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I. Introduction

The purpose of this article is to introduce a con-
tinuous-time stochastic process, termed the V.G.
model, for modeling the underlying uncertainty
driving stock market returns. The broad objec-
tive is to provide a practical and empirically rele-
vant alternative to the role of Brownian motion,
as the martingale component of the motion in log
prices. The emphasis on proposing a stochastic
process, as opposed to just a distribution for unit
period returns, is important for applications to
European call option pricing that do not merely
compute risk-neutral expectations but account
for risk aversion via the identification of an ex-
plicit change of measure (Harrison and Pliska
1983).

The practical and empirically relevant proper-
ties sought in the proposed process include
(1) long tailedness relative to the normal for daily
returns, with returns over longer periods ap-
proaching normality (Fama 1965); (2) finite mo-
ments for at least the lower powers of returns;
(3) consistency with an underlying, continuous-time
stochastic process, with independent stationary
increments, and with the distribution of any
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A new stochastic pro-
cess, termed the V.G.
(Variance Gamma) pro-
cess, is proposed as a
model for the uncer-
tainty underlying secu-
rity prices. The unit
period distribution is
normal conditional on a
variance that is distrib-
uted as a gamma
variate. Its advantages
include long tailedness,
continuous-time
specification, finite mo-
ments of all orders, el-
liptical multivariate
unit period distribu-
tions, and good empir-
ical fit. The process is
pure jump, approxim-
able by a compound
Poisson process with
high jump frequency
and low jump mag-
nitudes. Applications
to option pricing show
differential effects for
options on the money,
compared to, in, or out
of the money.
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increment belonging to the same simple family of distributions irre-
spective of the length of time to which the increment corresponds
(thereby permitting sampling and analysis through time in a straightfor-
ward fashion); and (4) extension to multivariate processes with ellip-
tical multivariate distributions that thereby maintain validity of the
capital asset pricing model (Owen and Rabinovitch 1983).

The literature on market returns includes a number of models. In
addition to Brownian motion and the normal distribution, Mandelbrot
(1963) put forward the symmetric stable distribution; Press (1967) in-
troduced a compound events model combining normally distributed
jumps at Poisson jump times; and Praetz (1972) suggested the ¢ distri-
bution. More recently, Bookstaber and McDonald (1987) have pro-
posed a generalized beta distribution.

Brownian motion fails property 1. The symmetric stable fails on
properties 2 and 3. The Praetz ¢ distribution fails on property 3 as it is
not possible to construct a stochastic process with the property 3 and
distributions of any increment being a ¢ distribution irrespective of
length of time interval considered since the sum of independent #-
variables is not a t-variable (cf. Blattberg and Gonedes 1974). We are
not aware of the stochastic process satisfying property 3 that underlies
the generalized beta. Though the compound events model of Press
possesses all the four properties described above, the proposed V.G.
model has a further advantage in being a pure jump process of, in the
main, a large number of small jumps. In fact, we show that the V.G.
model is a limit of a particular sequence of compound events models in
which the arrival rate of jumps approaches infinity, while the mag-
nitudes of the jumps are progressively concentrated near the origin. In
this sense, the V.G. model respects the intuition underlying the sample
path continuity of Brownian motion as a model.

Section II concentrates on the V.G. model as a model for the unit
period return distribution, including its elliptical multivariate gengral-
ization. Section III takes up the stochastic process properties. Section
IV presents an application to risk-neutral option pricing and Section V
concludes.

II. The V.G. Model

A. The V.G. Model Unit Period Distribution

The formulation of the V.G. model is comparable to that of Praetz
(1972) in that it is obtained from the normal by mixing on the variance
parameter. Formally, let R, be the return over a unit time period, say
R, = (S;+1/S,), where S, is the price of the stock at time ¢. Suppose that
log (R,) is normally distributed with mean . and a random variance
o?V, where p and o? are known constants. The distribution of V is
taken to be gamma, with parameters c, v, and density g(v) given by
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where I is the gamma function. If X = log (R) — w (dropping the ¢
subscript for notational convenience), then the density of X, f(x) is

10 = || e 0V Im) g, m

and there is no closed-form expression for f. However, the characteris-
tic function for X, ¢x(u), has a closed-form expression obtained easily
by conditioning on V,

dxw) = [1 + (clm)u?2)] ™™™,

where m = v/c is the mean of the gamma density g(v) andv = y/c?is its
variance. It is clear from the form of this characteristic function that
just o®v/m and m?/v are identified. Since o serves as a scale parameter
for V, we take the mean of V to be unity: m = 1l ory = c.

It is shown below that the variable V can be viewed as a random time
change and this setting of m is consistent with supposing that the
expected random time change is unity for the unit period return. The
characteristic function of the unit period return distribution therefore
is

bx(w) = [1 + chu?2] . ?)

B. Moments of the V.G. Distribution and Parameter
Interpretation

The higher moments of the V.G. are obtained by conditioning on V.
The conditional expectation of X" being a,V"%¢", a, = (n — )(n —
3)... (1) for n even and 0 for n odd. The expectation of V¥ is I'(y + k)/
(C(y)c®) or v'T(w™ ' + k)T (™ "). Hence the V.G. has finite moments of
all orders and in particular the second and fourth moments are given by
EX? = ¢%, and EX* = 30*(1 + v).

The kurtosis is therefore 3 (1 + v). Since the kurtosis under normal-
ity is 3, the proportional excess of the kurtosis over 3 is v; hence v may
be regarded as a measure of the degree of long tailedness. Though this
is less satisfactory from a pure long-tailedness viewpoint than altering
the rate of tail decay (which, for the V.G., is still exponential), it does
represent increased tail probability. Furthermore, if moments of all
orders are required, the rate of tail decay can not be easily altered.

C. Effects of Varying Kurtosis

Figure 1 below illustrates the effects of varying v on the density func-
tion of the unit period V.G. distribution. The value of o for the con-
struction of figure 1 was 0.4 and v was set at 0.25 and 1.0, the two
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Fi. 1.—Effect of a change in v from 1.0 to 0.25 (0 = 0.4). Curve A hasv =
1.0; curve B has v = 0.25.

extreme values used in tables 1 and 2 of Section IV. The effect of
raising v is to increase probability near the origin, as well as to increase
tail probabilities at the expense of probability in the intermediate
range, which, for the example of figure 1, is from around .4 to 1.5 on
the horizontal axis, independent of sign.

D. Relationship of V.G. to Praetz t

Praetz took 1/V to be distributed as a gamma random variable which
results in a ¢ distribution, as already mentioned. Though Grosswald
(1976) has shown that the ¢ distribution is infinitely divisible, hence
consistent with a process of stationary independent increments, the
analytical structure of the underlying process is quite complex and
difficult to work with. In particular, the densities do not belong to the
same simple family for increments over intervals of arbitrary length.
Conversely, our choice of the gamma density employs the process of
independent gamma increments, whose structure is well known in the
probability literature (e.g., Ferguson and Klass 1972), to establish con-
sistency of unit period returns with an easily described underlying
continuous-time stochastic process.

E. Estimation by Moment Methods

The parameters o and v may be estimated by moment methods. Em-
ploying the data X;, i = 1, . . ., N, one obtains an unbiased and
consistent estimate of o2 by
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and a consistent estimate of v by

b = {z X;‘/N} 364" - 1.

i

F. Maximum-Likelihood Estimation of Parameters

Direct maximum-likelihood estimation using (1) is likely to prove com-
putationally expensive (empirical characteristic function methods are
also not always successful; see Epps and Pulley 1985; Madan and
Seneta 1987a), but the transformed maximum-likelihood methods using
(2) of Madan and Seneta (1987b, 1989) may be used. As shown by
Madan and Seneta (1989), the density of ® = uX(mod2w), h(0) (when
this is a continuous function of bounded variation on [ -, w]) may be
written as

h®) = 1/Qm) + =! Z bx(ku)cos(k6). 3)
k=1

Madan and Seneta (1987b) implement the transformed maximum-
likelihood estimation procedure for data on stock market returns.

G. Empirical Relevance of the V.G. Model for Stock Market
Returns

Empirically, the V.G. model is a good contender as a model for de-
scribing daily stock market returns, as reported in Madan and Seneta
(1987b). The V.G. model (in Madan and Seneta 1987b) was compared
with the normal, the stable, and the Press compound events model
(termed ncp), using a chi-squared goodness-of-fit statistic on seven
class intervals for unit sample variance data on 19 stocks quoted on the
Sydney Stock Exchange. The class intervals used were —o, —1,
—0.75, —0.25, 0.25, 0.75, 1.0, . Accordingly the chi-squared statis-
tics had 6 degrees of freedom. For 12 of the 19 stocks studied,
minimum chi squared was attained by the V.G. model, when compared
to the ncp, stable, and normal processes. The remaining seven cases
were best characterized by the ncp for five cases, the stable for two
cases, and none for the normal distribution.

H. Power Series Representation for Density

From the characteristic function for the V.G. model it may also be
observed that X can be written as Y — Z where Y, Z are independently
and identically distributed (i.i.d.) gamma random variables with mean
o/V2v and variance ¢%/2. This follows on factoring (1 + a%«?) as (1 —
iau)(1 + iau) for a> = o®v/2. This representation provides an inter-
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esting decomposition of the process of stock price movements into
independent processes for the increases and the decreases (see Sec.
III). It also allows us to obtain a power series representation for f(x),
using the results of Kullback (1936),

V2  (xV2hlg)e— D2

o 2@MURr(lA)Va
where K,,(x) is a Bessel function of the second kind of order w and of
imaginary argument (see Whittaker and Watson 1962). It is known

(Teichroew 1957) that there is a closed form for the density if (1/v) is an
integer, but since v is an unknown parameter, this is not an advantage.

fx) = Kon- 12(xV2hlo), @)

1. Multivariate Extension for the V.G.

A multivariate extension of the V.G. model is easily obtained by letting
X now denote a vector of random variables distributed conditional on
the nonnegative random variable V as a multivariate normal with mean
vector zero and variance-covariance matrix V. Again, by condition-
ing on V, the joint characteristic function of X, ¢bx(«), where u is now
an appropriately dimensioned vector, is easily seen to be

bxw) = (1 + v Su2)=", 5)

which generalizes (2). Since ¢y is a function of u via the quadratic form
uTS.u, the joint density is elliptical, and, as Kelker (1970, theorem 6)
shows, the conditional expectation function of X;, given the other X’s,
is linear in these X’s. In fact, as conditional on V, we have multivariate
normality, the slope coefficients of the linear conditional expectation
are easily seen to be independent of V. This linearity of conditional
expectations is useful for conducting tests of the capital asset pricing
model, the validity of which, in the elliptical context, was demon-
strated by Owen and Rabinovitch (1983). Test procedures along the
lines of Gibbons (1982) could be implemented.

A shortcoming of the multivariate model is that v is the same for all
the marginal distributions, hence they have identical kurtosis.

Estimation in the multivariate context may be done by estimating 3.,
using moment methods, and estimates of v being obtained from trans-
formed maximum likelihood applied to the univariate series ©; =
uX;(mod2m), using (3) for the likelihood. Alternatively, multivariate
Fourier methods may be employed to approximate the joint density,
h(®) of ®; = uX(mod2), by

A J
h®) = (127" + Z Z 2/2m)™ dx(juky)cos(jukle), 6)
a=1 j=1

where the summation on o runs over a set of multi-indices &, (Edmunds
and Moscatelli 1977).
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III. The V.G. Stochastic Process

A. The V.G. Stochastic Process and Random Time Change

The continuous-time stochastic process Y(f), which is consistent
with the V.G. model as the distribution for the unit period motion
Y(¢t + 1) — Y(¢), is given by Brownian applied to random time change,

Y(t) = b(G()), )

where G(t) is the process of i.i.d. gamma increments with mean 7
and variance vt over intervals of length 7, and b(¢) is an independent
Brownian motion of zero drift and variance rate o°.

Consistent with the multivariate extension of the V.G. in Section 11/
above, one could take the Brownian motion in (7) to be multivariate
with zero drift and covariance rates given by 2. This has the interesting
economic interpretation of supposing that economically relevant time
is random in that a calendar year is, in economic terms, sometimes less
than one economic year and sometimes more, G(¢) being the number of
economic years in ¢ calendar years. The random time G(¢) is here an
economywide entity, much like systematic risk, and it may be thought
of as a measure of systematic time. More informally, one may think of
G(t) as a formal statement of the remark, ‘‘Didn’t have much of a year
this year,”” by allowing for an interpretation of how much of a year one
actually had. A suggestive heuristic candidate for G(¢) could be the
cumulated gross domestic product. (Primarily for notational conve-
nience we restrict attention in the rest of this section to the univariate
case.)

B. The V.G. Stochastic Process as Gains and Losses

Another representation for the V.G. process is obtained on exploiting
the observation that the V.G. is the difference of two i.i.d. gamma
variates, in which case one may also write

Y@t) = UG) — W), @®

where U(t), W(t) are processes of independent gamma increments with
means (o/V2v)h and variances ?h/2 for increments over intervals of
length A.

In this representation there is a decomposition of Y into a gains
process U(t) and a process of losses W(¢), the gains and losses being
independent and having the same mean and variance rates.

C. The Distribution of the Short and Long Motions

It may be observed from the characteristic function, ¢4 (u), of the
standardized variate A(t) = Y()/(c'V1),
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dae) = [1 + w?(2n]~™,

that the distribution of Y(¢) for large ¢ approaches normality.

A comparison of the characteristic function for A(z) with (2) reveals
that the kurtosis for A(t), as derived in Section IIB, is 3(1 + v/7).
Hence, for large ¢ we have the kurtosis of the normal. This property of
the V.G:. is consistent with empirical evidence on stock returns, where
long tailedness is present for daily returns, but monthly returns tend to
be normally distributed.

D. Compound Poisson Approximations for the V.G. Process

All of the processes b(t), G(t), Y(¢), U(t), and W(t) are examples of
Lévy processes, a natural continuous-time analog of a sequence of
partial sums of independently and identically distributed random vari-
ables. A detailed survey of such processes in general can be found in
Fristedt (1974, pp. 241-396). It is clear from (7) and (8) that central to
the properties of our V.G. process are processes with stationary inde-
pendent gamma increments since all of G(¢), U(¢), and W(¢) are of this
form.

TueoreM 1. For a (gamma) process Z(¢) of independent stationary
gamma increments having mean . and variance 7% for unit time, the
Lévy representation of the distribution of increments per unit time has
no Gaussian component, and the Lévy measure is given by p(dz) = 0
for z < 0; = (p/0)(exp —2/0)/z dz for z > 0, where & = 1%/p.. The process
Z(?) is the limit of approximation as n — « of a compound Poisson
process with arrival rate w3,/6 and i.i.d. jumps of size described by the
density (e~ ¥*/zB);;>1/n}, Where B, = [ (e ~¥%1z) dz and Ij ;= is the
indicator function of the set {z|z > 1/n}.

Proof. See the Appendix. Q.E.D.

This result also shows that the nondecreasing process Z(¢) is pure
jump and so also is G(¢). Theorem 1 identifies the compound Poisson
processes that approximate processes like Z(t), G(t), U(t), and W(¢).
The nature of the approximating compound Poisson process is to
equate to zero all jumps of the process Z(f) of size = 1/n. While the
number of jumps of Z(¢) in any finite interval of length A is, at most,
countable, it is clear from the nature of p that there are infinitely many
jumps of vanishing size in any interval. As n increases, the arrival rate
tends to infinity while the jump magnitudes tend to be concentrated
near the origin.

The approximation to the V.G. process is a corollary to this
theorem.

CoroLLary To THEOREM 1. The V.G. process Y(¢) is a pure jump
process that can be approximated as the difference of two independent
compound Poisson processes, each of which has arrival rate (1v)B, and
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ii.d. jumps described by the density of theorem 1 where 6 =
oVv2. Furthermore, the Lévy measure for the V.G. process is

F(dx) = e~ ®oV20/qixdx, x # 0 and F{O}) = 0.

66 99

Proof. This follows from (8) and theorem 1, by putting “‘pn”’ = (o/
V2v) and “7*° = ¢*/2. Q.E.D.

The compound Poisson approximation to the V.G. given by the
above corollary is most useful in applications that employ Monte Carlo
methods to simulate asset price paths. Such applications include the
valuation of complex derivative securities like the call and put option
components of mortgages (Hendershott and Van Order 1987). Parame-
ter estimation in such models can involve the use of the recently pro-
posed simulation moment estimator (Duffie and Singleton 1989).

E. The Fine Structure of the Jumps

A process of independent stationary gamma increments, Z(t), over t €
[0, 1] (and so correspondingly over any specific unit time interval), has,
furthermore, a representation in terms of its jumps, and the joint distri-
bution of the jump sizes is available (see Ferguson and Klass [1972]
and, more concisely, Ferguson [1973], pp. 218-19).

TureoreM 2. For any process Z(¢) of independent stationary gamma
increments having mean p. and variance 2 for unit time (with & = 1%/p),
for ¢t € [0, 1],

Z) = z Jilo,0(U),
i=

with almost sure convergence, where J; is the size of the jth largest
jump in [0,1] and the U;, j = 1, are i.i.d. random variables uniformly
distributed on [0,1], and independent of J;, j = 1.

The joint distribution of the first k jumps, starting with the largest, is
given by the following recursive scheme. Let

2}

N(kx) = —(p/B)J e "lw dw.

x/0

Then

P(J; = x1) = exp(N[x1])
forx; >0;andj =2,3,...,

PU; = x{Ji—1 = xj-1, . . ., Jy = x1) = exp(NIx] — Nlx;j-1])
for o< Xj < xj—1~
Proof. This follows with appropriate substitutions and simplifica-

tions from Ferguson and Klass (1972). Q.E.D.

In particular, the distribution function of the kth largest jump of Z(¢)
is
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k—1
Vh(x) = exp(NIx]) > (— 1)NG)!
Jj=0
for x > 0.

We note that a property of the V.G. process Y(¢) is that there are
infinitely many jumps in any interval, and indeed the characteristic of
jumps vanishing in size is shared by the process of independent stable
increments studied by McCulloch (1978). Given that stock prices are
constrained to move in multiples of one cent, such a description is
more realistic than a description by a diffusion process.

The level of detail about the jump structure provided by theorem 2
could be useful in evaluating securities that refer specifically to these
jump magnitudes. For example, if the price path is taken as piecewise
constant from a transaction tape, then contracts may well be written
and marketed that protect investors against big jumps. This could be
done, for example, by contracting a currency swap to neutralize the
effect of big jumps. The valuation of such a contract would require a
knowledge of the fine structure of jumps as provided by theorem 2.

IV. Risk-neutral Option Pricing

A. Risk Aversion and V.G. Option Pricing

Suppose we model the underlying uncertainties driving the security
price by the V.G. process Y(¢) with parameters o and v. If we let the
mean corrected unit period log difference of the stock price have the
V.G. distribution of Section II, then the motion of log S(¢) is given by

log S(t) = wt + Y(2),

where p is the drift on the log price.!

The absence of arbitrage opportunities implies that the price of a
European call option on the stock W with exercise price E and maturity
T in a world with a fixed interest rate of r is given by the discounted
expected value of the option price at maturity, where the expectation is
taken under an absolutely continuous change of measure (Harrison and
Pliska 1981). Option pricing in markets with risk-averse investors
therefore requires the identification of the change of measure. For
processes with jump discontinuities, this option price will depend on
the stock’s drift rate as observed by Madan, Milne, and Shefrin (1989).
Option pricing with the V.G. process, taking account of the change of
measure, is the subject matter of another paper (Madan and Milne
1989).

1. The drift for the stock price is the expected unit period return, A = E(S(1) — S(0))/
S(0), and for the V.G. this is related to . by o = A + 1hln(l — vo?/2).
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B. Risk-neutral V.G. Option Pricing

Here we restrict attention to the risk-neutral case and comment on the
effect of the kurtosis parameter v. The resulting formula is also rele-
vant to the case in which the density process for the change of measure
has zero covariation with the stock price process. In this case the stock
price drift (see n. 2 below) must equal the interest rate.

For this special case one may write,

W=7 | (s — Bfspasn, ©

where f(S7) is the density of the stock price at maturity. The option
price may be easily evaluated by conditioning on V, the random time
change component of the V.G. process. Given V, we have a Black-
Scholes situation and the option price is obtained using the Black-
Scholes formula. It remains to integrate out the conditioning variable V
with respect to its gamma density, and this is accomplished by numeri-
cal integration procedures.

C. Risk-neutral V.G. Option Prices and Kurtosis

The option price (9) has one extra parameter over Black-Scholes and
this is v, the percentage excess of the kurtosis over the normal kurtosis.
We report on the impact of this parameter in table 1. Since the V.G.
has greater kurtosis at lower maturities, we investigate the cases of
both a 1-month maturity, or T = .08333, and a 3-month maturity, or T
= .25. The interest rate is taken at 10%, the exercise price is 100, and
o? is 0.40.2

Table 1 shows the option prices given by the formula (9) for various
stock prices and levels of kurtosis, with T = .08333.

One observes from table 1 that the effect of increasing the kurtosis
is to initially lower the option price, but as the kurtosis is further in-
creased, the V.G. option price rises above the Black-Scholes value.
For both in-the-money and out-of-the-money options, the option price
did not fall as swiftly and rose above Black-Scholes sooner, when
kurtosis was increased, than was the case for on-the-money options.

In table 2, the maturity is increased to T = .25, other arguments
being as in table 1.

As may be observed by comparing tables 1 and 2, the lower kurtosis
for the larger maturity requires a higher v parameter for the V.G.
option price to come up to the Black-Scholes value.? The general pat-
tern that is observed in table 1—of the initial drop in the V.G. value
being greater and the rise slower as we raise v for on-the-money op-

2. The drift X equals 10%, and w is calculated in accordance with the formula in n. 1
above.
3. Note that the kurtosis for the distribution at maturity ¢ is v/t (see Sec. IIIC).
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TABLE 1 Black-Scholes and Risk-neutral V.G. Option Values for Varying
Kurtosis and Stock Price

% Change in Kurtosis

Stock Black-

Price Scholes 25 50 75 100
90 3.24 3.23 4.12 5.16 6.24
92 3.94 3.7 4.60 5.68 6.81
94 4.74 4.25 5.15 6.26 7.43
96 5.62 4.89 5.78 6.93 8.14
98 6.60 5.62 6.52 7.71 8.96
100 7.67 6.52 7.43 8.64 9.92
102 8.82 7.66 8.58 9.81 11.11
104 10.05 9.02 9.96 11.20 12.51
106 11.37 10.51 11.48 12.73 14.05
108 12.75 12.09 13.10 14.36 15.68
110 14.21 13.75 14.78 16.05 17.38
TABLE 2 Black-Scholes and Risk-neutral V.G. Option Values for Varying

Kurtosis and Stock Price

% Change in Kurtosis

Stock Black-

Price Scholes 25 50 75 100

90 8.39 7.80 7.77 8.23 8.96
92 9.34 8.61 8.49 8.92 9.64
94 10.35 9.47 9.26 9.66 10.38
96 11.41 10.41 10.11 10.47 11.18
98 12.52 11.42 11.02 11.35 12.05
100 13.68 12.50 12.02 12.31 13.01
102 14.89 13.65 13.12 13.39 14.09
104 16.15 14.89 14.35 14.61 15.31
106 17.46 16.20 15.69 15.97 16.68
108 18.80 17.58 17.12 17.43 18.15
110 20.19 19.02 18.62 18.96 19.71

tions as opposed to in- or out-of-the-money options—is maintained in
table 2.

V. Conclusion

A new stochastic process for the underlying uncertainty driving secu-
rity prices was proposed. The process was termed the V.G., for its
distribution is normal conditional on a variance that is distributed as a
gamma variate. The new process was shown to be long tailed relative
to the normal for a motion over smaller time intervals and approached
normality for motions over longer intervals of time. The stochastic
process is pure jump and approximable by a particular compound Pois-
son process with high jump frequency and jump magnitude concen-
trated near the origin. Furthermore, the joint distributions of the jumps
in the order of magnitude were identified. It was also observed that the



V.G. Model 523

unit period distributions possessed finite moments of all orders and
have good empirical fit (Madan and Seneta 1987a4). In addition, a
generalization to a multivariate stochastic process was made that had
elliptical unit period distributions consistent with the capital asset pric-
ing model.

Applications to option pricing were also made, and a differential
effect was observed on options on the money, as opposed to those that
are in or out of the money. Increases in kurtosis have a greater upward
effect on options that are either in or out of the money as opposed to
those that are on the money.

Appendix
Proof of Theorem 1

The log characteristic function Ind(u) of any process with independent and
stationary increments (such as the process Z(t)) can be written uniquely in the
Lévy form:

Ind(u) = tibu — %czuz + J(e"“z = 1 — iwzd({lz|=1}))K(dz)], (Al)

where —© < b < », and K is a positive measure on the real line satisfying
K{0p = 0 and f(x* N\ 1)K(dx) < » (Jacod and Shiryaev 1987, pp. 107,
76).

For the process Z(f), Ind(u) = —t(p/t)!In(l1 — iud) and (A1) are easily
checked dlrectly by power series expansnon for K(dz) = 0 for z = 0; = p(dz),
z>0;whilec®> =0and b = w(l — e “/*) The integrability of (> /\ 1)p(dz)
follows on inspection. Z(t) is therefore pure jump with jump compensator
dtp(dz).

For the approximation, define p,(dz) by p(d2)I;>1n and F,(dz) = p.(dz)/
(1B,/8) and consider the log characteristic function defined by

00

Ind,(u) = t(MBn/e)[iuL <y Fu(dz) + L (€"“*.— 1 — iuzl<pF,(d2)].

(A2)

The measures (p.B,/0)F, converge to p by construction, and ¢,, the characteris-
tic function for the required compound Poisson process, converges to ¢. This
implies convergence of the compound Poisson processes to the process Z(z).
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