_,B% ==, then |In(0?) —a,| ==
almost surely. If Y;_ B <, then for k>0, Cov{z,_,,In(c?)} =pB.[0+
yE(z,|z,])], and Cov[In(a?),In(c2 )] = Var[g(z)IE7_ BB, 4-



352 DANIEL B. NELSON

The stationarity and ergodicity criterion in Theorem 2.1 is exactly the same as
for a general linear process with finite innovations variance,’ so if, for example,
In(o;?) follows an AR(1) with AR coefficient 4,In(g;?) is strictly stationary and
ergodic if and only if |A] < 1.

There is often a simpler expression for In(o?) than the infinite moving
average representation in (2.1). In many applications, an ARMA process pro-
vides a parsimonious parameterization:

(Q1+w,L+ - +¥,L9)
2\ — q
(2.3) ln(o; ) a,+ (1 AL _Apr)

g(zt—l)'

We assume that [1 - X,_, ,4;y'] and [1+ L,_, ,¥;y‘] have no common roots.
By Theorem 2.1, {exp(—a,)o,?} and {exp(—a,/2)¢,} are then strictly stationary
and ergodic if and only if all the roots of [1 —X,_; 24 y‘] lie outside the unit
circle. While an ARMA representation may be suitable for many modelling
purposes, Theorem 2.1 and the representation (2.1) also allow “long memory”
(Hosking (1981)) processes for {In(c,>)}.

Next consider the covariance stationarity of {¢?} and {¢}. According to
Theorem 2.1, ¥8? < implies that {exp(—a,)o?} and {exp(—a,/2)¢,} are
strictly stationary and ergodic. This strict stationarity, however, need not imply
covariance stationarity, since {exp(—a,)o?} and {exp(—a,/2)¢,} may fail to
have finite unconditional means and variances. For some distributions of {z,}
(e.g., the Student ¢ with finite degrees of freedom), {exp(—a,)o?} and
{exp(—a,/2)¢,} typically have no finite unconditional moments. The results for
another commonly used family of distributions, the GED (Generalized Error
Distribution (Harvey (1981), Box and Tiao (1973)®), are more encouraging. The
GED includes the normal as a special case, along with many other distributions,
some more fat tailed than the normal (e.g., the double exponential), some more
thin tailed (e.g., the uniform). If the distribution of {z,} is a member of this
family and is not too fat tailed, and if ¥,_, .87 <, then {0;} and {¢,} have
finite unconditional moments of arbitrary order.

The density of a GED random variable normalized to have a mean of zero
and a variance of one is given by

v exp [ - (%)Iz/)tl"]
A2 O0 (1 )

—o00 <z <o, O<v g,

(24)  f(2)=

where I'(+) is the gamma function, and

1,2

(25)  A=[2¢¥»r1w)/rG3/w)] 7

"The assumption that z, has a finite variance can be relaxed. For example, let z, be i.i.d.
Cauchy, and g(z,) = 6z, + vlz,|, with y and @ not both equal to zero. By the Three Series Theorem
(Billingsley (1986, Theorem 22.8)), o;* is finite almost surely if and only if |Z,,{ g .o¥B8;-In(1 +
Bl <o and L, IB,| <. Then {exp(—e,)0,?} and {exp(—a,/2)&,} are strictly stationary and
ergodic.

Box and Tiao call the GED the exponential power distribution.
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v is a tail-thickness parameter. When v = 2, z has a standard normal distribu-
tion. For v <2, the distribution of z has thicker tails than the normal (e.g.,
when v =1, z has a double exponential distribution) and for v > 2, the distribu-
tion of z has thinner tails than the normal (e.g., for v =, z is uniformly
distributed on the interval [—3'/2,31/2)).

THEOREM 2.2 Define {02, &), _.... by (1.D-(1.2) and (2.1)-(2.2), and as-
sume that 'y and 0 do not both equal zero. Let {z},_ ., ., be i.i.d. GED with
mean zero, variance one, and tail thickness parameter v > 1, and let ¥7_ B} < .
Then {exp(—a,)o?} and {exp(—a,/2)¢,} possess finite, time-invariant moments
of arbitrary order. Further, if 0 <p < «, conditioning information at time 0 drops
out of the forecast pth moments of exp(—a,)a,* and exp(—a,/2)¢, as t — =

(2.6) plimE[exp(—pa,)a,2”|zo,z,1,z_2,...]

t—
— E[exp(—pa,)o?] =0, and

(2.7) plimE[exp( —pa,/2)|§,|p]zo, Z_q, 2_2,...]

t—>x

—Elexp (—pa,)I£|7] =0,

where plim denotes the limit in probability.

That is, if the distribution of the z, is GED and is thinner-tailed than the
double exponential, and if ¥8} < », then exp(—a,)o;*> and exp (a,/2), are not
only strictly stationary and ergodic, but have arbitrary finite moments, which in
turn implies that they are covariance stationary.

Since the moments of {exp(—a,)o,?} and {exp(—a,/2)¢,} are of interest for
forecasting, Appendix I derives the conditional and unconditional moments
(including covariances) of {exp(—a,)o,?} and {exp (—ea,/2)¢,} under a variety of
distributional assumptions for {z,}, including Normal, GED, and Student ¢.

3. A SIMPLE MODEL OF MARKET VOLATILITY

In this Section, we estimate and test a simple model of market risk, asset
returns, and changing conditional volatility. We use this model to examine
several issues previously investigated in the economics and finance literature,
namely (i) the relation between the level of market risk and required return,
(i) the asymmetry between positive and negative returns in their effect on
conditional variance, (iii) the persistence of shocks to volatility, (iv) “fat tails” in
the conditional distribution of returns, and (v) the contribution of nontrading
days to volatility.

We use the model developed in Section 2 for the conditional variance
process, assuming an ARMA representation for In(o?). To allow for the
possibility of nonnormality in the conditional distribution of returns, we assume
that the {z,} are i.i.d. draws from the GED density (2.4). To account for the
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contribution of nontrading periods to market variance, we assume that each
nontrading day contributes as much to variance as some fixed fraction of a
trading day, so if, for example, this fraction is one tenth, than ¢,> on a typical
Monday would be 20% higher than on a typical Tuesday. Other researchers
(e.g., Fama (1965), and French and Roll (1986)) have found that nontrading
periods contribute much less than do trading periods to market variance, so we
expect that 0 <8 < 1.7
Specifically, we model the log of conditional variance as

(1+¥L+ - +¥,L9)
(1-A,L+---—4,L")

(3.1) In(o?)=a,+ 8(z,4),

where z, is ii.d. GED with mean zero, variance one, and tail thickness
parameter v > 0, and {«,} is given by

(3.2) a,=a+In(1+N,6),

where N, is the number of nontrading days between trading days ¢ — 1 and ¢,
and « and & are parameters. If the unconditional expectation of In(o,?) exists,
then it equals a + In(1 + N,5). Together, (3.1)-(3.2) and Theorem 2.1 imply
that {(1 + N,8)~'/%¢,} is strictly stationary and ergodic if and only if all the roots
of 1 -4,Y~ -+ —A,Y?) lie outside the unit circle."

We model excess returns R, as

(3.3) R,=a+bR,_,+co?+&,

where the conditional mean and variance of ¢, at time ¢ are 0 and o/}

respectively, and where a, b, and c are parameters. The bR, _, term allows for
the autocorrelation induced by discontinuous trading in the stocks making up an
index (Scholes and Williams (1977), Lo and MacKinlay (1988)). The Scholes and
Williams model suggests an MA(1) form for index returns, while the Lo and
MacKinlay model suggests an AR(1) form, which we adopt. As a practical
matter, there is little difference between an AR(1) and an MA(1) when the AR
and MA coeflicients are small and the autocorrelations at lag one are equal,
since the higher-order autocorrelations die out very quickly in the AR model.
As Lo and MacKinlay note, however, such simple models do not adequately
explain the short-term autocorrelation behavior of the market indices, and no
fully satisfactory model yet exists.

The theoretical justification for including the co? term in (3.3) is meager,
since the required excess return on a portfolio is linear in its conditional
variance only under very special circumstances. In Merton’s (1973) intertempo-
ral CAPM model, for example, the instantaneous expected excess return on the
market portfolio is linear in its conditional variance if there is a representative
agent with log utility. Merton’s conditions (e.g., continuous time, continuous

° French and Roll (1986) and Barclay, Litzenberger, and Warner (1990) offer economic interpre-
tations.
10 Again, we assume that [1 — X1 ,4,y'land[1+X,_, %y'] have no common roots.
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trading, and a true “market” portfolio) do not apply in our model even
under the log utility assumption. Backus and Gregory (1989), and Glosten,
Jagannathan, and Runkle (1989) give examples of equilibrium models in which a
régression of returns on o,? yields a negative coefficient.! There is, therefore,
no strong theoretical reason to believe that ¢ is positive. Rather, the justifica-
tion for including co? is pragmatic: a number of researchers using GARCH
models (e.g., French, Schwert, and Stambaugh (1987) and Chou (1987)) have
found a statistically significant positive relation between conditional variance
and excess returns on stock market indices, and we therefore adopt the form
(3.3).

For a given ARMA(p, g) exponential ARCH model, the {z]},_,
and {0%},_, ; sequences can be easily derived recursively given the data
{R},~1 7, and the initial values o7,...,07, nux(p.g+1r TO close the model,
In(o)),...,In(c?, ... (p,q+1)) Were set equal to their unconditional expectations
(@ +In(1+6N,),...,(a+In(1+ 86N, nux(p.q+1y))- This allows us to write the
log likelihood L, as

T )
(34) Ly=Y In(v/A) —(3)|(R,—a—bR, | —co?)/o,A|

t=1
—(1+v™ Y In(2) —In[I(1/v)] - 3 In(0?),

where A is defined in (2.5). Given the parameters and initial states, we can
easily compute the likelihood (3.4) recursively, using (3.1) and setting

(35) z,=0,(R,—a—-bR,_,—co}).

In light of (3.5), however, it may be that setting the out-of-sample values of
In(o;?) equal to their unconditional expectation is not innocent: using the true
parameter values but the wrong ¢ in (3.5) leads to an incorrect fitted value of
z,, in turn leading to an incorrect fitted value for o2 |, and so on. In simulations
using parameter estimates similar to those reported below, fitted o> generated
by (3.4)-(3.5) with an incorrect starting value converge very rapidly to the o,
generated by (3.4)—(3.5) and a correct starting value. In a continuous time limit,
it is possible to prove that this convergence takes place instantaneously (Nelson
(1990Db)).

Under sufficient regularity conditions, the maximum likelihood estimator is
consistent and asymptotically normal. Unfortunately, verifying that these condi-
tions hold in ARCH models has proved extremely difficult in both GARCH
models and in the Exponential ARCH model introduced in this paper. Weiss
(1986) developed a set of sufficient conditions for consistency and asymptotic
normality in a variant of the linear ARCH formulation of Engle (1982). These
conditions are quite restrictive, and are not satisfied by the coefficient estimates
obtained in most studies using this form of ARCH. In the GARCH-M model, in
which conditional variance appears in the conditional mean, the asymptotics are

' See also Gennotte and Marsh (1987).
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even more uncertain, and no sufficient conditions for consistency and asymp-
totic normality are yet known. The asymptotics of exponential ARCH models
are equally difficult, and as with other ARCH models, a satisfactory asymptotic
theory for exponential ARCH is as yet unavailable. In the remainder of this
paper we assume (as is the usual practice of researchers using GARCH models)
that the maximum likelihood estimator is consistent and asymptotically normal.

For our empirical analysis, we use the daily returns for the value-weighted
market index from the CRSP tapes for July 1962-December 1987. An immedi-
ate problem in using this data is that we wish to model the excess returns
process but do not have access to any adequate daily riskless returns series. As
an initial approximation to the riskless rate, we extracted the monthly Treasury
bill returns from the CRSP tapes, assumed that this return was constant for
each calendar day within a given month, and computed daily excess returns
using this riskless rate series and value-weighted CRSP daily market returns.'?
As a check on whether measurement errors in the riskless rate series are likely
to bias the results seriously, we also fit the model using the capital gains series,
ignoring both dividends and the riskless interest rate. As shown below, it made
virtually no difference in either the estimated parameters or the fitted variances.

To select the order of the ARMA process for In(¢?), we used the Schwarz
Criterion (Schwarz (1978)), which provides consistent order-estimation in the
context of linear ARMA models (Hannan (1980)). The asymptotic properties of
the Schwarz criterion in the context of ARCH models are unknown.

The maximum likelihood parameter estimates were computed on VAX 8650
and 8550 computers using the IMSL subroutine DUMING. Table I lists
likelihood values for ARMA models of various orders on the CRSP excess
returns series. For both the excess returns and capital gains series, the Schwarz
Criterion selected an ARMA(2,1) model for In(o?)."> Table II gives the
parameter estimates and estimated standard errors for both ARMA(2, 1) mod-
els. The estimated correlation matrix of the parameter estimates in the excess
returns model is in Table III. The asymptotic covariance matrix was computed
using the score.

First note that except for the parameter ¢ (the risk premium term in (3.3)),
the two sets of coefficient estimates are nearly identical. The fitted values of
In(o;?) from the two models are even more closely related: their means and
variances for the 1962-1987 period are nearly equal (—9.9731 and 0.6441, vs.
—9.9766 and 0.6415, respectively) and the two series have a sample correlation
of 0.9996. In other words, the series are practically identical, so ignoring
dividends and interest payments appears likely to introduce no important errors
in forecasting the volatility of broad market indices.

12 Logarithmic returns are used throughout: i.e., if S, is the level of the value-weighted market
index at time ¢ and d, are the dividends paid at ¢, then the value-weighted market return, capital
gain, and excess return are computed as In[(S, +d,)/S,_,]), In[S,/S,_,], and In[(S,+4d,)/S,_ ] -
RR, respectively, where RR, is our proxy for the riskless rate.

13 The AIC (Akaike (1973)) chose the highest-order model estimated.
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TABLE 1
LikeLIHOOD VALUES FOR ARMA MobELS FOR CRSP VALUE-WEIGHTED EXCEss RETURNS

Observations = 6408.
Deterministic Conditional Variance Model (i.e., y = = A = ¥ = (), Likelihood = 22273.313.
ARMA Exponential ARCH Model Likelihoods:

AR Order
0 1 2 3 4
MA Order 0 22384.898 22888.052 22891.937 22894.237 22894.902
1 22429.942 22893.687 22915.454 22916.799 22916.894
(SO
2 22473.728 22894.167 22916.762 22917.035 22918.708
3 22532.768 22894.385 22916.941 22918.853 22922.439
4 22590.536 22900.990 22917.670 22918.857 22923.752

(AIC)

(SC = Model selected by the criterion of Schwarz (1978).)
(AIC = Model selected by the information criterion of Akaike (1973).)

TABLE II

PARAMETER ESTIMATES FOR THE CRSP EXcCEss
RETURNS AND CAPITAL GAINS MODELS
(Standard Errors in Parentheses)

Parameter CRSP Excess Returns CRSP Capital Gains

P —-10.0593 —-10.0746
0.3462) (0.3361)

5 0.1831 0.1676
0.0277) 0.0271)

y 0.1559 0.1575
(0.0125) (0.0126)

A, 1.92938 1.92914
(0.0145) (0.0146)

4, —0.92941 —0.92917
0.0145) (0.0146)

¥ —0.9782 —-0.9781
(0.0062) (0.0063)

6 —0.1178 —0.1161
(0.0090) (0.0090)

a 3.488 -10~* 3.416-10~*
(9.850-107%) (9.842-107%)

b 0.2053 0.2082
0.0123) 0.0123)

c —3.3608 —-1.9992
(2.0261) (2.0347)

v 1.5763 1.5760

(0.0320) (0.0320)
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TABLE III

EsTIMATED CORRELATION MATRIX FOR PARAMETER ESTIMATES
Excess RETURNS MODEL
(Only lower triangle reported)

Parameter
@ 1
3 -0.0087 1
y —-0.0023 -0.1639 1
4, 0.0139 0.0715 -0.2996 1
a4, -0.0138 -0.0719 0.2994  —0.999992 1
2 —0.0094 —-0.0392 0.1020  —0.8356 0.8352
1
0 —0.0472 0.1909  —0.0591 0.4342 —0.4346
-0.2211 1
a -0.0674 —0.0342 —0.0222 0.0734 —-0.0715
0.0064 0.0251 1
b -0.0144 -0.0395 -0.0109 0.0439 —0.0443
-0.0256 -0.0772 -0.1979 1
c -0.0702 0.1111 0.0815 —0.0891 0.0871
-0.0151 —-0.0064 —0.8287 0.1198 1
v 0.0591 0.1763 0.2853  —0.0182 0.0179
-0.0414 —-0.1554 0.0042 0.0402 0.1240
1
a 8 y A4, 4,
v 0 a b c
v

Next we examine the empirical issues raised earlier in the Section:

(i) Market Risk and Expected Return: The estimated risk premium is nega-
tively (though weakly) correlated with conditional variance, with ¢ = —3.361
with a large standard error of about 2.026. This contrasts with the significant
positive relation between returns and conditional variance found by researchers
using GARCH-M models (e.g., Chou (1987), and French, Schwert, and
Stambaugh (1987)), but agrees with the findings of other researchers not using
GARCH models (e.g., Pagan and Hong (1988)). Given the results of Gennotte
and Marsh (1987), Glosten, Jagannathan, and Runkle (1989), and Backus and
Gregory (1989), our findings of a negative (albeit insignificant) coefficient should
not be too surprising.

(ii) The asymmetric relation between returns and changes in volatility, as
represented by 6, is highly significant. Recall that a negative value of 6 indicates
that volatility tends to rise (fall) when returns surprises are negative (positive).
The estimated value for 6 is about —0.118 (with a standard error of about
0.008) which is significantly below zero at any standard level. Figure 1 plots the
estimated g(z) function.

Figures 2 and 3 plot o, (the daily conditional standard deviation of returns)
and the log value of the CRSP value-weighted market index, respectively. The
o, series is extremely variable, with lows of less than one-half of a percent and
highs over five percent. All the major episodes of high volatility are associated
with market drops.
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Log of Market Index
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(iii) Persistence of Shocks: The largest estimated AR root is approximately
0.99962 with a standard error of about 0.00086, so the ¢ statistic for a unit root
is only about —0.448. To gain intuition about the degree of persistence implied
by the largest AR root p, it is useful to think of the half-life 4 of a shock
associated with this root, i.e., the number /4 such that

(36) p'=1/2.

p =0.99962 implies a half-life /# of over 1820 trading days, about 7.3 years. In
contrast, the half-life implied by the smaller AR root is less than two weeks.
While this indicates substantial persistence and perhaps nonstationarity, it is
hard to know how seriously to take the point estimates, since we have only
about 25 years of data, about four times our estimated half-life for the larger
AR root. The usual cautions about interpreting an estimated AR root near the
unit circle as evidence of truly infinite persistence also apply.!*

(iv) Fat Tails: It is well known that the distribution of stock returns has more
weight in the tails than the normal distribution (e.g., Mandelbrot (1963), Fama
(1965)), and that a stochastic process is thick tailed if it is conditionally normal
with a randomly changing conditional variance (Clark (1973)). Our estimated
model generates thick tails with both a randomly changing conditional variance
o/ and a thick-tailed conditional distribution for ¢,. Recall from the discussion

14 See, e.g., Cochrane (1988). It is also unclear what the effect of a unit root in In (0-,2) is on the
asymptotic properties of the parameter estimates. The (unverified) regularity conditions for asymp-
totic normality require that the scoring function and hessian obey a central limit theorem and
uniform weak law of large numbers respectively, which may or may not require {0',2, £,} to have finite
momgnts. It may be that the standard asymptotics are valid even in the presence of a unit root in
In (o).
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of the GED(v) distribution in Section 2 that if v < 2, the distribution of z, (and
therefore the conditional distribution of ¢,) has thicker tails than the normal
distribution. The estimated v is approximately 1.58 with a standard error of
about 0.03, so the distribution of the z, is significantly thicker-tailed than the
normal.

(v) The estimated contribution of nontrading days to conditional variance is
roughly consistent with the results of French and Roll (1986). The estimated
value of & is about 0.183, with a standard error of about 0.028, so a nontrading
day contributes less than a fifth as much to volatility as a trading day.

The general results just discussed are quite robust to which ARMA model is
selected, though of course the parameter estimates change somewhat. The
results also appear to be quite robust with respect to the sample period: another
paper, Nelson (1989), reports strikingly similar parameter estimates in an
exponential ARCH model fit to daily capital gains on the Standard 90 stock
index from 1928 to 1956.

Specification Tests

To test the fit of the model, several conditional moment tests (Newey (1985))
were fit using orthogonality conditions implied by correct specification. Correct
specification of the model has implications for the distribution of {z,}. For
example, E[z,]1=0, E[z?]1=1, and E[g(z,)] = 0. Since the GED distribution is
symmetric, we also require that E[z,-|z,|]=0. The first four orthogonality
conditions test these basic properties. Correct specification also requires that
{¢2— 072} and {¢) (or equivalently {z7 — 1} and {z,}) are serially uncorrelated.
Accordingly, we test for serial correlation in z, and z? at lags one through five.

Table 1V reports first the sample averages for the fourteen selected orthogo-
nality conditions and their associated ¢ statistics, and then chi-square statistics
and probability values for two combinations of the orthogonality conditions, the
first including only conditions relating to correct specification of the conditional
variance process o> and the second also testing for correct specification of the
conditional mean process.

In the first chi-square test, the CRSP model does extremely well, with a
probability value of 0.94. Considered individually, none of the first nine orthogo-
nality conditions are significantly different from zero at any standard signifi-
cance level. When the last five conditions, which test for serial correlation in
{z,}, are included, the probability value drops to 0.16, which still does not reject
at any standard significance level, although statistically significant serial correla-
tion is found at lag two. Overall, the fit of the CRSP model of the conditional
variance process {02} seems remarkably good.'-!¢

15 Engle, Lilien, and Robbins (1987) and Pagan and Sabau (1987) based conditional moment tests
on {¢,} rather than on {z,}. Basing tests on {z,} is analogous to a GLS correction and seems likely to
increase the power of the specification tests. As a check, chi-square tests were recomputed using {£,}
instead of {z,}. The test statistics were drastically lower in each instance.

18 The specification tests for the 1928-1956 Standard 90 capital gains data reported in Nelson
(1989) were not as favorable: the tests found evidence of negatively skewed returns and serially
correlated residuals, rejecting the model at any standard level.
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TABLE IV

SpeCIFICATION TEST RESULTS FOR CRSP VALUE-WEIGHTED EXCESS RETURNS,
ARMA(2, 1) MopEer®

Orthogonality Sample

Conditions Averages ¢t Statistics

1 E(z)=0 -0.007 -0.349
2 E(zH)-1=0 -0.001 -0.037
3 Elz,| —A2Y°r@Q/v)/r1/v)=0 2.583-107° 0.002
4 Elz,-(lz,l —Elz])]1=0 -0.027 —-1.254
5 El(z2-1D(z2_ - D]=0 0.102 1.023
6 El(z2-1Xz2_,-DI=0 0.028 0.529
7 El(z2—1D(z25-1D]=0 0.079 0.864
8 El(z2—1D(z2,- D=0 0.042 0.947
9 El(z2—1(z25-1D]=0 0.019 0.469
10 E(z,-z,_)=0 0.022 0.949
11 E(z,°2z,_,)=0 -0.034 -2.521
12 E(z,72z,_9)=0 0.018 1.377
13 E(z,z,_9)=0 0.015 1.174
14 E(z,7z,_5)=0 0.020 1.563

"XZ statistic for conditional moment test using the first 9 orthogonality conditions = 3.46. With 9
degrees of freedom, the probability value = 0.94. x“ statistic for conditional moment test using all
14 orthogonality conditions = 19.14. With 14 degrees of freedom, the probability value = 0.16.

Our conditional moment tests leave many potential sources of misspecifica-
tion unchecked. It therefore seems desirable to check the forecasting perfor-
mance of the model during periods of rapidly changing volatility, and to check
for large outliers in the data. From Figure 2, two periods stand out as times of
high and rapidly changing volatility: the market break of September, 1973-De-
cember, 1974, and the last five months of 1987. Figures 4 and 5 plot returns and
the one-day-ahead ex ante 99% prediction intervals implied by the estimated
model for these periods. The 99% prediction intervals have a width of approxi-
mately 5.56 - o,.

In 1973-1974, the model seems to track the change in volatility quite closely,
with no serious outliers (Figure 4). The model also succeeds quite well in
picking up the volatility of the period after October 19, 1987, with no serious
outliers (Figure 5). On October 19, 1987, however, the model’s performance is
mixed at best: the ex ante prediction intervals for the day are approximately
+ 7%, the widest in the data set up to that time, brought on by the sharp drops
in the market during the preceding week. Unfortunately, the drop in the index
that day was approximately 20.25%, about 7.78 - o,, a serious outlier. If the
estimated model were literally true, the expected number of outliers of this size
or greater in a 251 year period (the length of the data set) is only about 1- 1073
—i.e., the probability of observing such an outlier in a data set of this length is
extremely low.

Although October 19, 1987 is the most extreme outlier in the sample, it is not
the only large outlier. Table V lists the largest, ranked in order of the implied
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TABLE V
LARGEST OUTLIERS IN THE SAMPLE

Date R(%) (%) z, Expected Frequency®
10/19/87 —2025 244 —17.78 1.11-107°
9/11/87 -458 084 —538 0.05

8/17/82 436 0.87 4.95 0.20

1,/8/86 -242 057 -—481 0.31

8/2/78 223 048 4.53 0.67

8/16,/71 3.50  0.82 4.33 121

10/9/79 -337 073 -429 1.36

7/7/86 -3.02 072 -412 2.20

“The expected number of |z,| values of this size or greater in a 25%
year sample (6408 observations).

value for |z,|. The standardized GED has only one parameter, v, to control the
shape of the conditional distribution, and this may well not be flexible
enough—i.e., there are too many “large” |z,| values. Nonparametric methods
(as in Engle and Gonzélez-Rivera (1989)), or more flexible parametric families
of distributions, would probably improve the model.

4. CONCLUSION

This paper has presented a new class of ARCH models that do not suffer
from some of the drawbacks of GARCH models. Ideally, we would like ARCH
models that allow the same degree of simplicity and flexibility in representing
conditional variances as ARIMA and related models have allowed in represent-
ing conditional means. While this paper has made a contribution to this end, the
goal is far from accomplished: it remains to develop a multivariate version of
exponential ARCH, and a satisfactory asymptotic theory for the maximum
likelihood parameter estimates. These tasks await further research.

Graduate School of Business, University of Chicago, 1101 E. 58th St., Chicago,
IL 60637, U.S.A.

Manuscript received February, 1989; final revision received February, 1990.

APPENDIX I: THE MOMENTs OF 0,2 AND ¢,

By (2.1) and the independence of the {z,}, the joint moments and conditional moments of {c;?}
and {¢,} take either the form

exp(a,+ Ebig(zz—:))] =exp(a,)f]l:E[eXp(b[g(Z,_,))] or

i=1

(AL1) E

(A12) E

i=1 i=1,i#j,
cexp(a,) E[20_exp (big(z,-4))]
-E[z,"_, exp(bjg(z,_j))]

Zzp—kth—j €Xp (ar + i bzg(zt—:))] = l—I ) kE[CXp(b,g(Z,_,))]]
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for nonnegative integers p, g, j, and k #j. For example, to get the unconditional expectation of 0,2,
we set {a,}={a,} and {b}={B)} in (Al1). For the conditional expectation of o7 given
Zy s Zy— .-+, SEL

a,=a,+ ZB,g(z,_,), b=pB, forl<i<k-1,and b=0fori>k.
i=k

To obtain the moments of ¢, and ¢,_, 02, we proceed similarly, using (A1.2).

To evaluate the expectations in (A1.1)-(A1.2), we must make a further distributional assumption
about {z,}. When {z,} ~ i.i.d. N(0,1), the following result, combined with (A1.1)-(A1.2), gives the
joint conditional and unconditional moments of the o> and £, processes:

THEOREM Al.1: Let z ~ N(0,1). For any finite, real scalar b and positive integer p,
(A13)  E[exp(g(2)b)] = {®(vb+0b)exp[b2(6+7)/2]

+®(yb - 0b)exp [ b2(y - 0)*/2] Yexp [ ~by(2/m)'"?] <=,

and
(Al4)  E[z7exp(g(2)b)] =exp [ ~by(2/m)"*] T(p+1)-(2m) ">
A{exo [b2(0 +)2/4] -D_ 4 [~b(y +0)]
+(=1)"exp [b2(y = 0)*/4] -D_(, [ —b(v = 0)]} <=,

where ®(-) is the standard normal cumulative distribution function, I'[ -] is the Gamma function, and
D,[-1is the parabolic cylinder function (Gradshteyn and Ryzhik (1980)).

Proor orF THEOREM Al.1: (A1.3) follows by straightforward but tedious calculus. (A1.4) is easily
proven with the help of Gradshteyn and Ryzhik (1980) Formula 3.462 #1. The finiteness of the
expression in (A1.4) follows as a special case in the proof of Theorem A1.2 below. Q.E.D.

Theorem A1.2 deals with the more general GED case.

THEOREM Al.2: Let p be a nonnegative integer, and let z ~ GED (v) with E(z) =0, Var(z) =1,
and v > 1. Then

(A15)  E[z”exp(g(2)b)]
=exp[~by1‘(2/u))\21/u/r(1/v)] LQp/tzp

I'[(p+k+1)/v]

S 1/v k p
L @y oo s 00 -0" e sra

If z ~ GED (v) with v < 1, or z ~ Student t with d degrees of freedom (d > 2), and z is normalized to
satisfy E(z) =0, Var(z) = 1, then Elexp(g(z)b)] and E[z? exp(g(z)b)] are finite if and only if
(A1.6) by + |b| <0.
If z ~ GED (1), then Elexp(g(z)b)] and E[z” exp(g(z)b)] are finite if and only if
(AL.7) by + |b8| <2V/2

The restriction (A1.6) is rarely satisfied in practice. In computing the unconditional expectation
of o2, b is one of the moving average coefficients {B,}, at least some of which are positive, since
Bo=1. If b >0, (Al.6) implies either y <0 or y=60=0. If y <0, residuals larger than expected

decrease conditional variance, which goes against the intuition developed in Section 1. In the
author’s experience in fitting exponential ARCH models, the estimated value of y is always positive.

-
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ProoF oF THEOREM A1.2: The density of z given in (2.4) and Gradshteyn and Ryzhik (1980)
Formula 3.381 #4 yield

(A18)  E(lzl)=212"'r@/v)/r(1/v).

Straightforward calculus then yields

(A19)  E[z”-exp(g(2)b)]

PP/

D) exp [ —byA2'/ ' T (2/0) /I (1/0)]

* - _y NV _ NV
f Y1+ D/, ;[eby(ewxzn + (1) e)(zn/]dy.
0

Expanding the part of the integrand in square brackets in a Taylor series,
(A1.10)  E[z”-exp(g(z)b)]

ap/ep\P

=35 exp[ —bA2! T (2/0) /I (1/0)]
. y 1/¢ k _1\P _ e k e_.“y—l+(p+1+k)/l.
fokgo[[(ow)z BAl"+ (= 1)"[(r = 0)2/ 5a]"] T

If we can interchange the order of summation and integration in (A1.10), then Gradshteyn and
Ryzhik (1980) Formula 3.381 #4 yields (A1.5). First, consider the related expression

—yy—l+(p+1+k)/z

o = e
Al.11 284k ——— gy, h
( ) j(; k§0 T+ 1) ly where

(A1.12) A =max{|(6+y)br2!/"

|Gy —0)bA2V7 ).

The terms in (A.11) are nonnegative, so by monotone convergence (Rudin (1976, Theorem 11.28)),
the order of integration and summation in (A1.11) can be reversed. If the integral in (A1.11) is
finite, then by dominated convergence (Rudin (1976, Theorem 11.32)), we can interchange the order
of summation and integration in (A1.10) and the integral in (A1.10) is finite. To prove (AL.5),
therefore, it remains only to show that (A1.11) is finite if v > 1. By Gradshteyn and Ryzhik (1980)
Formula 3.381 #4,

» 2 e Yy lHpHlti/ e 28T [(p+1+k) /v
(AL3) [ Y oA ay= Y IC /0]
0 = Ir'(k+1) = r'(k+1)

By construction, 4 > 0. When 4 = 0, the convergence of (A1.13) is trivial. When A > 0, then by the
root test (Rudin (1976, Theorem 3.33)), the sum in (A1.13) converges if

(A1.14)  limsup In(4) +k ' In(I[(k+1+p)/v]) =k~ 'In(I'(k+1))<0.
k—> o0

By the asymptotic expansion for In(I'(x)) in Davis (1965, Equation 6.1.41),
(A1.15)  limsupIn(A) + &~ 'In(I[(k+1+p)/v]) -k~ 'In(I'(k +1))

k — o0

= limsup In(4) +k~'[(k+1+p)/v—1/2]-In(k+1+p)

k—o0
+(k+1)/k—k™(k+1+p)/v—1/2] In(v)
—k Mk+1/2] In(k+1) = (k+p+1)/kv+O(k™1).
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Expanding In(k + 1 + p) in a Taylor series around p = 0 and substituting into (A1.15),
(A1.16)  limsup In(A)+ &k~ "In(I[(k+1+p)/v]) -k 'In(I'(k+1))

koo
=limsup In(A) =k '[(k+1+p)/v—-1/2]In(v) - (k+p+1)/kv

k —> o
+1+0k Y- [(k+1+4p)/kv—1-k~'] In(k+1).

The last term on the right-hand side of (A1.16) asymptotically dominates every other term if v # 1,
diverging to —o if v > 1, so the series converges when v > 1 and A < o,

If z~ Student ¢, or GED with v <1, it is easy to verify that E[exp(b-g(z))]= unless
(y + 6)b <0 and (y — 8)b < 0, which holds if and only if by + |6b| < 0. If this inequality is satisfied,
Elexp(g(z)b] < ». The GED case with v =1 is similar. Q.E.D.

APPENDIX II: PRoOFs

Proor oF TueoREM 2.1: That |In(s? —a,| is finite almost surely when I3 _,B7% < follows
immediately from the independence and finite variance of the g(z,) terms in (2.1) and from
Billingsley (1986, Theorem 22.6). Since |In(0,?) — «,| is finite almost surely, so are exp( —a,)o? and
exp(—a,/2)¢,. This, combined with Stout (1974, Theorem 3.5.8) and the representation in (1.1)—(1.2)
and (2.1)-(2.2) implies that these series are strictly stationary and ergodic. For all ¢, the expectation
of (In(o?) —a,) =0, and the variance of (ln(a,z) —a,) is Var(g(z,))Z",f:lﬁ,%. Since Var(g(z,)) is
finite and the distribution of In(c,?) — «, is independent of ¢, the first two moments of (In(o;?) — a,)
are finite and time invariant, so {In(o,2) — a,} is covariance stationary.

If ¥5_,B? =0, then |In(o?) —a,| = almost surely by Billingsley (1986, Theorems 22.3 and
22.8). QED.

PrOOF OF THEOREM 2.2: By Theorem 2.1, the distributions of exp(—a,)o;” and exp(—a,/2)¢,
and any existing moments are time invariant. We will show that exp(—a,)o;” and exp(—a,/2),
have finite moments of arbitrary positive order. As shown in Appendix I, the conditional, uncondi-
tional, and cross moments of exp(—a,)o,®> and exp(—a,/2)¢, have the form (Al.1)-(A1.2). By
Holder’s Inequality, if 0,2 and £, have arbitrary finite moments, the cross moments are also finite.
By the independence of the z,, E[l(exp(—a,/2)§,)ld]=EIzIdE[(exp(—a,/Z)a-,)d]. Since z has
arbitrary finite moments, we need only show that El(exp(—«,/2)a,)?]is finite for all d > 0 if {8;} is
square-summable. This expectation is given by

(A2.1) E[(exp(—a,/z),fl)d] - I:!Eexp [3dB.g(z,-)].

where the individual expectation terms in (A2.1) are obtained by setting b = 8,d/2 in Theorem
Al.l.

A sufficient condition for an infinite product I, .4, to converge to a finite, nonzero number is
that the series ¥,_ .|a, — 1| converge (Gradshteyn and Ryzhik (1980, Section 0.25)). Let a, equal
the ith term in (A2.1). Define

(A22)  S(B)=exp[3dByAl(2/v)2" " /T (1/v)] E(exp[8(2)B3d]).

We then have

(A23)  S(0)=1,  S(0)=3dyAI'(2/v)2" /T (1/v), and
§"(B)=0(1) as B—0.

Expanding S(B) and exp[— 3dByAI'(2/v)2'/*/I'(1/v)] in Taylor series around B =0 and substi-
tuting into (A1.5), we have

(A24)  a,—1=E(exp[g(2)B,3d]) - 1
= [1-3dByAr 2/v)2" /T (1/0) + O(B2)]
1+ 3dByAr(2/0)2 /1 (1/v) + O(B2)] 1
=0(BE) as B,—0.
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O(B?) in (A2.4) means that for some ¢ > 0, there exists a finite M independent of i such that
(A2.5) sup  BYO(B)| <M.
1B, <e, B,#0

By (A2.4)-(A2.5), LB? < » implies ¥, .la,— 1| < and thus [1,_, .a, < <.
Finally, we must prove (2.6)-(2.7). The proofs of (2.6) and (2.7) are substantially identical, so we
prove only (2.6). By Theorem Al.1,

(A2.6) E[exp(—pa,)a-,z",zo, z_q, z,z,...] - E[exp(—pa,)a-,zp]

= [exp (p f}ﬁ,g(z,,)) - f[tE[exp(pﬁ,g(zz,))]]

j=t
—1

. EE[exp (pB.8(z,-))].

The last term on the right-hand side of (A2.6) is finite by Theorem Al.2. (2.6) will therefore be
proven if we can show that

(A2.7) plim [exp (p Zﬁjg(z,_J)) - UE[exp(pB]g(z,]))]] =0.

t oo J=t

First, consider the unconditional variance of the log of the first term on the left-hand side of (A2.7).
We have

(A2.8)  Var| ) pB,g(z,_,)| =p?Var(g(z,)) ), B2—>0 as t—>w.
=t

J=t

Since convergence in L? implies convergence in probability,
g

- 1,
(A2.9) exp Zpﬁ,g(zzﬁ) -1
j=t |

Finally,

(A2.10) ’lirr:o ff[E[exp(pB]g(z,_]))] = ’linl) exp [ Z ln(E[exp(ijg(z,_]))])]
=exp [ Y In [1 +0(sz)]]

= exp -1 as to®

Lo(s)

by (A2.4)-(A2.5) and the square summability of {8;}. Q.E.D.
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