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Measuring Tail Thickness to Estimate the Stable

Index a:: A Critique

J. Huston McCuULLOCH

Department of Economics, the Ohio State University, Columbus, OH 43210-1172

A generalized Pareto or simple Pareto tail-index estimate above 2 has frequently been cited as
evidence against infinite-variance stable distributions. It is demonstrated that this inference is in-
valid; tail index estimates greater than 2 are to be expected for stable distributions with o as low
as 1.65. The nonregular distribution of the likelihood ratio statistic for a null of normality and an
alternative of symmetric stability is tabulated by Monte Carlo methods and appropriately adjusted
for sampling error in repeated tests. Real stock returns yield a stable o of 1.845 and reject iid

normality at the .996 level.

KEY WORDS: Bond returns; Foreign-exchange returns; Generalized Pareto distribution; Hill esti-
mator; Infinite variance; Monte Carlo distribution of stable likelihood ratio statis-
tic; Pareto distribution; Stable distributions; Stock returns; Tail index.

Financial asset returns are the cumulative outcome of a
vast number of individual decisions occurring continuously
in time. According to the generalized central limit theorem,
if the sum of a large number of iid random variates has a
limiting distribution after appropriate shifting and scaling,
the limiting distribution must be a member of the stable
class (Zolotarev 1986, chap. 1). It is therefore natural to as-
sume that asset returns are at least approximately governed
by a stable distribution if the accumulation is additive, or
by a log-stable distribution if the accumulation is believed
to be multiplicative.

The normal distribution is the most familiar stable distri-
bution, with stable index o = 2, and therefore either it or
the lognormal is commonly postulated to be the true dis-
tribution. Financial asset returns, however, are often much
more leptokurtic than is consistent with a Gaussian distribu-
tion. Mandelbrot (1963) therefore proposed the nonnormal
stable distributions, which have Pareto-like tails with an ex-
ponent a < 2, as a particularly attractive alternative model
of asset returns. The basic properties of stable distributions
are summarized in Section 1.

Paretian stable-distribution parameters have been es-
timated for stock returns (Buckle 1995; Tsionas in
press), excess bond returns (McCulloch 1985; Oh 1994),
foreign-exchange-rate changes (So 1987; Tsionas in press),
commodity-price movements (Liu and Brorsen 1995), and
real-estate returns (Young and Graff 1995), to mention only
a few more recent studies. Other leptokurtic distributions,
including Student’s ¢, mixtures of normals, and the double
Weibull, have also been investigated, but these do not have
the attractive central limit property or divisibility of stable
distributions.

In recent years, however, several studies, including no-
tably those of DuMouchel (1983), Akgiray and Booth
(1988), Jansen and de Vries (1991), Hols and de Vries
(1991), and Loretan and Phillips (1994), have found what
appears to be strong evidence against the stable model. Fol-
lowing DuMouchel (1983), these studies have estimated the
Paretian tail index directly from the tail observations, using
either the Pareto distribution itself or a generalization of
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the Pareto distribution proposed by DuMouchel, and com-
monly have found a tail index that appears to be signifi-
cantly greater than 2, the maximum permissible value for a
stable distribution. These authors, as discussed in Section 3,
concluded that this evidence rejects the stable distribution.

In Section 4, it is demonstrated that this inference is in-
valid, overlooking as it does the implications of the inter-
mediate value theorem. It is shown that, with samples of
the size that have been used in these studies, tail-index esti-
mates in excess of 2 are to be expected for iid stable samples
with « as low as 1.65. The findings of the works cited are
therefore in no way inconsistent with a stable distribution
for asset returns.

Furthermore, if the distribution is truly stable, these tail-
index estimators will provide a highly unreliable estimate
of the stable tail index with the moderate sample sizes
that are typically available. If one is willing to assume that
the distribution is truly or approximately stable, it is rec-
ommended that its parameters instead be estimated using
the full sample, by maximum likelihood (ML). DuMouchel
(1973) showed that ML estimators of the stable param-
eters are asymptotically normal when the true values lie
in the interior of the parameter space. DuMouchel (1983)
noted, however, that when the true distribution is normal,
the asymptotic distribution of the ML estimate of « is non-
regular, and its small-sample distribution may not be well
approximated by its normal asymptotic limit.

Section 5 corrects this deficiency by tabulating critical
values of the likelihood ratio (LR) statistic under the null
hypothesis that the true value of the stable index is at the
Gaussian boundary value of 2, with a symmetric stable al-
ternative hypothesis. The critical values, which are obtained
by Monte Carlo simulation, are appropriately adjusted for
their own sampling error when used with multiple inde-
pendent test statistics. Use of the LR statistic is illustrated
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with real Center for Research in Security Prices (CRSP)
stock-market returns.

Section 6 provides some concluding caveats and briefly
discusses certain other, equally invalid empirical objections
that have been raised against the stable hypothesis.

1. BASIC PROPERTIES

Stable distributions may be defined most concisely in
terms of their log characteristic functions. Following Du-
Mouchel (1975), these are given as

i6t — |ct|™ [1 — i sgn(t) tan Z2 ;

log E(exp(iXt)) = a7t
BTSRRI =N st — |ct] [1+8 2 sgn(t) log ct]] ;
a=1.

(1)

The characteristic exponent o € (0,2] and the skewness pa-
rameter 3 € [—1,1] together determine the shape of the
distribution. The location parameter § € (—oo,00) shifts
the distribution to the left or right, whereas the scale pa-
rameter ¢ € (0,00) merely expands or contracts it around
8 (see McCulloch in press a). We may therefore represent
the standard stable distribution (with ¢ = 1 and § = 0) by
So(”g (J))

The stable distribution and density may be computed
from the integral representations of Zolotarev (1986), or by
evaluating the inverse Fourier transform of the characteris-
tic function (e.g., Tsionas 1995a,b). In the symmetric case
B = 0, the numerical approximation of McCulloch (in press
b) greatly simplifies and speeds calculations. See Samorod-
nitsky and Taqqu (1994), Janicki and Weron (1994), and
McCulloch (1986, 1996) for further properties of stable dis-
tributions.

Asymptotic expansions due to Bergstrgm (1952) imply
that, as z — oo,

Sap(—z) ~ (1-7) E%’Q sin %ga:_"

1= Saplz) ~ (14+8) 1@

sin T % 2)
s 2

When o is less than 2, stable distributions therefore have
“Paretian” tail(s) that behave asymptotically like z~* and
give the stable distributions infinite absolute population mo-
ments of order greater than or equal to «. In this case, 3
indicates the limiting ratio of the upper tail probability to
the sum of the two tail probabilities. When o = 2, the coef-
ficients on the Paretian tails vanish along with the influence
of (3, and a normal distribution with variance 2¢? results.

Equation (1) follows Zolotarev (1986, p. 9) and Du-
Mouchel (1975) by defining 3 in such a way that 5 > 0
indicates positive skewness for all . Holt and Crow (1973),
as well as Akgiray and Booth (1988), confusingly reversed
the sign on their “4” for o # 1. Buckle (1995) employed
a version of the “polar” parameterization, rather than the
“Cartesian” parameterization of (1). See Samorodnitsky and
Taqqu (1994, pp. 8-9) on the latter distinction. These issues
do not affect the present discussion.
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2. THE GENERALIZED PARETO DISTRIBUTION

In an influential article, DuMouchel (1983) proposed that
“a more natural way of modeling the tail behavior of data
[than the stable or any other complete distribution] is to let
the tails ‘speak for themselves’ by basing the inferences on
the extreme observations without making any assumptions
about the center of the distribution” (p. 1025). For this pur-
pose he proposed using what he calls the generalized Pareto
(GP) distribution:

P(X > $|X _>_£L‘0)

(1 +v(@—20)/0)7/7;  v>0
) exp(=(z —z0)/0); v=0
] A+r@—z0)/o) Y v <0z <@+ g,
0 v<0,z>x0+ ﬁ—],
3)

where v € (—o00,00),0 € (0,00), and z¢ € (0,00). For
7 > 0, this upper tail probability behaves like = for large
x, where a = 1/v. The standard Pareto distribution with
exponent 1/v is the special case of the GP distribution cor-
responding to v > 0 and o = yzo.

Specifically, DuMouchel proposed fitting this distribution
to the upper 10% of the sample by ML, using the largest
nonincluded observation as zp;. When the distribution is
symmetric or approximately symmetric, the absolute val-
ues of the lower tail observations (relative to the smallest
nonincluded observation) may be merged with the upper
tail to obtain a larger sample. DuMouchel provided a for-
mula for the asymptotic standard error of the ML estimates
4 and 6. I denote dgp = 1/4.

The generalized Pareto distribution, unlike the stable dis-
tributions, thus permits Paretian tail behavior with o > 2.
Any distribution with such tails lies in the domain of at-
traction of the normal distribution, yet may be far more
leptokurtic than the normal. If o > 2, the variance is reas-
suringly finite.

DuMouchel interpreted 4 < 0 as indicating thinner tail
behavior than the exponential distribution. He simulated es-
timation of + for a normal distribution with a tail sample
of size 1,000, drawn using the theoretical normal distri-
bution as if it were the empirical distribution, and found
4 = —.151. In a normal sample, 4 would almost surely rise
to 0 as sample size increases to infinity because of the in-
finite support of the normal distribution, but he found that
this rise is very slow; with a simulated tail sample of 10,000,
the fitted 4 rises to only —.145.

A conditional Pareto distribution (proposed by Hill 1975)
captures the same asymptotic behavior as the GP distribu-
tion, but one might have to go quite far out into the tails
before relatively pure Paretian behavior would become ev-
ident. DuMouchel’s GP distribution has the advantage that
it allows a larger sample size to be brought to bear on the
tail behavior yet includes the Pareto as a special case.

3. EMPIRICAL TAIL BEHAVIOR
DuMouchel (1983) found that, when symmetric sta-
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ble densities are fit to 304 observations on 6- and 24-
week Treasury-bill rate changes by ML, apparently infinite-
variance stable parameters result: @ = 1.37 £ .11 and & =
1.23 + .08, respectively. Yet his GP model, estimated with
a combined tail sample size of 60, gives ¥ = —.081 £ .119
and .227 + .158, respectively. The derived lower bounds on
95% confidence intervals for the tail index are 8.73 and
2.05, respectively. From this he concluded, “if the stable
model holds for these data, the estimates of y~! should
be near those of [the stable] «. On the contrary, the lower
limit for y~! is greater than the upper limit for « in both
data sets. We conclude that these data are much less outlier-
prone than a stable law would lead us to believe” (pp. 1027—
1028).

Akgiray and Booth (1988) fitted both the stable and GP
distributions to returns on 200 stocks, using the empirical
characteristic function approach of Koutrouvelis (1980) to

estimate all four stable parameters. With samples of 1,500

daily observations, they found that, for the stable model,
& + 2(SE) < 2.0 in all 200 cases, with & commonly in the
range (1.65, 1.85). Yet applying DuMouchel’s GP model
to the outermost 300 observations, 1/(§ + 2(SE)) > 1.99
in all 200 cases. From this they deduced that “empirical
tails are thinner than the tails of a stable distribution with
the thinnest tail possible. ... [E]mpirical tails are not even
close to stable tails; they are significantly thinner” (p. 55).

Their results are somewhat weaker using 300 observa-
tions on weekly returns, and therefore 60 pooled tail ob-
servations, as would be expected from the smaller sample
size. Nevertheless they found that “stable distributions can
be ruled out” for 179 of the 200 stocks, in the sense that
the stable & is significantly less than 1/4. Even in the 21
cases in which the empirical tails are consistent with stable
tails, the hypothesis that the empirical tails are exponen-
tial (% — 2(SE) < 0) or even normal [which they test by
4 — 2(SE) < —.15] cannot be rejected in 16 and 11 cases,
respectively.

Akgiray and Booth (1988) concluded, “Although the dis-
tributions of stock returns appear to be homogeneous and
very similar in shape to stable distributions with index
a < 2, a stable-law assumption for return distributions may
still be invalid and misleading. This is because empirical
tail shapes are significantly different from the tails of stable
distributions and sample estimates of the stable distribution
parameters (particularly o) may not be robust to such dif-
ferences. Economic and statistical inferences should not be
based on [stable] index o estimated from samples of stock
returns. On both theoretical and empirical grounds, it seems
to be safer to use other probability models (preferably long-
tailed and skewed distributions that are in the domain of
attraction of the normal distribution) to explain stock-price
behavior” (pp. 56-57).

Several other studies have arrived at similar results, pri-
marily using Hill’s (1975) related conditional Pareto model.
Loretan and Phillips (1994) thus applied this model, sep-
arately to the upper and lower tails of an index of U.S.
stock returns and on exchange-rate returns for five curren-
cies. Their total sample sizes are 1,906 for monthly stock
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returns, 6,404 for daily stock returns, and approximately
3,100 for daily exchange-rate returns. They reported results
with several different tail sample sizes, which place about
1% to 4% of the total data in each tail sample. They found
that the results are surprisingly insensitive to the value cho-
sen within this range. None of their 70 o estimates is smaller
than 2.39, and only three (which were based on only 20 or
30 data points) were larger than 3.92. They interpreted their
results as being in general agreement with what they view as
the general conclusion of the prior literature—namely, that
“empirical distributions in economics, especially aggregate
series such as stock market prices and returns, do not fol-
low stable laws and are better modeled by finite variance
distributions” (p. 236).

Jansen and de Vries (1991) and Hols and de Vries
(1991) found similar results for stock returns and the
Canadian/U.S. dollar exchange rate, respectively. Koedijk,
Schafgans, and de Vries (1990) found, using intra-European
exchange rates under the European Monetary System, that
a < 2 can never be rejected by means of the tail index. The
latter weak results may simply be due to small sample size,
however.

4. THE DISTRIBUTION OF dcp
UNDER STABLE LAWS

Unfortunately, there is a flaw in the reasoning of all the
studies cited in Section 3.

DuMouchel (1983) tabulated the GP tail-shape parameter
that might be expected to be estimated from large samples
(1,000 tail observations) drawn from the upper decile of
several common distributions, including the uniform, tri-
angular, normal, exponential, Student’s (5 df), lognormal
(0 = 1), Student’s (2 df), and Cauchy. He neglected, how-
ever, with only two exceptions, to indicate what kind of
results might be expected when his GP distribution is esti-
mated from the tails of a stable distribution.

The two exceptions are the Cauchy, which is symmetric
stable with a = 1, and the normal, which is stable with a =
2. His Cauchy simulation gives 4 = .988, or dgp = 1.012,
which conforms well with his expectation that 1/% should
approximate the stable « if the distribution is truly stable.
His normal simulation, noted previously, gives 4 = —.151,
which is not consistent with any finite tail index. This is not
surprising, however, given that the normal distribution has
tails that are thinner than any Paretian distribution.

Now, in the interval (0, 2], the symmetric stable density is
a continuous function of a. It follows that the distribution
of any statistic computed by a continuous function from
a finite sample drawn from a stable distribution must also
be a continuous function of «. Thus, by the intermediate
value theorem, if ¥ is roughly 1.00 when « is 1.00 and is
roughly —.15 when « is 2.00, it must pass .50 (the value
corresponding to dgp = 2.00) somewhere in between. A
GP # value less than .50, or even less than 0, therefore
is in no way inconsistent with an infinite-variance stable
distribution.

Table 1 shows the results of a small Monte Carlo sim-
ulation of the distribution of 4 for samples drawn from
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Table 1. Monte Carlo Distribution of Generalized Pareto Estimator §
When True Distribution is Symmetric Stable (100 replications)

«a Min. 1Q Median 3Q Max.
a. Full sample 300, pooled tail sample 60

2.00 —.698 —.305 —.227 —.100 .069
1.99 —.743 —.287 —.178 —.050 .438
1.95 —.581 —.183 —.017 .108 .603
1.90 —.523 —.054 —.118 .260 .645
1.80 —.603 157 .303 .394 745
1.70 —.334 .281 .399 .530 .847
1.60 —.191 .370 .528 .652 971
1.50 —.097 .433 .600 .731 1.171
1.40 .060 510 .648 .800 1.266
1.30 107 570 .734 .862 1.448
1.20 1152 660 .786 .961 1.401
1.10 124 771 .883 1.061 1.523
1.00 .263 .850 .998 1.168 1.628

.80 578 1.049 1.268 1.465 1.935

.60 .870 1.407 1.703 1.911 2.583

40 1.562 2.187 2.530 2.852 3.570

.20 3.616 4.777 5.284 5.863 7.103

b. Full sample 1,500, pooled tail sample 300

2.00 —.305 —.211 —.166 —.119 —.054
1.99 —.281 —.167 —.097 —.044 134
1.95 —.251 .015 .062 132 .265
1.90 —.088 128 .183 227 .375
1.80 .096 .269 .318 .362 504
1.70 .236 .376 424 476 .633
1.60 .310 .460 513 .552 .728
1.50 .363 .531 .581 .640 .801
1.40 .468 .588 .648 .704 .860
1.30 493 .659 713 787 .943
1.20 577 .730 .786 .863 1.081
1.10 665 .812 874 .953 1.104
1.00 .707 .906 967 1.046 1.222

.80 .978 1.160 1.237 1.322 1.497

.60 1.372 1.583 1.693 1.791 2.021

.40 1.988 2.436 2.567 2.694 . 3.092

.20 4.507 5.008 5.200 5.483 6.170

a symmetric stable distribution with selected values of a.
The symmetric stable pseudorandom variates were gen-
erated by the method of Chambers, Mallows, and Stuck
(1976). Panel a is based on the pooled upper and lower
10% of a sample of size 300, as in DuMouchel’s treasury-
bill estimates and in Akgiray and Booth’s (1988) weekly
stock-return estimates, and Panel b is based on the pooled
upper and lower 10% of a sample of size 1,500, as in
Akgiray and Booth’s daily estimates. Both panels are
based on 100 replications and show the minimum, first-
quartile, median, third-quartile, and maximum values thus
obtained. The random-number generator was initialized
by the same seed value for each case, so as not to
mask with additional sampling error the fundamental con-
tinuity of the distribution of the estimators with respect
to a.

It may be seen from Table 1 that, with either sample
size, the median value of #4 falls below .50, and therefore
its reciprocal &gp rises above 2.00, at approximately o =
1.62. With finite samples, 4 is ordinarily somewhat negative
at @ = 2.00 so that &gp actually rises to infinity before
the stable index reaches 2.00. In at least one instance, this
happens with « as low as 1.50.
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Table 2 illustrates the distribution of the Hill/Pareto es-
timator &y used by the other studies cited. It was con-
structed by performing 100 Monte Carlo replications, in
each of which an upper tail sample of -50 was taken from
a symmetric stable sample of 3,000. This sample size was
chosen to be representative of Loretan and Phillips’s (1994)
foreign-exchange-rate estimates. Although the reciprocal of
the Hill estimator may not go negative as in the GP case,
Gy is again seen to be an upward-biased estimate of the sta-
ble index when « is much greater than 1. The Loretan and
Phillips result, &g € (2.39,3.92), is indicative of a stable
« in the range (1.78, 1.92) and is by no means inconsistent
with an infinite-variance stable distribution.

Tables 1 and 2 demonstrate that the GP and Hall tail-
index estimators cannot be used to “reject” an infinite-
variance stable distribution, as claimed by the studies cited
in Section 2. The problem with using the tail index to esti-
mate the stable characteristic exponent is that the sin(mra/2)
terms in (2) imply that the contribution of the Paretian tail(s)
becomes weaker and finally vanishes altogether as o 1 2.
Therefore we must go further and further out into the tails
as we approach normality before the Paretian behavior be-
comes evident. For o near or below 1, the tail index com-
puted as in Tables 1 and 2 captures the Paretian behavior
reasonably well. But for higher values of «, the GP and Hill
estimators become entirely misleading, unless we were to
use so small a tail sample that they could not be mean-
ingfully estimated. The asymptotic standard errors used by
these studies to “reject” a < 2 are indisputably valid, but
only as the tail sample & and total sample n both go to in-
finity and at the same time k/n goes to 0. Dewachter and
Gielens (1994) showed that the Hill estimator provides a
similarly biased estimator of the degrees of freedom when
the true distribution is Student’s ¢.

5. THE DISTRIBUTION OF THE LR STATISTIC
UNDER NORMALITY

I have shown that measuring tail thickness is not a re-
liable method of estimating the stable index « when the

Table 2. Monte Carlo Distribution of Hill/Pareto Estimator &y When True
Distribution Is Symmetric Stable (100 replications)

a Min. Q Median 3Q Max.
2.00 5.117 6.220 6.728 7.343 8.838
1.99 4.203 5.642 6.095 6.963 8.313
1.95 2.963 4.190 4.609 5.253 7.164
1.90 2.211 3.160 3.588 3.993 5.365
1.80 1.559 2.211 2.476 2.851 3.988
1.70 1.308 1.827 2.040 2.270 3.159
1.60 1.195 1.645 1.762 1.939 2.687
1.50 1.111 1.485 1.610 1.827 2.935
1.40 1.097 1.328 1.477 1.639 2,542
1.30 1.014 1.214 1.368 1.486 2.130
1.20 .886 1.111 1.256 1.357 1.744
1.10 799 1.029 1.154 1.236 1.617
1.00 .706 931 1.032 1.136 1.484

.80 573 .739 .826 .902 1.202

.60 431 552 .603 675 .840

.40 .294 .365 .406 447 .548

.20 .158 .185 197 .226 .282

NOTE: The full sample is 3,000; the upper tail sample is 50.
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Table 3. Monte Carlo Distribution of Symmetric Stable ML Estimator &
When True Distribution Is Symmetric Stable (100 replications)

a Min. Q Median 3Q Max.
a. Sample size 300

2.00 1.869 2.000 2.000 2.000 2.000
1.99 1.877 1.991 2.000 2.000 2.000
1.95 1.797 1.926 1.962 2.000 2.000
1.90 1.684 1.853 1.908 1.950 2.000
1.80 1.637 1.725 1.795 1.842 2.000
1.70 1.432 1.611 1.688 1.755 1.912
1.60 1.340 1.500 1.591 1.651 1.825
1.50 1.255 1.405 1.487 1.552 1.714
1.40 1171 1.318 1.389 1.452 1.569
1.30 1.091 1.220 1.289 1.358 1.488
1.20 1.018 1.126 1.192 1.263 1.395
1.10 .944 1.034 1.092 1.159 1.286
1.00 .840* 944 .992 1.060 1.170

.90 .840* .850 .894 .950 1.047

b. Sample size 1,500

2.00 1.979 2.000 2.000 2.000 2.000
1.99 1.950 1.986 1.999 2.000 2.000
1.95 1.898 1.942 1.953 1.969 2.000
1.90 1.824 1.881 1.905 1.925 1.980
1.80 1.707 1.781 1.802 1.829 1.904
1.70 1.613 1.672 1.700 1.732 1.801
1.60 1.504 1.569 1.597 1.626 1.707
1.50 1.404 1.468 1.498 1.524 1.612
1.40 1.310 1.369 1.397 1.427 1.505
1.30 1.221 1.269 1.300 1.331 1.390
1.20 .840* 1.169 1.198 1.233 1.275
1.10 .840* 1.071 1.098 1.132 1.171
1.00 .840* 972 .996 1.026 1.074

.90 .840* .879 .895 .924 971

* A lower fimit of .84 required by the stable density approximation is binding in these cases;
true value may be smaller.

true distribution is stable. Statistical theory would suggest
instead estimating it directly using the full sample, by ML
(see Brorsen and Yang 1990; Feuerverger and McDunnough
1981; McCulloch 1979; Stuck 1976). Other methods are
also available (e.g. Csorgo 1984; Koutrouvelis 1980; Mc-
Culloch 1986; Paulson, Holcomb, and Leitch 1975), but
ML will be most efficient. In the symmetric stable case
(3 = 0, the numerical approximation of McCulloch (in press
b) greatly facilitates ML calculations.

DuMouchel (1973) showed that, when « € [g, 2) for some
arbitrarily small £ > 0, the ML estimators of the stable pa-
rameters meet the standard regularity conditions and have
an asymptotically normal joint distribution governed by the
information matrix, which he tabulated (1975). The LR may
therefore be used to perform asymptotic tests of hypothe-
ses about o within this range by means of the usual x2
distribution.

DuMouchel (1983, pp. 1021-1023), noted, however, that
“when the true distribution is normal, the asymptotic distri-
bution of & is nonregular, and if the true distribution is sta-
ble with index « less than but near 2, the moderate sample
distribution of & is not well approximated by its asymp-
totically normal limit.” He showed with simulations that,
when the true « is 1.90, the likelihood function is skewed,
so as to fall off more quickly for higher values of o than
for lower values of «. This in itself does not imply that the
ML estimate & is biased, but merely that it should be easier
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to reject a values somewhat above & than those that are
the same distance below &. DuMouchel pointed out, how-
ever, that, in 8 of his 10 simulations, & is less than 1.90,
suggesting that it indeed has some downward bias.

Table 3 shows symmetric stable ML estimates &, com-
puted from the same computer-generated symmetric stable
random samples as were used for the GP model in Table 2,
for the cases with @ > .9. The location and scale parameters
6 and ¢ were estimated along with the characteristic expo-
nent, as would ordinarily be the case in applications. The
log-likelihood was maximized with a convergence criterion
of .0001 for o,log(c), and é.

It may be seen by comparing Tables 1 and 2 with Table
3 that estimating the stable exponent directly by stable ML
is vastly superior to estimating it indirectly by means of
the tail behavior when the true distribution is stable. The
expectation of & is unavoidably biased downward as « ap-
proaches 2 because of the boundary a < 2. If there is any
bias in terms of median (&), however, it is not obvious from
this table. '

Because the case o = 2 lies on the boundary of the pa-
rameter space, the LR statistic for the important hypothesis
a = 2 does not meet the standard regularity conditions for
its distribution to be asymptotically x? (Moran 1971a). Be-
cause this is not an artificially imposed boundary, the LR
statistic does not meet even the modified regularity condi-
tions for its distribution to have half the upper tail probabil-
ity of the x? (Moran 1971b). In fact, Michael Woodroofe,
as related by DuMouchel (1983, p. 1029), demonstrated that
Pl@=2)—>1asn— oo.

Table 4 tabulates the Monte Carlo distribution of the LR
statistic (2A log L) that is computed for the null hypothesis

Table 4. Monte Carlo Critical Values of the SS Likelihood Ratio Statistic
(2A log L) for the Null Hypothesis of Normality (10,000 replications)

Sample size n

30 100 300 1,000 [
a. For a single test of normality
p:
10 .243 .228 214 .181 .000
.05 1.107 1.052 .988 .824 .000
.02 2.487 2.545 2.483 2.169 -000
.01 3.956 3.711 3.659 3.519 .000
.005 4.848 5.041 4918 4.829 .000
.002 6.637 6.466 6.258 6.066 .000
.001 8.208 7.421 7.629 6.662 .000
.0005 9.047 8.478 9.282 7.890 .000
.0002 10.139 10.185 10.899 9.354 .000
.0001 10.839 11.264 11.018 10.550 .000
times 12.94% 15.57% 16.33% 15.69% .00%
LR>0
b. For 100 independent tests of normality
p*:
.10 .289 273 .243 214 .000
.05 1.257 1.183 1.120 .949 .000
.02 2.939 2.920 2.925 2.640 .000
.01 4.654 4.764 4.764 4.574 .000
.005 8.249 7.584 7.664 6.688 .000
.00378 10.839 11.264 11.018 10.550 .000

NOTE: Panel b should be used for routine testing.
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Table 5.. ML Estimates of Symmetric Stable Parameters for Real CRSP
Value-Weighted Stock Index Returns (including dividends)

a=2:

Mean .555 (.195)

SD 4277

c (= sd/\/2) 3.024

Log L —1.378.156

Max 14.451

Min —24.774

SR 9.171 [p < .0001]

Norm. excess kurtosis

a unconstrained:

12.384 [p < .0001]

é 1.845 (.056)
é 2712
b 673 (.181)
Log L —1,364.818

2Alog L (a=2)

Generalized Pareto dist.:
(96 pooled tail obs.)

26.677 [p < .00378]

bl .080 (.110)
é 2.343
agp 12.471
1/(y + 2SE) 3.326
Hill estimator:
(40 pooled tail obs.)
Gy 3.502 (.554)
(20 pooled tail obs.)
aH 3.653 (.817)

NOTE: Continuously compounded percent per month. 480 monthly observations. Asymptotic
standard errors in parentheses.

Hy: o = 2 when the symmetric stable parameters «, ¢, and 6
are estimated by ML, for sample sizes n = 30, 100, 300, and
1,000, using 7 = 10, 000 replications. The table also shows
the fraction of the time the LR statistic was greater than 0
(i.e., the fraction of the time & was below the boundary 2),
and the infinite-sample Woodroofe limit. The numerically
approximated log-likelihood, calculated as by McCulloch
(1994), has an expected error of .00003, .0001, .0003, and
.001 for the four sample sizes tabulated, respectively.

Panel a of Table 4 gives critical values for a single experi-
ment. Let LR; be the Monte Carlo LR statistics, arranged in
decreasing order, for ; = 1,...r, and let A be the LR statistic
for a single additional experiment. Under the null hypoth-
esis, the experimental statistic has the same distribution as
the Monte Carlo sample and therefore the probability that
) is greater than LR,, and the null hypothesis is falsely re-
jected is p = m/(r + 1). Accordingly, Table 4a associates
LR,, with p = m/(r + 1) and linearly interpolates to the
round p values shown in the table.

Table 4a optimally adjusts for Monte Carlo sampling er-
ror when only a single experiment is to be performed. Its
critical values will be invalid, however, if it is used for more
than one experiment, as I hope will be the case. If we knew
the exact distribution of a test statistic for any hypothesis,
and performed k independent experiments, the probability
of falsely rejecting the null hypothesis k£ times using the
true critical value for tail probability p would be p*. But
with the critical values in Table 4a, this probability would
be substantially higher because each test would be contam-
inated by the same Monte Carlo sampling error.
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Let A;,... A, be the LR test statistics for & independent
experiments. Under the null hypothesis, these again come
from the same true distribution as our Monte Carlo simu-
lation for the appropriate sample size. For any integer m
between 1 and r inclusive, the probability that A;,... )\
are all greater than LR,, (i.e., that they are all among the
k + m — 1 largest of the k + r iid drawings) is simply
(k+m —1)® /(k + r)*). Therefore,

1/k

. (k4+m—1)®
7= () o

is the effective single-test p value corresponding to LR,,
when £ tests are to be performed. Table 4b tabulates critical
values corresponding to conventional values of p* for k =
100. For m = 1,p* is .00378, so this is the lowest value
shown. For routine testing, it is preferable to use Table 4b,
so its critical values are shown in bold type. )

It is noteworthy that no strong trend toward the infinite-
sample Woodroofe limit is evident in Table 4 as n increases
from 30 to 1,000. Even with n = 10,000, we find, in re-
sults not tabulated, that the proportion of times & < 2 is
still 15.1% with » = 1,000. This is contrary to the find-
ing of DuMouchel (1983, p. 1023, using r = 205), that the
proportion at n = 10,000 falls to 8%.

To illustrate the use of Table 4, I have computed continu-
ously compounded monthly real returns on the CRSP value-
weighted stock-market index, including dividends, for the
period 1/53-12/92 (480 monthly observations, Consumer
Price Index deflation). Table 5 shows the mean standard de-
viation, maximum and minimum percent return per month,
along with the Studentized range statistic SR = (max —
min)/sd (David, Hartley, and Pearson 1954) and the normal-
ized excess kurtosis statistic (my/m3 —3)/+/(24/n), where
m; is the ith sample moment about the mean (Davidson
and MacKinnon 1993, p. 568). The SR and kurtosis statis-
tics both reject iid normality at the .9999 level or higher, for
the sample size used, as tabulated by the author (two-tailed
test).

When symmetric stable parameters are fit to this data by
ML, the resulting characteristic exponent estimate is 1.845.
The standard errors for & and é are computed from the in-
formation matrix, as tabulated by DuMouchel (1975), with
B restricted to 0. Although this is not far from 2, even
a small deviation from normality can make a big differ-
ence for the pricing of out-of-the-money options (McCul-
loch 1985, 1996). The LR ratio statistic, A = 2 AlogL, is
26.68. Table 4b shows that this is significant at the .996
level or better so that the data again firmly reject iid nor-
mality. An additional 99 tests on independent datasets may
be performed with this table before we need to worry that
significance levels are being systematically overstated due
to Monte Carlo sampling error.

For comparison, Table 5 also shows the GP and Hill esti-
mators computed from the same data with pooled tail sam-
ples comparable to those that have been used in the litera-
ture. The GP estimator &gp = 1/4 is 12.471, roughly what
we would expect, using Table 1a, from a stable sample with
an « of about 1.91. The Hill estimator with 40 tail observa-
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tions is 3.502. This is about what we would expect, using
Table 2, from a stable sample with an o of about 1.89. Both
of these purport to be significantly greater than 2. With 20
pooled tail observations, the Hill estimator is still slightly
more than 2 asymptotic SE’s above 2.00.

The validity of the stable LR test for iid normality does
not depend on the true distribution’s being stable, though
its power will presumably be greatest in this case. Like the
studentized range and kurtosis tests, the stable LR test is
most sensitive to deviations from normality that take the
form of thick tails.

6. SOME CONCLUDING CAVEATS

Of course, nothing I have said demonstrates that any one
of the datasets I have mentioned really has a stable distri-
bution. Although I have shown that tail-index estimates are
not sufficient to reject stability, the converse is also true; a
stable ML estimate of o “significantly less than 2” by no
means rules out a nonstable distribution that has Paretian
tails with index greater than 2. A nonnormal stable distri-
bution may simply be proxying for some other leptokurtic
distribution. Even though it is often easy to reject normality,
alternative leptokurtic distributions are always going to be
very hard to tell apart. Likelihood comparisons like those of
Boothe and Glassman (1987) are not nested but perhaps can
be interpreted using the methodology of Lee and Brorsen
(1995). Csorgé (1987) developed explicit tests for certain
aspects of stability that are also promising.

A further complication is that it is rare for an economic or
financial dataset to exhibit iid errors of any type. A common
“test” for stability, originated by Blattberg and Gonedes
(1974) and employed also by Akgiray and Booth (1988),
is to measure the stable a for daily, weekly, and monthly
returns. If the daily returns are iid stable, these should all
be stable with the same «, yet often the o estimates are
significantly higher for weekly and monthly returns. This
phenomenon has been cited as evidence rejecting stability.

In fact, as Diebold (1993) has pointed out, all that such
evidence really rejects is the compound hypothesis of iid
stability. It demonstrates either that returns are not iden-
tically distributed or that they are not independently dis-
tributed or that they are not stably distributed.

There are many reasons why returns, and daily returns
in particular, might not be either identically or indepen-
dently distributed, regardless of whether or not they are
stable. These include day-of-the-week effects (Gibbons and
Hess 1981; McFarland, Pettit, and Sung 1982); and auto-
regressive conditional heteroscedasticity (ARCH)-like be-
havior (Bollerslev, Chou, and Kroner 1992). If stable vari-
ates with a common mean and characteristic exponent, but
different scale parameters, are mixed together into a single
dataset, estimates of o will tend to be biased downward
(Lau and Lau 1993). Time-aggregated data will then give a
truer, and therefore higher, picture of the conditional «. At
the same time, the aggregated data will represent a much
smaller sample so that it will of course be harder to reject
normality even if the true distribution is iid stable. The ar-

Journal of Business & Economic Statistics, January 1997

guments of Lau, Lau, and Wingender (1990) go beyond the
scope of this article, but see Liu and Brorsen (1995).
ARCH-like effects are very strong in monthly bond-
return data, as documented by McCulloch (1985) and Oh
(1994). Therefore DuMouchel’s estimates cited previously,
& = 1.37 and 1.23, overstate the true deviation from nor-
mality. After adjustment for generalized ARCH (GARCH)
effects (and a time-varying term premium), Oh’s estimates,
of 1.61 to 1.69 for most maturities, are much more realistic.
The CRSP value-weighted stock-market-index returns
cited previously show no conspicuous ARCH-like behavior
at a monthly frequency during the postwar period. Nomi-
nal CRSP returns show much greater volatility during the
period 1929-1941 than after World War II, however, so
that a longer time series should definitely be modeled not
as iid but with a slowly adjusting stable GARCH process.
There also appear to be high-frequency ARCH-like effects
in daily stock returns that do not show up in the monthly
data. I made no attempt here to look for seasonals (year-end
tax effects and short-month February effects are particularly
likely), and there appears to be weak serial correlation in
the mean of the series that could reflect variation either in
the risk-free real rate of return or the risk premium.
Numerous studies (e.g., Akgiray and Booth 1988; Buckle
1995; Csorgo 1987; Tsionas in press) have found strong evi-
dence of skewness in asset returns, and in particular in stock
returns. The current lack of a numerical approximation to
the skew-stable densities makes them much more difficult
to work with at present than the symmetric stable densities.
Undoubtedly the simple iid symmetric stable characteriza-
tion employed here can be fine-tuned in future research.

[Received March 1995. Revised September 1995.]
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